
Seminar  5  
   

 End Game

EDAF80 Introduction to Computer Graphics

Pierre Moreau 

Slides by Carl Johan Gribel, 2010-13, and Michael Doggett, 2014-172019



Announcements

• If you have a disability, you can ask for help for the exam 
(extra time, or writing on a computer for example): 

1. Contact Christina Rowa, accessibility officer for LTH: https://
www.lunduniversity.lu.se/student-life/preparing-to-come/
students-with-disabilities 

2. Contact Michael Doggett, with the attestation given by the 
accessibility officer, before the 14th of October; the help is 
subject to Michael’s approval. 

• Register for the exam in LADOK 
– If you cannot find the course in LADOK, send me an email. 

• Possible extra lab session in week 8 (21st Oct. to 26th Oct.) 
– Check the forum for more info; will also be announced during 

the lectures.

https://www.lunduniversity.lu.se/student-life/preparing-to-come/students-with-disabilities
https://www.lunduniversity.lu.se/student-life/preparing-to-come/students-with-disabilities
https://www.lunduniversity.lu.se/student-life/preparing-to-come/students-with-disabilities
https://www.lunduniversity.lu.se/student-life/preparing-to-come/students-with-disabilities


Today

• Final assignment: make a game 
– Some ideas 

• New stuff 
– Collision detection 
– Physics (inertia) 

• Miscellaneous helpers 
– Add new files to the project 
– Load an external 3D model 
– Share your games with others



Game ideas

• Asteroids 
– shoot asteroids randomly towards 

camera/spaceship 
objective: Avoid and/or shoot them down 

• Torus ride 
– place torus ”rings” along path 
objective: Gain points by flying through 

• Your own idea 
– consult us



General considerations

• Fixed or POV camera? 
• Manoeuvre by keys (WASD), mouse, both? 

– constrained to a plane, or full 3D? 

• Animations: fixed, random, interpolation ..



Asteroids

• Fixed array of asteroids 
Node asteroids[N]; 
– respawn when behind camera or shot down 
– hide/unhide:  
if(visible) asteroids[N].render(…);

• Randomize position, velocity vector etc 
• Alter appearances using size, shaders, 

tessellation, noise ...



Torus Ride

• Fixed array of tori 
Node tori[N]; 
– Fixed or infinite (respawn) path 
– hide/unhide:  
if(visible) tori[N].render(…);

• Place tori e.g. along random spline 
• Alter appearances using size, rotation 

(spin?), shaders, tessellation ...



When you’re done...

• Make a short post on the course forum 
presenting your game 
– Title and game objectives 
– Creators 
– Features and how you implemented them 
– Screenshots 

– Present in Lab 5, week 7



Today

• Final assignment: make a game ✔ 
– Some ideas 

• New stuff 
– Collision detection 
– Physics (inertia) 

• Miscellaneous helpers 
– Add new files to the project 
– Load an external 3D model 
– Share your games with others



Collision detection

• Use bounding spheres (BS) and perform sphere – 
sphere or ray – sphere collision tests 
– Cheap tests 
– Avoid other primitives 

• Note: no need to use an actual sphere – just position + radius! 

• List of intersection tests between many different objects

http://www.realtimerendering.com/intersections.html


Sphere – Sphere

p1

p2

• Intersection if  
 
| p1 - p2 | < r1 + r2 

bool testSphereSphere(p1, r1, p2, r2)



Ray shooting

• Ray origin pv, unit direction v 

• ”Shoot” ray from camera  
    pv = mCamera.mWorld.GetTranslation();  
   v = mCamera.mWorld.GetFront();

pv
v



• Ray origin pv, unit direction v 

• Sphere at ps, radius r 

• Intersection if  
 
| rejection( ps – pv, v ) | < r 

 
rejection( u, v ) = u – v(u·v) 
  

bool testRaySphere(pv, v, ps, r)

Ray – Sphere

ps

pv

v



Collision detection:  
Spaceship & asteroids sketch

• Spaceship and its BS radius: Node ship  
float ship_BSradius

• Asteroid & radii lists: Node asteroids[N]  
float asteroid_BSradii[N]

• Each frame, test spaceship against all asteroids: 
 

for (int i=0;i<N;i++)  
{ 
     if testSphereSphere(  

worldPosition(ship),  
ship_BSradius, 
worldPosition(asteroids[i]),  
asteroid_BSradii[i])  

     { // lose life/award point… }  
}



Drawing lines
• Create a vertex array of line segments and set  

mesh_data::drawing_mode to GL_LINES 
– Then fill in the vertex array and use it as 

in assignment 2 
– i.e. same code as for parametric shapes,  

with the addition of changing the  
drawing_mode and creating lines rather than 
triangles.

– Apply shader etc as usual 
• Line width 

– Call glLineWidth($width)  
(glLineWidth documentation)

• Crosshair, “laser” etc 
– attach node to camera

(-0.1, 0, -2) -- (0.1, 0, -2) 
(0, -0.1, -2) -- (0, 0.1, -2)

http://docs.gl/gl4/glLineWidth


Cube-mapped background

• Big sphere 
– Position around the scene, or camera 

• Apply cube mapping shader 
– Sample the cube map using sphere’s world space normal 

instead of reflection 
– Disable culling:                                                                              

glDisable(GL_CULL_FACE);



Physics: acceleration/inertia

• Use fixed acceleration instead of fixed velocity 
– smooth starts and stops 

• Sketch: 
 init:  

glm::vec3 v = (0,0,0);

 each frame: 
 compute move and strafe as before  
 v = v + mCamera.mWorld.GetFront() * move  
            + mCamera.mWorld.GetRight() * strafe;

      mCamera.mWorld.Translate(v*dt);  
        // dt is time delta in camera update() function

• The trick: Euler integration of Newtons second law, F=ma



Physics: elastic collision

• Reflect trajectories along collision normal 
n = normalize( p1-p0 ) 

• u’ = reflect(u, -n)  
v’ = reflect(v, n)

-n

n

u

v

p0

p1

u’

v’



Today

• Final assignment: make a game ✔ 
– Some ideas 

• New stuff ✔
– Collision detection 
– Physics (inertia) 

• Miscellaneous helpers 
– Add new files to the project 
– Load an external 3D model 
– Share your games with others



Adding new files to the project

• Open src/EDAF80/CMakeLists.txt 
• Append the files names to the variables 

ASSIGNMENT5_SOURCES and EDAF80$
{PATH_SEP}Assignment5 

• For example, two new  
files added: 
my_new_source_file.cpp  
and  
my_new_header_file.hpp



Adding new files to the project

• If using Visual Studio 2017 (and built-in 
CMake support): create the files directly 
from Visual Studio. 

• Otherwise: create the files manually, in 
the same folder as the other assignment 
files. 

• Just build the project and start using 
those new files.



Load an external 3D model

• Look at src/EDAF80/assignment1.cpp: the 
sphere for the planet was loaded that way! 

• Use the bonobo::loadObjects(filename) 
function, from src/core/helpers.hpp 
filename is specified relative to  
res/scenes folder 

• Returns a vector of bonobo::mesh_data, 
whereas createSphere() and the others 
only returned one instance of mesh_data



Share your game!

• Copy in a given folder, the following: 
• the shaders folder; 
• the res folder; 
• the program executable (EDAF80_Assignment5, 

from  
build/src/EADF80); 

• the assimp DLL (found in the same folder as above) 
• Notes: for the shaders and res folders, you can ignore 

files you do not use as long as you keep the same 
folder hierarchy



Share your game!

• Then, zip it and share it! 
• Here is an example below of a shared 

game:



Today

• Final assignment: make a game ✔ 
– Some ideas 

• New stuff ✔
– Collision detection 
– Physics (inertia) 

• Miscellaneous helpers ✔ 
– Add new files to the project 
– Load an external 3D model 
– Share your games with others



MD16

Torus ride examples

26



MD16

Asteroids examples

27



MD16

Other examples

28



MD16 29

Catmull Highway 
https://youtu.be/nG_bm0vBJ5Y



General guidance

• Print scores, messages etc to console (printf) 
• even better, use ImGui 

• Random numbers: int rand(), #include <stdlib.h> 
• Keep it simple: start out with basic features, 

shaders etc 
– Add complexity progressively 
– Total time consumption equivalent to a normal lab 

• Reuse your achievements from assignment 1-4



Summary

• Minimum requirements (Asteroids, Torus Ride) 
– Ship/camera manoeuvrability 
– Use of tessellated objects with shaders 
– Translational and rotational animation 
– Fixed object array (respawn if needed) 
– Game presentation on course forum 

• Optional 
– Collision detection, Inertia, score count, ... 

• Own idea 
– Consult us 

Have fun & Good luck!


