
1(7)
LUNDS TEKNISKA HÖGSKOLA Institutionen för datavetenskap

Exam – Solutions
EDA221 Computer Graphics : Introduction to 3D

2013–10–21

Note that this document only shows suggested solutions, and may not represent the exact solutions
needed to get full score on the exam.

1. Shading

a) Diffuse and specular terms of Phong shading

I = ∑
i

 kaLia︸ ︷︷ ︸
ambient

+ kd max (0, li · n)Lid︸ ︷︷ ︸
diffuse

+ ks max (0, (ri · v)α)Lis︸ ︷︷ ︸
specular

The Phong model consists of an ambient, diffuse and specular term. Replacing the specular
term with Blinn-Phong specular (n · h)α is also an accepted solution. For full score, define
the diffuse and specular terms, their coefficients and the included vectors. Also include the
max operators. Notice that there can be several light sources and that the vectors need to be
normalized.

b) Yellow, mostly diffuse material with a small specular peak: ka = (0, 0, 0) (this term approxi-
mates indirect lighting and should be set low or zero, in any case, it should be considerably
less than the diffuse term), kd = (.7, .7, 0) and ks = (0.3, 0.3, 0.3). Finally, the shininess (α
above) should be set to a large value, say 100, to get a small specular peak.

c) Color at middle of the edge: Note that the graphics pipeline automatically interpolate all
vertex attributes for each pixel, so the color will vary from (1, 0, 0) at p0 to (0, 1, 0) at p1. At
the middle of the edge, the color will be (0.5, 0.5, 0) The vertex shader simply passes on the
normal values, and the normal is used to set the pixel color.

d) Write a vertex shader that, when applied to a sphere model, makes the sphere grow and shrink

in vec4 vPos;
in vec3 vNormal;
uniform float time;
uniform mat4 MVP;
void main()
{

float scale = 1.0 + sin(time);
vec3 pnew = vPos.xyz + vNormal*scale;
gl_Position = MVP*vec4(pnew, 1.0);

}

2. Transforms

a) Given the point P = (1, 2, 3, 1), what is the location of P′ = ABCP?

A =

1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 1

 (1)

2(7)

B =

cos π

2 − sin π
2 0 0

sin π
2 cos π

2 0 0
0 0 1 0
0 0 0 1

 =

0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 (2)

C =

2 0 0 0
0 4 0 0
0 0 3 0
0 0 0 1

 (3)

Given the point P = (1, 2, 3, 1), P′ = ABCP = (−7, 3, 10, 1).

b) If the matrix B is used to transform points of an object, what matrix is used to transform the
corresponding surface normals? What is the direction of the normal n = (1, 0, 0) after this
transform?
In general, if a matrix M is used to transform points, then M−> is used to transform normals.
In our case:

M−> = B−> (4)

Also note that B−> = B because B is a rotation matrix, and rotation matrices are orthogonal,
i.e., R−1 = R>.
Now compute M−>n = Rz(90)n = (0, 1, 0). Thus, the direction of the normal after transform
is (0, 1, 0).

c) Derive the view matrix for a camera placed at E = (2, 2, 2) looking at the point C = (2, 0, 2)
and with an up-vector (1, 0, 0). Solution: See Lecture 5.

View =

0 0 1 −2
1 0 0 −2
0 1 0 −2
0 0 0 1

 .

d) Describe the steps needed to transform the triangle from A to A’ and B to B’ in Figure 1,

A
B

A’B’

0 1

2 01

2

0

2

10 2

1

Figure 1: Transform from A to A’ and B to B’

One possible solution:
The origin is placed in the lower left corner of triangle A, and assume that Figure 1 shows
the xy-plane. First, scale triangle A with two in x and three in y. Then, rotate the triangle
180 degrees around the origin (around the z-axis, i.e., using the Rz rotation matrix). Finally,
translate along the vector (11,6,0). The matrix applied to the triangle at A is then:

T(11, 6, 0)Rz(180)S(2, 3, 1) (5)

The full matrix is given by:

M = T(11, 6, 0)Rz(180)S(2, 3, 1) =

−2 0 0 11
0 −3 0 6
0 0 1 0
0 0 0 1

 . (6)

3(7)

Similarly, at triangle B, first scale x with three, and y with two, rotate 90 degrees around the
z-axis, and translate seven units along the positive x-axis.

N = T(7, 0, 0)Rz(90)S(3, 2, 1) =

0 −2 0 7
3 0 0 0
0 0 1 0
0 0 0 1

 . (7)

In RenderChimp, each node has a TRS transform matrix, where the matrices are applied
from right to left. For this example, given that triangle A is defined with the three vertices
P0 = (0, 0, 0, 1), P1 = (2, 0, 0, 1) and P2 = (0, 2, 0, 1), we can write:

triA->setScale(2,3,1);
triA->setRotateZ(M_PI);
triA->setTranslate(11,6,0);

Similarly, for triangle B with vertices P0 = (0, 2, 0, 1), P1 = (2, 0, 0, 1) and P2 = (2, 2, 0, 1) we
have

triB->setScale(3,2,1);
triB->setRotateZ(M_PI/2);
triB->setTranslate(7,0,0);

Note that if we want to multiply the matrices together in another order, e.g., SRT, or add a
second translation, we must create new nodes in RenderChimp to handle this case.

3. Interpolation and Graphics Techniques

a) Smoothstep is cubic interpolation between [0,1] on the interval x ∈ [a, b], with the constraint
that the derivative is zero at x = a and x = b. Derive the cubic interpolant.
Set t = x−a

b−a , and denote the cubic interpolant f (t) = c0 + c1t + c2t2 + c3t3. The values and
derivatives at t = 0 and t = 1 give us the four equations:

f (t = 0) = 0 ⇒ c0 = 0

f (t = 1) = 1 ⇒ c0 + c1 + c2 + c3 = 1

f ′(t = 0) = 0 ⇒ c1 = 0

f ′(t = 1) = 0 ⇒ c1 + 2c2 + 3c3 = 0

Now use these four equations to solve for the four coefficients ci. In general, this is a system
of equations Ax = b that can be solved using a matrix inverse, i.e., x = A−1b, but in this case,
both c0 and c1 are zero, so we are left with the two equations c2 + c3 = 1 and 2c2 + 3c3 = 0.
Solving for c2 and c3, we get c2 = 3 and c3 = −2, and the cubic interpolant is then:

f (t) = 3t2 − 2t3,

where t = x−a
b−a .

b) Explain the bump mapping algorithm.
Derive tangent space: Compute tangent (t), binormal (b) and normal (n) in vertex shader and
pass to pixel shader. These three vectors represents tangent space a unique coordinate system
for each point of the object.
Find tangent space normal: Lookup coordinate vector (α,β,γ) from a texture, and remap from
[0,1] to [-1,1] (Colors in GLSL: [0,1] instead of [0,255]).
Note that this lookup is performed in the pixer shader, to give a perturbed normal for each
pixel covered by a triangle. Now, express the perturbed normal in object space (if the tangent
(t), binormal (b) and normal (n) are expressed in object space) as:

n′ = αt + βb + γn (8)

Finally, transform the perturbed normal n′ from object space to world space (or the space
you’ve chosen to shade in) and use this normal for shading. See Lecture 4 for details.

4(7)

c) Reflection mapping is an approximation of true reflections. Why? Motivate your answer.
Reflections are simulated by indexing in a texture based on the direction of the reflected view
vector. The result is approximate reflections from distant objects, and reflections in near-by
objects, or the object itself are not captured. Furthermore, the reflection map is only correct
from one unique point of the scene, i.e., the point the cube map was generated from. Commonly,
the cube map is static, or at least not updated for each frame. Finally, the spherical reflection
map is often represented with a cube-map. where the sphere is approximated with six faces.
True specular reflections can be simulated by tracing a ray along the incoming ray’s reflection
direction and compute wich object this ray first intersects.

d) What is the difference between an orthographic and perspective projection?
See Lecture 5, slide 16 for a visual difference. Perspective projections have so called perspective
foreshortening, where you divide the coodinates with the depth. Objects further away become
smaller. In othographics projection, you simply drop the depth coordinate. Orthographic:
(x, y, z) 7→ (x, y). Perspective: (x, y, z) 7→ (x/z, y/z).

4. The Graphics Pipeline

a) Describe the stages in a real-time graphics pipeline; from input to a resulting image. Include
the different stages of the pipeline and their responsibilities.

Application setup:
Setup geometry, shaders and transform matrices (done on the CPU)
For each triangle (done on the GPU): Apply transforms (e.g., MVP) in vertex shader Project
on screen (divide by w coordinate) Rasterize: Evaluate edge equations at pixel center, to de-
termine which pixels are covered.
For each covered pixel: Depth buffer test to check if closest object If visible: run pixel shader,
store in color buffer.
The vertex shader works on vertices and transforms each vertex and its attributes (sent from
the application through vertex arrays), such as the vertex normal, texture coordinates, etc. The
vertex shader always outputs a position in clip space to the rasterizer (i.e., applies the MVP
matrix to each vertex). The transformation matrices are commonly passed as uniforms.
The rasterizer computes visibility, i.e., in which pixels the current triangle is visible using in-
side tests basedon edge equations. It also interpolates the vertex attributes for each pixel. As
part of the rasterization phase, the depth buffer test is executed to determine which of the trian-
gles overlapping a pixel that is visible. Before rasterization, backface culling may be performed
to avoid rasterizing backfacing triangles. Note that a backface test must be done after vertex
shading.
The pixel shaders receives the interpolated vertex attributes from the rasterizer and a set of
uniforms as inputs and computes a color for the pixel. The pixel shader always outputs a color
(unless the discard operation is called.

b) What are the most computationally costly parts of the graphics pipeline? Motivate your an-
swer.
This is very scene-dependent. For a scene consisting of one big triangle, the vertex shader
work is easy (transform three vertices). The rasterization work is medium, as the triangle cov-
ers many pixels (i.e., many inside tests need to be executed), but there is only one triangle, so
only depth bufer tests for all pixels covered by one triangle. The pixel shader work is in this
case significant, as for all pixels covered by the triangle, a pixel shader program need to be
executed. For a scene with many small triangles, the vertex shader work may be signficicant,
but the pixel shader work is often still the bottleneck, due to the amount of pixels that needs to
be shaded. The rasterizer and depth test are performed in fixed-function hardware on a GPU,
so although a lot of computations need to be performed there, it can be done efficiently. If
the rasterization is done in software, however, the rasterization cost is significant. The cost is
also heavily dependent on the complexity of the shader programs. A pixel shader may contain
several hundred lines of code, and in practice, the pixel shader work is often the limiting factor
in a modern game. Moving computations from pixel to vertex level is a common optimization
technique. Gouraud shading is one example.

5(7)

c) In Figure 2, three primitives are rendered in order: A,B,C. Explain how depth buffering works,
and how it can correctly render the three triangles. If the triangles were instead rendered in
order C,A,B, with depth test active, what would the image look like?

The image would look the same, regardless of the order the primitives are rendered. See
Lecture 6 for a summary of depth buffering.
For each pixel: store a depth value dstored (initialize to large value). For each pixel: compute
depth value dnew, of current triangle at hitpoint If dnew < dstored we have a hit. Update the
depth buffer: dstored := dnew, and call the pixel shader. Otherwise, the triangle is covered by
already drawn primitives and we are done and can move to next pixel.

A

B

C

Figure 2: Three overlapping primitives.

5. The rendering equation

a) Describe and discuss each term of this equation. Also describe why the equation is so hard to
solve.
See Lecture 6 for definitions of the included terms. The reason the equation is so hard to
solve is because it contains the light intensity I on both the left and the right side, and must
be recursively evaluated for all points in the scene for a correct solution. This is not tractable,
and in practice, this equation is approximated or evaluated at a subset of points. Furthermore,
determining mutual visibility between two points in the scene is a complex operation if the
scene contains many objects. Also, the BRDF may be complex and hard to evaluate, and may
vary for each point in the scene.

b) Describe how the rendering equation can be simplified in order to arrive at the Phong shading
model
See Lecture 6. Simplifications: Disregard from the secondary bounces of light. Unfold the
recursion on the rendering equation once, and only include emission from the second step. In
other words, only accumulate light directly from light sources, not from all points in the scene.
Assume perfect visibility and non-emitting surfaces. As BRDF, use the simple Phong model.

c) Mention at least two effects that are hard to reproduce in real-time graphics, but needed for
high quality offline rendering. Motivate your answer.
Realistic reflections and refractions, indirect lighting (lighting from secondary bounces) etc.
These effect are more easily expressed in a ray tracing engine, that more carefully approximates
the rendering equation.
Hair, fur and fine scale geometry. These effects often require millions of triangles, and does
not often fit in the budget of a real-time graphics application (with a frame time of 20 ms).
Volumetric effects, such as realistic fog, clouds and fire is often more coarsely approximated
in real-time graphics due to limited resources.

6. Hierarchical Modeling, Toon Shading and Shadows

a) Describe a scene graph for the model and use the scene graph to animate the vertical ascent
(take-off) of the helicopter.
The scene graph could look like in Figure 3.

6(7)

Body

Axis

Top Sphere

Blade Blade Blade

translate(0,time,0)

rotateY(time)

Model Scene Graph

Figure 3: A simple helicopter model and corresponding scene graph

b) Design a toon shader: The silhouette can be detected by looking for when |v · n| is small (the
view vector nearly perpendicular to the surface normal). Replace the diffuse shading with a
constant color, and use a brighter constant color near the specular peak.

uniform float shininess;
in vec3 fN; // Normal
in vec3 fL; // Light vector
in vec3 fV; // View vector
out vec4 fColor;

void main()
{

vec3 N = normalize(fN);
vec3 L = normalize(fL);
vec3 V = normalize(fV);
vec3 R = normalize(reflect(-L,N));

vec3 color = vec3(0.0, 0.0, 1.0); // blue
vec3 specularColor = vec3(0.5, 0.5, 1.0); // light blue
vec3 silhouetteColor = vec3(0.0, 0.0, 0.0); // black

if (pow(max(dot(V,R),0.0), shininess) > 0.5)
color = specularColor;

if (abs(dot(V,N)) < 0.3)
color = silhouetteColor;

fColor = vec4(color, 1.0);
}

7(7)

c) Discuss how you could simulate shadows, both in a ray tracer and in a rasterization pipeline.
Focus mostly on the latter.
In a ray tracer, shadows could be simulated by tracing rays from the point towards the light
source. If there is an object on the ray between the point and the light source, the point cannot
receive light from that light source, and the point is in shadow from that light source.

In a rasterizer, one way of simulating shadows is the so-called shadow mapping technique.
First, place the camera at the light source, looking along the light source direction (trivial if it
is a directional or spot light, for point lights it is more involved). Now, render an image from
the point of the light source, using a MVPlight matrix to transform geometry into the space of
the light source, and for each pixel, store the depth of the closest object (this is what is also
stored in the depth buffer when all geometry has been rendered).

In a second pass, render from the “real” camera. Now bind the depth buffer obtained from the
previous pass as a texture (black & white image that represent the depth at each pixel from a
rendering from the light’s point of view). This texture is often called the shadow map.
Now, when shading a pixel, we want to use this depth texture to perform a test: “If the
current point that we shade is further from the light than the value of the shadowmap at the
same point, this means that the scene contains an object that is closer to the light.” In other
words, the current pixel is in shadow.
The tricky part is to express the current point, P, we shade, in the space of the shadow map
(i.e., a frame where the light source is at the origin), otherwise the test above does not make
sense. To express P in the frame of the light source, we apply the MVPlight matrix that we
used from the first rendering pass to transform the point into the coordinate frame used for
the shadow map.

Pshadow = MVPlightP. (9)

This transform can be performed in the vertex shader, and Pshadow is passed along to the pixel
shader.
After this matrix has been applied, we can perform the shadow test in the pixel shader.

float visibility = 1.0;
if (texture(shadowMap, Pshadow.xy).z < Pshadow.z){

visibility = 0.0;
}

Now we can use the visibility value to modify our shading value, for example, to multiply the
diffuse and specular components with.

Remarks: In practice, Pshadow = MVPlightP is expressed in NDC, which goes from [−1, 1] in x
and y, but a texture in GLSL is indexed between [0, 1], so before performing the texture lookup,
we must shift and bias the xy coordinates [−1, 1] 7→ [0, 1], e.g., x′ = x/2 + 1 and y′ = x/2 + 1.
This final step was omitted for clarity above.
Note that we also need to perform Pndc = MVPcameraP as usual, and output that position from
the vertex shader.

The end.

