
1(6)
LUNDS TEKNISKA HÖGSKOLA Institutionen för datavetenskap

Exam – Solutions
EDA221 Computer Graphics : Introduction to 3D

2012–10–22

Note that this document only shows suggested solutions, and may not represent the exact solutions
needed to get full score on the exam.

1. Shading

a) Shader example:
It sets the color of the pixel to blue. When the shader is applied to a primitive, all visible pixels
covered by the primitives will be colored blue.

b) Phong shading, and its three terms.

I = ∑
i

(
kaLia + kd max (0, li · n)Lid + ks max (0, (ri · v)α)Lis

)
An ambient, diffuse and specular term. Replacing the specular term with Blinn-Phong specu-
lar (n · h)α is also an accepted solution. For full point, define each term, the coefficients and
the included vectors, notice that there can be several light sources and that the vectors need to
be normalized.

c) White paper: pure diffuse material. ka = (0, 0, 0) (this term approximates indirect lighting and
should be set low or zero, in any case, it should be considerably less than the diffuse term),
kd = (.7, .7, .7) and ks = (0, 0, 0).

d) Red, shiny, plastic: The important thing is that the material contains a specular term and a non-
zero value for the shininess coefficient and a red diffuse color. ka = (0, 0, 0) (this term approx-
imates indirect lighting and should be set low or zero), kd = (0.7, 0, 0) and ks = (0.3, 0.3, 0.3).

e) Gouraud versus Phong shading executed per-pixel. In Gouraud shading, the shaded color
is computed at the vertex level and is then interpolated over the triangle surface in the ras-
terization stage. Therefore, small features in the shader, such as specular highlights or high
frequency textures, will be smeared out. The diffuse term often looks fine however if it doesn’t
vary much spatially (e.g., kd is read from a texture). In per-pixel Phong, the varying inputs to
the shader (i.e., the vertex atributes such as the normal), are interpolated for each pixel, and
the full Phong model is executed per-pixel using the smoothly interpolated normal at each
execution, which gives high quality specular highlights.

2. Transforms
Given the three matrices A: translation along the vector v = (4, 0, 2), B: rotation 90 degrees around
the z-axis and C: a non-uniform scaling with 2 in x, 3 in y and 4 in z.

a) Give the (4× 4) matrix form of each of A, B and C.

A =

1 0 0 4
0 1 0 0
0 0 1 2
0 0 0 1

 (1)

.

2(6)

B =

cos π

2 − sin π
2 0 0

sin π
2 cos π

2 0 0
0 0 1 0
0 0 0 1

 =

0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 (2)

.

C =

2 0 0 0
0 3 0 0
0 0 4 0
0 0 0 1

 (3)

.

b) Given the point P = (1, 2, 3, 1), P′ = CABP = (4, 3, 20, 1).

c) Give an example of two (different) transform matrices M and N such that MN = NM:
For example a scaling in x and a translation in y, two rotations around the same axis, two
scaling matrices, or two translations.

d) Describe the transform needed to transform the triangle from A to B in Figure 1,

A

B

Figure 1: Transform from A to B

One possible solution:
Assume the origin is placed in the lower left corner of triangle A, and that Figure 1 shows the
xy-plane. First, scale the triangle at A with two in y. Then, rotate the triangle 270 degrees
(or minus 90 degrees) around the origin (around the z-axis, i.e., using the Rz rotation matrix).
Finally, transform with the vector (-3,3,0). The matrix applied to the triangle at A is then:

T(−3, 3, 0)Rz(270)S(1, 2, 1) (4)

The full matrix is given by:

T(−3, 3, 0)Rz(270)S(1, 2, 1) =

0 2 0 −3
−1 0 0 3
0 0 1 0
0 0 0 1

 . (5)

In RenderChimp, each node has a TRS transform matrix, where the matrices are applied in
that order. For this example, given that triangle A is defined with the three vertices P0 =
(0, 0, 0, 1), P1 = (2, 0, 0, 1) and P2 = (0, 2, 0, 1), we can simply write:

tri->setScale(1,2,1);
tri->setRotateZ(fPI*3/2);
tri->setTranslate(-3, 3, 0);

Note that if we want to multiply the matrices together in another order, e.g., SRT, we must
create new nodes in RenderChimp to handle this case.

3(6)

3. Mapping techniques and GLSL

a) Give three examples of how textures are used in shaders.
1. Simple texture mapping, where the diffuse albedo (i.e., the kd term) is fetched from a texture
map, using the interpolated vertex attributes denoted texture coordinates. Similarly, the specular
albedo (ks) or the shininess factor (α) can be fetched from a texture.
2. Cube mapping, where reflections (or refractions) are simulated by looking up into a texture
using the view vector reflected (refracted) in the surface normal. In this use case, a special
texture sampler is used, that uses a 3D direction to index into a so called cube map, which
consists of six textures, approximating a spherical view of the environment.
3. Bump mapping, where the perturbed normal is encoded as the RGB values of a texture.
Here, the texture coordinated are used to index into the texture, and the resulting value is
remapped from [0,1] to [-1,1]. The remapped value usually represents a normal perturbation
in tangent space, i.e., the direction of the normal along the normal, tangent and binormal
direction for the current surface point.

b) What is tangent space and what is it useful for?
Tangent space is a local orthonormal coordinate system for a parametric coordinate (u, v),
where the basis vectors are the normalized surface tangent, normalized binormal and normal-
ized normal at the parameter (u, v). The origin of the tangent space is the value of the surface
at (u, v). Note that tangent space is unique for each point on a surface, unlike object space,
which is constant for an entire model. Tangent space is useful for bump mapping, as it is
a convenient coordinate space to express a perturbed normal vector. The three orthonormal
basis vectors form a matrix that lets us transform between object space and tangent space.

c) GLSL contains the function reflect. Give two examples when that function is useful.
1. For computing the reflection vector r of the light vector l reflected in the surface normal
which is used in the specular part of a phong shader. For example: ks max (0, r · v)α.
2. For computing the reflection of the view vector in the surface normal when performing a
cube map lookup. In this example, the reflection vector is used to index into a cube map, and
the direction selects one of the six textures and the location therein.

d) How do you specify a float input parameter which has the same value for all invocations of
a shader in GLSL?
With the uniform keyword. One example:

uniform float time;

e) How do you pass a vec3 color that has a unique value for each vertex, from a vertex shader to
a pixel shader in GLSL?
With the in and out keywords.
Example: the variable vec3 color is passed from the vertex shader to the pixel shader:
In the vertex shader:

in vec4 vPosition;
in vec3 vertexColor;
out vec3 color;
void main() {

color = vertexColor;
gl_Position = vPosition;

}

In the pixel shader:

in vec3 color;
out vec4 fColor;
void main() {

fColor = vec4(color,1);
}

Note that in older versions of GLSL you use the varying keyword.

4(6)

4. The Graphics Pipeline

a) Describe the responsibility of the vertex shader, rasterizer and pixel shader stage of the graph-
ics pipeline.
The vertex shader works on vertices and transforms each vertex and its attributes (sent from
the application through vertex arrays), such as the vertex normal, texture coordinates, etc. The
vertex shader always outputs a position in clip space to the rasterizer (i.e., applies the Mod-
elViewProjection matrix to each vertex).
The rasterizer computes visibility, i.e., in which pixels the current triangle is visible using in-
side tests based on edge equations It also interpolates the vertex attributes for each pixel. As part
of the rasterization phase, the depth buffer test is executed to determine which of the triangles
overlapping a pixel that is visible.
The pixel shaders receives the interpolated vertex attributes from the rasterizer and a set of
uniforms as inputs and computes a color for the pixel. The pixel shader always outputs a color
(unless the discard operation is called).

b) Mention three coordinate systems (spaces) that you may encounter in a rendering pipeline.
Briefly explain the purpose of each system.
Object/Model space, which is a convenient space to describe/create each model in. This space
is unique for each model.
World space, which is a reference frame where objects, lights and cameras are placed and
positioned relative to each other.
View/Camera Space. A coordinate system with the camera at the origin. Usually looking
along the negative z-axis (OpenGL convention).
Clip space. A coordinate system after the (ModelView)projection matrix has been applied. In
this space, the (negative) z-value has been mapped to the w-coordinate.
Normalized Device Coordinates: The coordinate space we are in after the perspective divide
has been performed on the clip space position, e.g.,(x/w, y/w, z/w, 1).
Screen space. The 2D position on screen. This is obtained from NDC by a scale and offset.
Tangent space. See earlier question above.

c) What is backface culling, why is it useful and where in the graphics pipeline can a backface
culling test be executed?
Backface culling removes triangles with face normals pointing away from the camera. The
back face test can be defined as:
The triangle is back facing if:

n · p > 0, (6)

where n is the surface normal and p is one vertex of the triangle. Alternatively

n · v < 0, (7)

where v is the view vector at one vertex of the triangle (see Lecture 3, slide 38 for an illustra-
tion).
The backface test is typically performed after vertex shading as part of the rasterization stage
when triangle has been transformed with the MVP matrix, just before visibility testing in the
rasterizer. It can not be performed already in the vertex shader, as the VS works on each
vertex individually, and cannot cull the entire triangle. In a scene, sometimes about 50% of the
triangles are backfacing, so removing them can save a lot of work for the rasterizer and pixel
shading stage.

d) A triangle has camera space vertex positions P0 = (1, 0,−1), P1 = (1, 1,−1) and P2 = (0, 1,−1),
with normal pointing in the direction (P1 − P0) × (P2 − P0). Can this triangle be backface
culled? Motivate your answer.
The surface normal point in direction: n = (0, 0, 1).

n · P0 = (0, 0, 1) · (1, 0,−1) = −1 < 0, (8)

thus, the triangle can not be back face culled. In OpenGL, the camera looks along the negative
z-axis, and in this case, this triangle normal points directly towards the camera.

5(6)

5. Hierarchical Modeling
In RenderChimp, the following geometry nodes are given:

world = SceneGraph::createWorld(...);
sun = SceneGraph::createGeometry(...);
earth = SceneGraph::createGeometry(...);

a) A scene graph is a hierarchical node-based structure and describes how objects are constructed
from parts, and how the individual parts move relative to each other. It describes hierarchical
transforms, such as the individual movements of the joints in an arm. Transforms can be
applied locally to leaf nodes or on nodes higher up in the graph, such that a transform is
applied to all nodes in the corresponding sub-graph.

b) What is the difference between spin and orbit?
With spin, an object simply rotates arounds its own axis. This can be performed by applying
a rotation to the object in its local coordinate system.
Orbit is a rotation around a fixed point, such a planet rotating around the sun. This can be
performed by first applying a translation to the object away from the origin, then rotating the
translated object around the origin, or pivot point.

c) Show one example of spin and one example of orbit using the objects defined above. Add new
nodes if necessary. Exact RenderChimp syntax is not required, but the structure of the scene
graph should be clear from your solution.
For a scene graph example illustration, see Seminar 1.
For a possible RenderChimp implementation, see below or assignment 2.

void RCInit()
{

world = SceneGraph::createWorld(...);
sun = SceneGraph::createGeometry(...);
earth = SceneGraph::createGeometry(...);

// Setup scene graph
world->attachChild(sun);
pivot = SceneGraph::createGroup("pivot");
world->attachChild(pivot);
earth->translate(dist_earth_to_sun, 0.0f, 0.0f);
pivot->attachChild(earth);

}

void RCUpdate()
{

float time = Platform::getFrameTimeStep();

// ORBIT - earth around sun
const float ang_vel = ...
float orbit_rad = ang_vel * time;
pivot->rotateY(orbit_rad);

// SPIN - earth rotates around its axis
const float ang_vel_spin = ...
float spin_rad = ang_vel_spin * time
earth->rotateY(ang_vel_spin);

}

6. General Computer Graphics

a) How is color represented in computer graphics and how does this relate to the Human Visual
System (HVS)?
The eye contains the receptor types: rods and three types of cones. The three types of cones

6(6)

are sensitive to colored lights. Rods are good for monochromatic light and night vision. In
computer graphics, color is usually represented as an 8 bit value per color channel for each of
R,G and B, or even an floating point value per channel for higher dynamic range and better
color fidelity.

b) Mention three differences between between real-time graphics and offline (photorealistic) com-
puter graphics. In this context, also explain why graphics hardware, e.g., graphics cards are
useful for computer graphics.
RT: Time of one image: 20 ms, user interaction. Limited amount of detail/geometry. Ap-
proximations to get plausible image within the time budget. Simple shaders, lighting and
animations.
PRCG: Photorealism. Time of one image: minutes or hours. High detail level. Very advanced
shaders, lighting, and fine-tuned animation. Often no user interaction. The image is rendered
once for use in animation or high quality still images, for product visualization, for example.
Another important difference is the underlying rendering algorithm. See the discussion in
Lecture 6 about rasterization versus ray tracing. Rasterization cannot easily handle realistic
reflections and refractions, indirect lighting etc. These effect are more easily expressed in a ray
tracing engine, which more carefully approximates the rendering equation.
Graphics cards are designed to accelerate the most expensive parts of the rasterization graphics
pipeline, such as vertex transforms, visibility computations (rasterization and depth buffering),
barycentric interpolation and pixel shading. Thanks to wide parallel processors, graphics cards
can render millions of triangles with moderately complex shading in real-time.

c) Why is the rendering equation so hard to solve?
It contains the light intensity on both the left and the right side, and must be recursively
evaluated for all points in the scene for a correct solution. This is not tractable, and in practice,
this equation is approximated or evaluated at a subset of points. Furthermore, determining
mutual visibility between two points in the scene is a complex operation if the scene contains
many objects. Also, the BRDF may be complex and hard to evaluate, and may vary for each
point in the scene.

d) In the course, we have described linear and bilinear interpolation. There is also a concept
called trilinear interpolation, that we haven’t explicitly discussed. Based on the definition of
linear and bilinear interpolation, how would you define trilinear interpolation? Motivate your
definition.
Trilinear interpolation is applied to interpolate a value at any point p within a cube given
values at the eight corners of the cube. Let p be described in a coordinate system of the cube
so that p varies from [0,1] in each of x, y, and z as we move around in the cube. That is:
p = (0, 0, 0) in the lower, left, frontmost corner of the cube, and p = (1, 1, 1) in the upper right,
farthest corner. Now, pick two opposite faces of the cube, say the two faces parallel to the xy
plane (the bottom and top face of the cube). Then perform bilinear interpolation using the
xy-coordinate of p within each of these two faces to get two interpolated points inside each
face. Finally, perform a linear interpolation using the z-coordinate of p between these two
points. This process is called trilinear interpolation, and combines two bilinear interpolations
in xy, with an linear interpolation in z.

The end.

