
Assignment 3 — Shaders
Lund University Graphics Group

This assignment introduces ones of the major shading lan-
guages, GLSL, as well as applications for some common
shading techniques such as Phong shading, cube mapping
and normal mapping. You will develop vertex and fragment
shaders—often referred to in tandem simply as shaders—
and apply them to scene graph objects to spice up their ap-
pearance.

Similar to the previous assignment, you can change
shaders and the polygon mode from the user interface. Note
that changing shaders will only affect the demo_sphere vari-
able. If you would like to change other objects indepen-
dently, look for the following code in the rendering-loop, and
duplicate and modify it as needed:

auto demo_sphere_selection_result =
program_manager.SelectProgram("Demo sphere",
demo_sphere_program_index);

↪→

↪→

if
(demo_sphere_selection_result.was_selection_changed)
{

↪→

↪→

demo_sphere.set_program(
demo_sphere_selection_result.program,
set_uniforms);

}

The SelectProgram() function takes a string that will be
displayed in the GUI, and a int32_t which stores the index
of the currently selected shader. It returns a structure which
tells you

was_selection_changed was a different shader selected;

program the program ID of the selected shader program;

name the name you gave the shader when registering it
with the
ShaderProgramManager, and which is being displayed
in the combo box.

1 Extending createSphere()
In case you did not compute the texture coordinates for your
parametric sphere in the previous assignment, now is the
time.

Exercise 1:
Compute the texture coordinates in
parametric_shapes::createSphere() and upload them
to GPU memory; do not forget to extend the size of your
buffer object if no memory was pre-allocated for them.

Use the texture coordinates shader at your disposition (se-
lectable from the GUI, in the “Scene controls” window) to
verify that your texture coordinates (see Figure 1) are cor-
rect.

If the border between the green and the orange does not
look as sharp as in Figure 1, make sure that the last vertex
on a 360° horizontal (or vertical) slice

• has a texture coordinate of 1 along that axis;
• is located at the same position as the first vertex on

that slice, to avoid holes;
• there is no need to connect the last and first vertex, as

the resulting triangles would be infinitesimal.

Figure 1: Sphere front with the texture coordinates shader.

2 Writing shaders
You are to implement the following shading techniques:
Phong shading, cube mapping and normal mapping. Use
as starting point any of the existing shaders, such as the
Lambert-shader. They contain code with basic shader func-
tionality.

For GLSL support, you are referred to the seminar and
the GLSL Specification (available on the source web page).

In your vertex shader, you will automatically receive the
following data as in (you can name your variables as you
want, as long as you use the correct location):

• vertices: available as a vec3 at location 0.

• normal: available as a vec3 at location 1.

• texture coordinates: available as a vec3 at location
2; only the x and y components contain useful data.

• tangent: available as a vec3 at location 3.

• binormal: available as a vec3 at location 4.

Those values are set up when creating the mesh of the shape,
either in src EDAF80 parametric_shapes.cpp or in the
function loadObjects found in src core helpers.cpp.

In both your vertex and fragment shaders, the following
data will be automatically set by the Node::render() func-
tion (found in src core node.cpp) as uniform (you have
to use the following variable names):

• vertex_model_to_world: available as a mat4.

• normal_model_to_world: available as a mat4.

• vertex_world_to_clip: available as a mat4.

• has_textures: available as an int, set to 1 if textures
are set, 0 otherwise.

• has_diffuse_texture: available as an int, set to 1 if
you attached a diffuse_texture to your node object.

• has_opacity_texture: available as an int, set to 1 if
you attached a opacity_texture to your node object.

• all textures you attached to your object, available
under the name you specified as first argument to
Node::add_texture.



EDAF80 — Introduction to Computer Graphics 2021

Figure 2: Using the NissiBeach2 cubemap as an environ-
ment map.

2.1 Cube mapping

Exercise 2:
1. Fill in the loadTextureCubeMap() function in src

core helpers.cpp so that all six faces of the cube
map are properly set up; the code contains comments
about what you need to do there.

2. Implement a skybox (i.e. applying a cube map on
a very large sphere to represent the environment
far away; the camera should be placed inside that
sphere) in shaders EDAF80 skybox.vert and shaders
EDAF80 skybox.frag.

Attention A cubemap is not sampled using the reg-
ular texture coordinates (found at location 2 in your
vertex shader), but instead requires a vec3 (a 2-D tex-
ture is sampled using a 2-D vector, and a 1-D texture
is sampled with a simple scalar). Think about which
3-dimensional coordinate you could use to map a given
texel of the cubemap to a given location on the sphere.
You can find several cubemaps to choose from in the
res cubemaps folder; the res folder can be found
in the same folder as the src and shaders folders,
however it might not be listed within the file explorer
view of your IDE in which case you should instead
use your operating system’s native file explorer, like
Windows Explorer on Windows, Finder on macOS, or
Dolphin or Nautilus on GNU/Linux.
In Figure 2, you can see how it would look like using
the NissiBeach2 cubemap.

2.2 Phong shading and normal mapping

Exercise 3:
1. Implement phong shading in shaders EDAF80

phong.vert and shaders EDAF80 phong.frag.
For comparison, you can look at Figure 3 which
demonstrates Phong shading with textures
leather_red_02_coll1_2k.jpg as diffuse texture and
textures leather_red_02_rough_2k.jpg as specular
map. The other parameters are the default ones, but
you can always zoom on the picture to check what
they are as they are visible via the GUI.

2. Add normal mapping to your phong shader. You can
use in your shader the variable use_normal_mapping to
decide whether to apply normal mapping or not, and
then toggle the effect on and off from the GUI to more
easily check its impact.
On top of the setup presented for the Phong shading,
textures leather_red_02_nor_2k.jpg was used as a

Figure 3: Rendering the demo sphere using Phong shading
with the leather_red_02_*_2k.jpg textures.

Figure 4: Rendering the demo sphere using Phong shad-
ing with the leather_red_02_*_2k.jpg textures and normal
mapping enabled.

normal map to give Figure 4 which adds normal map-
ping to the Phong shader.
In the res textures folder, you can find different sets
of texture that have a diffuse, normal map, and rough-
ness (you can use it as a replacement of the specular
colour) texture.

3 Suggestions and things to ponder
• What are the specific roles of the Phong shading pa-

rameters? Examine how each and every parameter in-
fluences the final appearance of the object.

• Two of the features involved when creating a texture
object are related to filtering and wrapping:

– Look in the loadTexture2D() functions in src
core helpers.cpp for the glTexParameteri()
function. This function sets one of many texture
parameter values. The second argument is the pa-
rameter, and the third is what that parameter is
set to.

– Consider what the GL_TEXTURE_WRAP_S parameter
does? How can textures be made to repeat or crop
on a surface by exploiting this feature (assuming
access to the texture coordinates)?

– Consider what the GL_TEXTURE_MAG_FILTER pa-
rameter does? Compare the texture filtering tech-
niques using GL_NEAREST and
GL_LINEAR. How and when do the end results dif-
fer?

2



EDAF80 — Introduction to Computer Graphics 2021

Table 1: Various controls when running an assign-
ment.“Reload the shaders” is not available in assignments
1 and 2 of EDAF80, while “Toggle fullscreen mode” is miss-
ing from assignment 2 of EDAN35.

Action Shortcut

Move forward W
Move backward S
Strafe to the left A
Strafe to the right D
Move downward Q
Move upward E

“Walk” modifier
“Sprint” modifier Ctrl

Reload the shaders R

Hide the whole UI F2
Hide the log UI F3
Toggle fullscreen mode F11

Check out the documentation for the glTexParameter
function on the OpenGL documentation webpage:
http://docs.gl/gl4/glTexParameter.

• Normal mapping creates the illusion of an uneven sur-
face without actually altering the geometry. When,
would you argue, is or isn’t normal mapping a suitable
replacement for increased geometric detail?

4 Common causes of errors
Incorrect tangent space vectors Ensure that the tan-

gent space vectors
— notably the normal — are correctly constructed dur-
ing tessellation, lest shader computations are bound to
be erroneous.

Wrong space Ensure that points and vectors are trans-
formed from and into the correct space (world, TBN,
etc.). Vector operations make no real sense if the vec-
tors are expressed in different spaces.

Wrong direction Define vectors in consistence with the
model you are applying them to (Phong, for instance).

Vector normalization Remember to normalize where
needed. Once normalized, vectors will yield normalized
cross-products, reflections etc. Also note that in/out-
vectors that are normalized in the vertex shader need
to be re-normalized in the fragment shader.

A Framework controls
The framework uses standard key bindings for movement,
such as W , A , S , and D . But there are also custom
key bindings for moving up and down, as well as controlling
the UI. All those key bindings are listed in Table 1.

There is only one action currently bound to the mouse,
and that is rotating the camera. To do so, move the mouse
while holding the left mouse button.

GUI elements can be toggled being a collapsed and ex-
panded state by double clicking on their title bar. And they
can be moved around the window by dragging their title bar
wherever desired (within the window).

B IDE key bindings
To help with getting certain tasks done more efficiently, Ta-
ble 2 lists key bindings of different IDEs for several common
actions.

3

http://docs.gl/gl4/glTexParameter


EDAF80 — Introduction to Computer Graphics 2021

Table 2: Various keyboard shortcuts for Visual Studio 2019 and 2017, and Xcode.

Action Shortcut
Visual Studio Xcode

Build Ctrl + B + B
Run (with the debugger) F5 + R
Run (without the debugger) Ctrl + F5

Toggle breakpoint at current line F9 + \
Stop debugging + F5 + .
Continue (while in break mode) F5 ctrl + + Y
Step Over (while in break mode) F10 F6
Step Into (while in break mode) F11 F7
Step Out (while in break mode) + F11 F8

Comment selection Ctrl + K , Ctrl + C + /
Uncomment selection Ctrl + K , Ctrl + U + /
Delete entire row Ctrl + X

4


	Extending c++createSphere()
	Writing shaders
	Cube mapping
	Phong shading and normal mapping

	Suggestions and things to ponder
	Common causes of errors
	Framework controls
	IDE key bindings

