
Assignment 2 — Tessellation and Interpolation
Lund University Graphics Group

In this assignment you will tessellate your own model from
a parametric equation. This task involves setting up appro-
priate data structures, and then generating surface points
and surface derivatives from the parametric equations — an
exercise in programming as well as vector calculus.

You will also implement two different interpolation
schemes: linear interpolation and cubic interpolation using
Catmull-Rom splines.

1 Tessellation
In this section, we will look at tessellation itself but also how
to upload all that data to the GPU and tell it how it should
be used, and we will start by looking at the latter with a
simple example.

Exercise 1:
We will start by making some modifications in src EDAF80
assignment.cpp:
1. Change the camera translation to

(
0.0 0.0 0.5

)
,

for it to be closer to the geometry being edited.
Look for the comment “Set up the camera”, and the
SetTranslate call right after it is the one you want to
change.

2. A few lines above the camera translation, replace
createCircleRing(2.0f, 0.75f, 40u, 4u) with
createQuad(0.25f, 0.15f). Note that if you try to
start the program now, it will close instantly: this
is due to the implementation of createQuad() being
incomplete.

Finish the implementation of createQuad() (found in src
EDAF80 parametric_shapes.cpp) by resolving all the re-
maining todo items found in that function.

The current implementation does not perform any tesse-
lation; that will be addressed in assignment 4.

You should now be greeted by a white quad on screen (see
Figure 1) when running the program. If you want to better
see the underlying geometry (i.e. the triangles it is made of),
switch in the GUI the polygon mode from “Fill” to “Line”
and you should now be able to distinguish the two triangles
making up the quad (see Figure 2).

Figure 1: Quad in fill mode.

Next you will be tessellating at least one shape, a sphere
in this case. You will still need to also update the data to the
GPU and configure its vertex array object, but you should
now know how to do so.

Figure 2: Quad in line mode to highlight the triangles.

Below you can find the different equations for the vertex
position (1a), tangent (1b), and binormal (1c) of a sphere.
Note that for each of them, the following conditions should
hold: 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π.

p(θ, φ) =

{
r sin(θ) sin(φ)
−r cos(φ)

r cos(θ) sin(φ)

}
(1a)

∂p
∂θ

=

{
r cos(θ) sin(φ)

0
−r sin(θ) sin(φ)

}
(1b)

∂p
∂φ

=

{
r sin(θ) cos(φ)

r sin(φ)
r cos(θ) cos(φ)

}
(1c)

Exercise 2:
Replace the quad with a sphere created using
createSphere(0.15f, 10u, 10u), and comment out
the rendering of the control points for now.

Using Equations (1) as well as your knowledge newly ac-
quired in the previous step, implement createSphere() (in
the same file as createQuad()). You will need to

1. generate the various vertex attributes (position, nor-
mal, tangent, binormal, and texture coordinates),

2. generate the indices to group the vertices into triangles,
3. upload all that data to the GPU,
4. configure the vertex array object.
You can use the existing implementation of the circle ring

as guidance; make sure to normalise all your normals, tan-
gents, and binormals.

Note
• texture coordinates will be dealt with in the next as-

signment;
• do not optimise by having a single shared vertex for

the top, and for the bottom of the sphere: this will
later cause issues when applying textures. You should
instead use the same logic as for all the other slices of
your sphere, even if that means having multiple vertices
in the exact same location in the end;

• for the slice whose angle goes from 0 to 2π, the last
vertex should have the exact same location as the first
vertex on that same slice, and they should not be con-
nected by triangles (as those would be too small to be

EDAF80 — Introduction to Computer Graphics 2021.1

seen anyway); this is again to prevent issues later on
when applying textures.

A few tips while implementing and debugging
createSphere():

• Try using a low amount of splits (for example 2 longi-
tudinal splits and 1 latitudinal splits).

• Switch to the “line” polygon mode (accessible through
the GUI, in the “Scene controls” window) as it allows
you to see the individual edges.

• Enable back-face culling (accessible through the GUI,
in the “Scene controls” window) and check that you
still see the front of the sphere but the back is gone (see
Figure 3); this is easier to do while also using the “line”
polygon mode. If the front faces are gone, you are
specifying your vertices in clock-wise ordering rather
than counter clock-wise, so you will need to tweak your
indices.

Figure 3: Rendering the sphere with the fallback shader,
backface culling enabled, and using the “Line” polygon
mode.

• Use the different shaders at your disposition (selectable
from the GUI, in the “Scene controls” window) to verify
that your normals (Figure 5), tangents (Figure 6), and
binormals (Figure 7) are correct.
In particular, do not forget to simplify the equation of
the tangent, to get rid of the black hole at the bottom of
the sphere when using the tangent or normal shaders.
If you get a match with all the previous screen-
shots, place the camera at

(
0 −0.5 0

)
and call

mCamera.mWorld.SetRotateX(glm::half_pi<float>());
to position the camera below the sphere and looking
up. If you see a black hole similar to Figure 8 when
viewing the tangents, then you forgot to simplify the
equation for computing the tangent; the expected
result is show in Figure 9.

Below you can find the different equations for the vertex
position (2a), tangent (2b), and binormal (2c) of a torus.
Note that for each of them, the following conditions should
hold: 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ 2π.

p(θ, φ) =


(
ra + rb cos(θ)

)
cos(φ)

−rb sin(θ)(
ra + rb cos(θ)

)
sin(φ)

 (2a)

∂p
∂θ

=

{
−rb sin(θ) cos(φ)
−rb cos(θ)

−rb sin(θ) sin(φ)

}
(2b)

∂p
∂φ

=

−
(
ra + rb cos(θ)

)
sin(φ)

0(
ra + rb cos(θ)

)
cos(φ)

 (2c)

Exercise 3 (Optional):

Figure 4: Sphere front with the diffuse shader.

Figure 5: Sphere front with the normal shader.

Figure 6: Sphere front with the tangent shader.

Figure 7: Sphere front with the bitangent shader.

2

EDAF80 — Introduction to Computer Graphics 2021.1

Figure 8: Bottom of the sphere with the tangent shader,
when the tangent equation has not been simplified.

Figure 9: Bottom of the sphere with the tangent shader,
when the tangent equation has been simplified.

Using Equations (2), implement createTorus(). The same
recommendations as for createSphere() apply here.

2 Interpolation
Linear interpolation:, with x ∈ [0, 1]

p(x) =
[
1 x

] [1 0
−1 1

][
pi

pi+1

]
Catmull-Rom spline, with x ∈ [0, 1]:

q(x) =
[
1 x x2 x3]

 0 1 0 0
−τ 0 τ 0
2τ τ − 3 3− 2τ −τ
−τ 2− τ τ − 2 τ


pi−1

pi

pi+1
pi+2


The tension factor can be set to τ = 0.5 initially.

Exercise 4:
1. Move the camera back to

(
0 1 9

)
, remove the rota-

tion on the camera, and re-enable the rendering of the
control points.

2. Implement the function for linear and cubic
Catmull-Rom interpolation in the file src EDAF80
interpolation.cpp.

Attention Bear in mind that matrices in GLM (sim-
ilarly to GLSL) are using column-major ordering, i.e.
the first index gives you a column and the second will
give you the corresponding element within a column.
So a glm::mat3x4 specifies a matrix with 3 columns
and 4 rows, as opposed to the mathematical notation
which would be specifying a matrix with 3 rows and
4 columns.

Table 1: Various controls when running an assign-
ment.“Reload the shaders” is not available in assignments
1 and 2 of EDAF80, while “Toggle fullscreen mode” is miss-
ing from assignment 2 of EDAN35.

Action Shortcut

Move forward W
Move backward S
Strafe to the left A
Strafe to the right D
Move downward Q
Move upward E

“Walk” modifier
“Sprint” modifier Ctrl

Reload the shaders R

Hide the whole UI F2
Hide the log UI F3
Toggle fullscreen mode F11

Similarly when constructing a matrix, you can either
give it the different vectors representing the columns,
or give all the elements individually as floating-point
values but make sure to specify them in column-major
order.

3. Have an object of your choice interpolate along the
path stored in control_point_locations. To trans-
late the node to a specified position, use the following
code
node.get_transform().SetTranslate(newPosition);

Make sure to compute the interpolated position within
the if (interpolate) {} block so that you can pause
the interpolation from the GUI, if you need to de-
bug or inspect something. You can use the variable
ellapsed_time_s to help you with animating your in-
terpolation.
All the control points are visualised by a small sphere
(once you have implemented createSphere()) to help
you visualise the interpolation path.

3 Discussion Topics
• How does the distribution of the control points affect

the velocity of the animated objects? Why? How can
this be addressed?

• Animated two objects along the same path using dif-
ferent tension τ ; how do the trajectories differ?

• How can an animated object be made to keep “facing
forward” as it travels along its path?
Hint: Use the derivative of the spline (analytical or
numerical) to obtain a tangent vector.

A Framework controls
The framework uses standard key bindings for movement,
such as W , A , S , and D . But there are also custom
key bindings for moving up and down, as well as controlling
the UI. All those key bindings are listed in Table 1.

There is only one action currently bound to the mouse,
and that is rotating the camera. To do so, move the mouse
while holding the left mouse button.

GUI elements can be toggled being a collapsed and ex-
panded state by double clicking on their title bar. And they
can be moved around the window by dragging their title bar
wherever desired (within the window).

3

EDAF80 — Introduction to Computer Graphics 2021.1

Table 2: Various keyboard shortcuts for Visual Studio 2019 and 2017, and Xcode.

Action Shortcut
Visual Studio Xcode

Build Ctrl + B + B
Run (with the debugger) F5 + R
Run (without the debugger) Ctrl + F5

Toggle breakpoint at current line F9 + \
Stop debugging + F5 + .
Continue (while in break mode) F5 ctrl + + Y
Step Over (while in break mode) F10 F6
Step Into (while in break mode) F11 F7
Step Out (while in break mode) + F11 F8

Comment selection Ctrl + K , Ctrl + C + /
Uncomment selection Ctrl + K , Ctrl + U + /
Delete entire row Ctrl + X

B IDE key bindings
To help with getting certain tasks done more efficiently, Ta-
ble 2 lists key bindings of different IDEs for several common
actions.

4

	Tessellation
	Interpolation
	Discussion Topics
	Framework controls
	IDE key bindings

