
Assignment 1 — Solar System
Lund University Graphics Group

Figure 1: The end result once you have completed everything.

In this assignment you will be introduced to various trans-
formations, as well as to the basics of hierarchical transfor-
mations through the use of a scene graph. Scene graphs let
you easily express spatial relationship between the different
objects in your virtual scene. For example if you are using
a scene graph and setting up a kitchen scene, you might say
“I am placing the plate on the table”: you express the po-
sition of the plate as being relative to another object, here
the table. That way if you decide to move the table to some
other place in the kitchen, all the plates and glasses on it will
follow, rather than stay behind and float mid-air, or forcing
you to manually move all of those objects.

1 Brief overview of the framework
If you look (using a file explorer, not from within the IDE)
at the content of the folder you downloaded or cloned from
GitHub, you can see

• a README.rst file describing some basic information
about the project like which libraries are used, the li-
cence under which the code is released

• a BUILD.rst file explaining the softwared needed and
how to build the different assignments; if you have not
looked at it and set everything up yet, you should do
so now before progressing further with this assignment

• a res folder containing all the resources (images,
3D models, etc.) used in the course

• a src folder for the C++ code

• and a shaders folder for the GLSL code that will run on
the GPU (you can ignore this one until assignment 3)

The other files and folders can be ignored.
Inside src, you can further see

• a core folder which contains shared code between the
two courses and is the core of the framework

• a EDAF80 folder in which you will be doing all your mod-
ifications (along with shaders EDAF80 starting with as-
signment 3)

• and finally a EDAN35 folder (which can be ignored as
only used for the EDAN35 course)

The documentation of the various classes and functions
used in the framework can be found here. They will be
presented as needed in the assignments.

2 Tips while working on the assignment
It can be hard to know if your transforms are correct, es-
pecially when they consist of multiple matrices. Start by
overwriting the world matrix by each of those matrices, one
at a time, to verify the effect of that single matrix. From the
GUI, you can check the “Show basis” option to have an or-
thonormal basis drawn on screen for each celestial body, and
transformed by the world matrix of that celestial body. The
red arrow represents the x-axis, the green one to the y-axis,
and the blue one to the z-axis. You can render additional
bases by calling the renderBasis()1 function with different
matrices, for example if you would like to compare the effect
of the world matrix versus only the orbit transform.

If you need to alter the speed at which planets are ani-
mated, you can use two different elements in the GUI:

“Pause the animation” will freeze all celestial bodies in
place to allow you to get inspect them more easily

1void bonobo::renderBasis(float thickness_scale,
float length_scale, glm::mat4 const& view_projection,
glm::mat4 const& world = glm::mat4(1.0f))

https://github.com/LUGGPublic/CG_Labs
https://cs.lth.se/edan35/
https://fileadmin.cs.lth.se/cs/Education/EDA221/assignments/doc/annotated.html


EDAF80 — Introduction to Computer Graphics 2021.3

“Time scale” will reduce or increase the speed at which
time flows if you want to better observe how a planet
spins, or create a timelapse effect.

The available range when dragging the slider is from
0.1× to 10×, but you can also enter custom values
outside of that range by double-clicking (or control-
clicking) on the value itself to get an input field.

3 Transforming an object
The CelestialBody is already capable of rendering itself,
but it is time to add some transform functionalities, like
being able to scale the celestial body and having it spin.

3.1 Scaling
We will start with allowing custom scales to be applied to a
celestial body.

Exercise 1:
Let us first look at the CelestialBody::render() function
found in src EDAF80 CelestialBody.cpp.

1. Compute the scaling matrix S using GLM’s scale()2

function, and the class attribute _body.scale. The
first argument should be an identity matrix, created
using glm::mat4(1.0f).
This scale does not apply to its potential children.

2. Overwrite the world matrix with the matrix you just
computed.

The rendering of a celestial body should now take its scal-
ing into account. Go back to src EDAF80 assignment1.cpp
to test the new behaviour.

3. Compile and run the code without any additional
changes. The Earth should have the same shape as
before and look similar to Figure 2.

Figure 2: The Earth, with a uniform scaling of 1; only the
matrix S is used for rendering.

4. Now scale the Earth by
(
1 0.2 0.2

)
, by using its

set_scale()3 method. The Earth should now be
closer to a rugby ball than to a sphere, and match
Figure 3.

2glm::mat4 glm::scale(glm::mat4 const& matrix,
glm::vec3 const& scale);

3void CelestialBody::set_scale(glm::vec3 const& scale)

Figure 3: The Earth, with a non-uniform scaling; only the
matrix S is used for rendering.

If your results are similar to the reference, congratulations
on applying your first transformation! Keep the scaling ap-
plied to the Earth, as it will stay useful.

3.2 Spinning

An object spins by rotating around an axis passing through
the object’s centre of gravity. The spin of a celestial body is
parametrised by the following attributes:

_body.spin.axial_tilt [rad] how much is the spin plane
(i.e. the plane perpendicular to the spin axis) tilted
relative to its orbit plane.

_body.spin.speed [rad/s] how fast it spins;

_body.spin.rotation_angle [rad] how much has it already
rotated.

The spin transformation will be decomposed into two dif-
ferent rotations. A first one,R1,s, which represents the celes-
tial body spinning around the y-axis. The second one, R2,s,
will tilt the spin plane by the specified axial tilt around the
z-axis.

Both rotation matrices should be computed using GLM’s
rotate()4 function. The first argument will once again be
an identity matrix.

Exercise 2:
We will go back to the CelestialBody::render() function
found in src EDAF80 CelestialBody.cpp.

1. Compute the rotation matrix R1,s; you can temporar-
ily overwrite the world matrix with it. This should
be performed after the _body.spin.rotation_angle
attribute has been updated.

2. Compile and run the code; if everything worked, the
Earth should have spinned around the y-axis by a cer-
tain amount and look similar to Figure 4; you can com-
pare to Figure 2 to see the impact of the rotation more
easily.

4glm::mat4 glm::rotate(glm::mat4 const& matrix, float
angle, glm::vec3 const& axis);

2



EDAF80 — Introduction to Computer Graphics 2021.3

Figure 4: Putting a spin on the Earth; only the matrix R1,s

is used for rendering.

3. Compute the rotation matrix R2,s; you can temporar-
ily overwrite the world matrix with it. If you compile
and run the code, the Earth should have rotated a bit
around the z-axis (compared to Figure 2) and be sim-
ilar to Figure 5.

Figure 5: Visualising the axial tilt transform; only the ma-
trix R2,s is used for rendering.

4. Set the world matrix to a combination of R1,s and
R2,s; think about which of the two matrices should be
applied first to the celestial body. You should end up
with an Earth looking like the one in Figure 6.

Figure 6: The full spin transform; still static; only the ma-
trices R1,s and R2,s are used for rendering.

5. In the code, before R1,s is computed, update the spin
angle by how much the celestial body rotated since last
frame. Since the rotational speed for the spin is defined
in rad/s and not rad/µs, elapsed_time_s should be
used rather than elapsed_time.

6. Combine the scaling matrix with the two matrices re-
sponsible for the spin; it should make it easier to con-
firm that the Earth is indeed spinning around a tilted
axis.

3.3 Adding orbits
With the possibility of scaling or making a celestial body
spin, the main missing part, in terms of individual transfor-
mations, is giving it an orbit.

The difference compared to the spin, is that an orbit is
a rotation around a point in space located outside of the
celestial body. By default, the centre in object space usually
is located at the centre of the object, so applying a rotation
will result in the object spinning. By first moving the centre
of the object away from the centre of the local space, the
rotation will still be around the centre of the local space but
it no longer is the centre of the object: the object will start
describing an orbit.

To move the object away, we will be translating in a cer-
tain direction. The translation matrix can be computed us-
ing GLM’s translate()5 function. The first argument re-
mains an identity matrix.

Exercise 3:
1. Compute the translation matrix, To, which places the

celestial body onto its orbit, i.e. offset the celestial
body by its orbit radius along the x-axis. Temporarily
overwrite world to verify that the translation works
and you obtain something similar to Figure 7.

Figure 7: Moving the Earth to another place; only the ma-
trix To is used for rendering.

2. Combine To with the scaling and spin matrices, and
ensure that you get the Earth spinning at a certain dis-
tance from the centre of the screen. The Earth should
not be describing an orbit just yet.

3. Update the orbit angle every frame, similar to how
you updated the spin angle in the previous section,
and compute the rotation matrix, Ro, that will make
the celestial body rotate around its orbit centre in the
x, z plane. If you would like to check the validity of
R1,o, overwrite world with it; since you only have a
rotation being applied, you will end up with the Earth
spinning around its y-axis.

4. Combine To and R1,o, and ensure that the Earth de-
scribes an orbit around the centre of the screen. It
might look like the Earth is also spinning, however it
is not and comes from the orbiting computations mak-
ing the Earth keeps its orientation relative to the centre
of its orbit. Indeed you can observe that, in this case,

5glm::mat4 glm::translate(glm::mat4 const& matrix,
glm::vec3 const& vector);

3



EDAF80 — Introduction to Computer Graphics 2021.3

Africa and Europe are always facing towards the centre
of the orbit, no matter what.

5. Compute the matrix tilting the orbit plane around the
z-axis, R2,o, similar to the computation of the matrix
tilting the spin plane.

6. Combine R2,o with To and R1,o to get the full orbit
transformation.
Once this works, add the scaling and spin back into
the world matrix computation.

4 Implementing a scene graph
If you look inside the rendering loop (it corresponds
to the while (!glfwWindowShouldClose(window)) { ...
} block found in src EDAF80 assignment1.cpp), you will
see that we currently do not traverse any scene graph but
are instead explicitly rendering the Earth node. We could
call the CelestialBody::render() method on each and ev-
ery celestial body, but it will become tedious having to call
the render function every time you add a new celestial body
(and it’s possible to forget doing it in the first place). So
instead, we will write some code to automatically render all
the nodes within our scene graph.

4.1 Establishing a simple parent-child relationship
Before looking at traversing the whole scene graph, we will
start by making sure that the transform of a parent is cor-
rectly applied to its children. To that end, the current setup
of only having the Earth will be extended by adding the
Moon and designing it as a child of the Earth by doing
earth.add_child(&moon).

Exercise 4:
1. In the CelestialBody::render() method, take

into account the previously-ignored matrix
parent_transform when computing world; think
about which transformations should be applied first
to an object: its own transformations, or its parent
ones. The Earth should still be spinning and have a
weird scale, but instead of orbiting towards the left of
the screen, it should now be orbiting a point located
more on the right of the screen.

2. Compute the matrix which should be applied to all
children of the current celestial body, and return it
instead of parent_transform. It should be similar to
the computation of the world matrix, however the scale
and spin rotation should not affect the children and
therefore be ignored in the computation; the spin tilt
is still taken into account and will affect the children.

3. Uncomment the call to render the Moon in src EDAF80
assignment1.cpp, and forward as third argument, the
matrix returned by the rendering of the Earth. The
Moon should now be orbiting around the Earth, no
matter where the Earth goes.

4. You can now remove the weird scaling from the Earth.

4.2 Traversing the scene graph
Since parents keep track of who their children are (but
not the other way round), the graph will be traversed
from top to bottom. This could be done in a depth-
first or breadth-first search, but for simplicity we will do
a depth-first search traversal (see https://en.wikipedia.
org/wiki/Depth-first_search. Depth-first means that af-
ter we are done processing the current node, we will start
processing its children before processing its siblings; this is
done iteratively until no children are left. Once we end on
a node with no children, we backtrack and go on processing
the last child we saw but left for later, and go on from there,
until we have visited all the nodes in the graph.

To help with implementing this depth-first search traver-
sal, you are encouraged to use the std::stack class from
the C++ standard library (see https://en.cppreference.
com/w/cpp/container/stack; do not forget to add
#include <stack> ). You can use the push(object)
method to place object on top of the stack, the object&
top() method to get the object located at the top and pop()
to remove it, and finally, the bool empty() method to know
whether the stack is empty or not.

You can also implement the depth-first search traversal
recursively; the information below applies for the iterative
approach.

Exercise 5:
1. Create a stack containing CelestialBodyRef, which

will keep track of unprocessed celestial bodies along
with their parent transform.

2. Initialise the stack with the root node of the graph:
the Earth. As the Earth does not have a parent at
the moment, use the same translation matrix that is
passed as third argument to the explicit rendering of
the Earth.
CelestialBodyRef is a structure made of two
members: a pointer, named body, pointing to
an existing CelestialBody, and a matrix named
parent_transform which contains the parent trans-
form for the celestial body referenced by body.

3. Remove the explicit rendering of the the Earth and the
Moon.

4. Implement the depth-first search traversal of the graph,
starting from the root node. Do not forget to forward
the appropriate parent transform for the rendering.

5. Check that starting the traversal from the root node
results in both the Earth and the Moon being rendered,
similarly to before.

5 Building the Solar System
You now have all the pieces necessary for building the whole
Solar System!

Exercise 6:
1. Start by changing the scale and orbit values for the

Earth and Moon to instead use those defined in
<planet>_scale and <planet>_orbit.

2. Add all the remaining planets in the Solar System, as
well as the Sun which will be used as the new root
node of the scene graph (all celestial bodies should
be children of the Sun). All the needed constants
and textures are available in variables named fol-
lowing the pattern <planet>_scale, <planet>_spin,
<planet>_orbit, <planet>_texture, but you are free
to use your own constants if you prefer.
To get a better overview of all the celestial bodies,
we recommend changing the camera translation to(
0 4 20

)
; look for camera.mWorld.SetTranslate()

towards the beginning of src EDAF80
assignment1.cpp. Note that you can make the
window fullscreen by pressing F11 (and use the same
key to go back to windowed); you can find additional
controls in Table 1.

3. Once you are done, you should have something resem-
bling Figure 1.

6 Suggestions and things to ponder

Exercise 7:
Adding rings to a celestial body:

4

https://en.wikipedia.org/wiki/Depth-first_search
https://en.wikipedia.org/wiki/Depth-first_search
https://en.cppreference.com/w/cpp/container/stack
https://en.cppreference.com/w/cpp/container/stack


EDAF80 — Introduction to Computer Graphics 2021.3

Table 1: Various controls when running an assign-
ment.“Reload the shaders” is not available in assignments
1 and 2 of EDAF80, while “Toggle fullscreen mode” is miss-
ing from assignment 2 of EDAN35.

Action Shortcut

Move forward W
Move backward S
Strafe to the left A
Strafe to the right D
Move downward Q
Move upward E

“Walk” modifier
“Sprint” modifier Ctrl

Reload the shaders R

Hide the whole UI F2
Hide the log UI F3
Toggle fullscreen mode F11

1. Update the CelestialBody::render() method to ren-
der the rings. This is achieved by calling the
Node::render() method on the rings node.
Rotate the rings by 90° around the x-axis, after having
scaled them, to bring them into the celestial’s body
equatorial plane. The scaling factors for the rings are
given in the x, y-plane, the plane in which the ring
shape is defined.
Since we will be considering the rings to be a child
of the celestial body, which transformations should be
applied to the rings?

2. Check that it works by adding rings to Saturn using
the set_ring()6 method of the CelestialBody class.
The ring shape has already been created can be found
in saturn_ring_shape. The program is stored in
the variable celestial_ring_shader, while the diffuse
texture is found in the variable saturn_ring_texture,
and the scale in saturn_ring_scale.

Exercise 8:
Right now, you can see that the tilt of a celestial body is
always facing towards the centre of its orbit. This is valid
for the Moon, but not so much for the Earth as our existing
seasons would not exist as a result. How would you make
the tilt rotation independent?

Exercise 9:
How would you create an “interplanetary tour” where the
camera would follow one of the animated objects? This
would require working out the location of the camera first,
then applying it to the camera’s position.

A Framework controls
The framework uses standard key bindings for movement,
such as W , A , S , and D . But there are also custom
key bindings for moving up and down, as well as controlling
the UI. All those key bindings are listed in Table 1.

There is only one action currently bound to the mouse,
and that is rotating the camera. To do so, move the mouse
while holding the left mouse button.

6void CelestialBody::set_ring(bonobo::mesh_data const&
shape, GLuint const* program, GLuint diffuse_texture_id,
glm::vec2 const& scale)

GUI elements can be toggled being a collapsed and ex-
panded state by double clicking on their title bar. And they
can be moved around the window by dragging their title bar
wherever desired (within the window).

B IDE key bindings
To help with getting certain tasks done more efficiently, Ta-
ble 2 lists key bindings of different IDEs for several common
actions.

5



EDAF80 — Introduction to Computer Graphics 2021.3

Table 2: Various keyboard shortcuts for Visual Studio 2019 and 2017, and Xcode.

Action Shortcut
Visual Studio Xcode

Build Ctrl + B + B
Run (with the debugger) F5 + R
Run (without the debugger) Ctrl + F5

Toggle breakpoint at current line F9 + \
Stop debugging + F5 + .
Continue (while in break mode) F5 ctrl + + Y
Step Over (while in break mode) F10 F6
Step Into (while in break mode) F11 F7
Step Out (while in break mode) + F11 F8

Comment selection Ctrl + K , Ctrl + C + /
Uncomment selection Ctrl + K , Ctrl + U + /
Delete entire row Ctrl + X

6


	Brief overview of the framework
	Tips while working on the assignment
	Transforming an object
	Scaling
	Spinning
	Adding orbits

	Implementing a scene graph
	Establishing a simple parent-child relationship
	Traversing the scene graph

	Building the Solar System
	Suggestions and things to ponder
	Framework controls
	IDE key bindings

