
1(3)
LUND INSTITUTE OF TECHNOLOGY Department of Computer Science

Solutions, Database Technology Examination

2012–03–05

1. E/R diagram:

*

1

courseCode
name

Course

year
nbr
mailDate
commentDate

StudyPeriod

<<weak>>
CourseInstance

teacherComments
studentComments

<<weak>>
Survey

email
Teacher

pNbr
email

Student

qNbr
textSw
textEn
category

Question

answer

<<weak>>
Answer

hasAnswered
Registered

good
bad

<<weak>>
FreeText

*

1

*

1

**

1

*

1

*

1
*

1
*

1

1

1

*

Comments: The weak entity set CourseInstance has the key courseCode + year + periodNbr.
This is too long: we invent the key instanceId. CourseInstances and Surveys could be combined.
hasAnswered isn’t necessary (can instead check if the student has an entry in Answers).

Relations:

Courses(courseCode, name)
StudyPeriods(year, nbr, mailDate, commentDate)
CourseInstances(instanceId, courseCode, year, periodNbr, teacherEmail)
Teachers(email)
Students(pNbr, email)
Registered(pNbr, instanceId, hasAnswered)
Questions(qNbr, textSw, textEn, category)
Surveys(instanceId, teacherComments, studentComments)
FreeTexts(pNbr, instanceId, good, bad)
Answers(pNbr, instanceId, qNbr, answer)

There are no other functional dependencies except for the key dependencies, so the relations are in
BCNF. Average of Q19 for EDA-courses:

select courseCode, avg(answer)
from Answers natural join CourseInstances
where qNbr = 19

and courseCode like ’EDA%’
and year = 2012

group by courseCode;

2(3)

2. E/R diagram:

groupNbr
grade

Group
persNbr
name
program

Student 13..5

create table Students {
persNbr char(11),
name varchar(30) not null,
program char(2) not null,
groupNbr int not null,
primary key (persNbr),
foreign key (groupNbr) references Groups(groupNbr)

);

update Students
set groupNbr = 9
where name = ’Bo Ek’ and groupNbr = 7;

select groupNbr, name, program, grade
from Students natural join Groups
order by groupNbr, name;

select name, program, grade
from Students natural join Groups
where grade = (select max(grade) from Groups);

select program, avg(grade)
from Students natural join Groups
where grade > 0
group by program
order by program;

3. We have the following functional dependencies:

FD1. AC → D
FD2. BC → D
FD3. A → B
FD4. BD → A

FD1 can be derived from FD3 and FD2:

{AC}+ ⇒ {AC} FD3⇒ {ACB} FD2⇒ {ACBD}

Note that you cannot derive FD2 from the other FD’s. Here’s a counter example where FD1, FD3,
and FD4 hold, but FD2 doesn’t hold:

A B C D

1 1 3 4
2 1 3 5

Keys: the attribute C doesn’t appear on the right-hand side of any of the dependencies, so it must
be included in the key. Closure of this attribute:

{C}+ ⇒ {C}

3(3)

Two-attribute subsets which include C:

{AC}+ ⇒ {AC} FD3⇒ {ACB} FD2⇒ {ACBD}
{BC}+ ⇒ {BC} FD2⇒ {BCD} FD4⇒ {BCDA}
{CD}+ ⇒ {CD}

{AC} and {BC} are keys. There are no three-attribute subsets that include C but not AC or BC, so
they are the only keys.

FD3 and FD4 violate the BCNF condition, since the left-hand sides of these dependencies aren’t
superkeys. But the right-hand sides of these dependencies, B and A, are parts of a key, so the
relation is in 3NF.

We decompose starting from FD3, A → B, and get:

R1(A, B) in BCNF, A → B
R2(A, C, D) in BCNF, AC → D

4. An unnormalized relation contains redundancy (the same thing expressed in more than one place).
A relation is normalized by splitting it in smaller relations.

When normalized relations are used, a query must reconstruct the data by joining the smaller
relations. This takes time, which may be a reason to use unnormalized relations. A typical examp-
le is a relation that stores a person’s person number, name and address: Person(persNbr, name,
postalCode, street, city). This relation isn’t normalized, but you can live with the redundancy (that
the postal code for a street is mentioned in many places). And it has the advantage that all address
data is in one place, which probably often is good.

5. start transaction;
select x from A lock in share mode;
select y from B for update;
commit; -- or rollback

6. a) The function must join the tables Competitions and Results, and then sum the points attribute.
It does all this in Java code . . . It can be done with one SQL statement:

select sum(points)
from Competitions natural join Results
where sport = ’parameter 2’ and contestant = ’parameter 1’;

b) The function is vulnerable to SQL injection, and it should use prepared statements instead of
regular statements.

