
Information extraction and machine learning

Tomas Malmer
tf06tm0@student.lth.se

Abstract

During this project a multithreaded web
crawler and information gathering fram-
ework named CrawlingMowgli has been de-
veloped. The main focus has been on get-
ting a framework that is easy to extend and
handle a lot off different types of entities that
are found on the web. Some techniques to
improve the result and extraction quality by
using machine learning algorithms were also
explored and evaluated.

1 Introduction

The purpose of this project has been to understand
how different approaches in information extraction
can be used in order to extract entities from web
sources and implement a prototype. The resulting
prototype is called CrawlingMowgli and consists
of two parts, the Crawling engine and the extrac-
tion engine Mowgli. The core part of the extrac-
tion engine is built upon regular expression but some
other functions were implemented like trigger pat-
terns and logic to take advantage of the structure of
a HTML document. Information extraction from re-
al world data can however be be a great challenge
since the raw data contains a lot of strange things,
everything from malformed HTML to very special
presentation of the information.

In order to evaluate the performance of the engi-
ne the result from extracting phone numbers from
company websites was compared with the data from
blocket.se.

2 Architecture

The crawler fetches a webpage from internet and
parses the HTML. The parsed page is then used to
extract information as entities that are organized in
a database.

Crawler // Extraction // Organization

2.1 Web crawler

The web crawler was developed especially for the
task of this project by combining libraries in pyt-
hon for fetching webpages and the open source lib-
raries for parsing HTML (Beautiful Soap). The first
version of the crawler was single threaded and took
more then an hour to crawl all the 923 companies in
the testset. When the structure of the program was
changed to support multiple threads there was a big
performance gain.

The features of the crawler are pretty basic,
each thread pops a site address that should be
crawled from a queue and follows every “intere-
sting” link found in the page. If a link is inte-
resting or not is determined by check if the link
matches certain regular expression, for example
’kontakt|om\s|contact|about|om[_\s-]*oss”.

3 Extraction algorithm

In order to extract information from a web page
and organize it in meaningful manner, one has to go
though certain steps. You will need to ...

• Find the document which contains the informa-
tion.

• Locate where the information is in the docu-
ment.

• Extract it.

• Normalize it.

• Store it in a appropriate manner.

HTML has some extra properties compared to
normal corpus that can be used to improve the num-
ber of “good” extractions. One such property is that
the information inside the document is structured in-
side tags in a hierarchical way. That can be used as
an indicator of how different blocks of text are rela-
ted. The main ideas are to ...

• Take advantage of the structure of a HTML
page.

• Use combinations of regular expression to ex-
tract the interesting parts.

• Design a system that can be extended and trai-
ned by using machine learning techniques.

3.1 Inspiration

The algorithm was inspired by how humans search
though text to quickly find an answer. Usually we
look for keywords and things that “looks” in a spe-
cific way, for examples a lot of numbers grouped to-
gether is easy to spot in a text with a lot of characters.
This is because it stands out from the rest and it is
a pattern that is easy to separate from the rest of the
content.

The same information could be obtained by
slowly read through the text and the result would
probably be better but you will need more concent-
ration or time. To emulate this behavior in a compu-
ter is quite complex, therefor the first a approach was
chosen since it is easier. An illiterate or a child could
probably mark the correct things in the text using
this technique since you don’t have to understand
what you read. The decision is made by just looking
how things are grouped together in a small context.
It is this property thats makes it a good starting point
to begin to implement it on a computer and take it
further from there, in iterations. Just as children le-
arns more about the world with every experience.

3.2 Triggers

Inspired by the idea of human reading behavior men-
tioned above, tigger patterns was born. When I re-
ad scan though a web page looking for a telephone
number I first look for a link with a text close to
“Contact us” or something similar. I then click the
link and search for part of the page with a lot of num-
bers formatted in a phone-like way. If the text “Pho-
ne:” is close to the number sequence, it’s almost for
sure that the sequence are a real phone number. Trig-
gers removes some of the false matches that would
have been found by just using a regular expression
looking for digit based phone numbers.

The trigger patterns where implemented by using
various regular expression that where constructed by
hand in since I didn’t have time to implement somet-
hing more advanced. Constructing the trigger pat-
terns by hand was a good experience seen I gained
a deeper understanding for the dataset which could
come to use later on.

An example of a trigging expression for a swedish
phone numbers is telefon|tel[:./\s]|(\+46)|växel.

3.3 Extraction

When a trigger is executed, all the extracting re-
gular expression are fired against the current ele-
ment of the trigger. If the extraction pattern couldn’t
be found inside the current element, the search is
repeated for the parent element until something is
found or the maximum hieght is reached. Triggers
and extraction patterns are perfect if the information
is structured in a table with a label in the left co-
lumn that hopefully will be matched by the trigger
regular expression. The content in the right column
will then be extracted by the extraction pattern that
are associated with the trigger because of the graph
traversing.

An example of a extraction pattern that where
used to extract phone numbers from swedish sites is
[0-9+]{3,5}[()\s0-9-]{3,}[0-9]{2,}. The pattern was
fires after the phone number trigger as been fired.

4 Implementation

Everything was implemented in Python because of
all the libraries and tools that are needed were avai-
lable for free and its a good language to get some
more experience in. The parsing of the HTML-page

was done with BeautifulSoap which builds a graph
that can be traversed. It is also rather good at parsing
malformed HTML-pages which is important in a re-
al world application, especially version 3.0.8. Pyt-
hon also the a full featured regular expression pac-
kage that contains everything expected of a modern
regular expression engine.

4.1 Mowgli - The extraction and learning
engine

The extraction and learning package that was done
during this project was called Mowgli. An engine
that hopefully will grow up in the information jungle
and one day become “man”.

4.2 Learning regular expression

Something that would increase the performance and
maintainability of Mowgli is some way to make it
learn regular expressions by positive and negative
examples. There has been work on this subject by
others, especially (Yunyao Li, Rajasekar Krishna-
murthy, Sriram Raghavan, Shivakumar Vaithyanat-
han, 2008) which inspired the first approach to the
problem.

The algorithm makes use of a number of transfor-
mation rules that makes transformations on a given
regular expression. A first guess of the searched re-
gular expression is given as starting input to the al-
gorithm. In each iteration of the algorithm, all trans-
formations rules as tested and the best one is chosen
according to the F-score in a greedy manner. The
loop continues until there is no improvement on the
testset. A simple transformation could be to change
the number of times a pattern should be matched.
For example, the pattern [a-z] could be transformed
to [a-z]{1,1}, [a-z]{1,2}, [a-z]{1,3}, [a-z]{2,3} and
so forth, looping though all combinations between
a minimum and maximum length. Another kind of
transformation is the character class expansion, for
example: \s could be expanded to all whitespace cha-
racters in the set [\t \n \r \f \v].

My first attempt on implementing the algorithm
was to apply the transformation rules by searching
and replacing on the current regular expression
string. Under the development I realized that the
structure I choose to implement the transformation
rules had its limits. Simple string search and repla-
ce works for “simple” input regular expressions but

when the input gets more advanced you would ha-
ve to use regular expressions to make the transfor-
mation which would reduce the performance and be
hard to maintain in the long run. A better appro-
ach would be to build an own representation graph
of parts that builds up the regular expression. By
parsing the original regular expression in the begin-
ning of the algorithm would allow the elements to be
“normalized” and constructed in such a way that the
transformation are easy to make. It would then be
possible to do things inspired by evolutionary algo-
rithms, collect statistics on the transformation rules
and combination in a neat way. This may, or may
not, improve the speed of the algorithm.

Unfortunately did I not have time to complete the
alternative implementation during this project but it
will eventually be implemented afterwards.

4.3 CrawlingMowgli

The web crawler combined with the extraction engi-
ne Mowgli is called CrawlingMowgli and is ready
to handle real webpages. The test of the performan-
ce was done against blocket.se, a swedish site that
contains a lot small companies that put their adverts
on the site. The websites for these companies are lis-
ted on blocket.se together with their phone number
and some additional information. By extracting the
correct phone numbers from blocket.se and crawl
the companies homepages with CrawlingMowgli it
is possible to get a rough estimation of the extrac-
tion performance by comparing the extracted phone
numbers against the one listed on blocket.se.

The sites crawled in the testset was not alway ve-
ry “professional” and contains a lot of malformed
HTML and strange design. Because of this selec-
tion of webpages the following result should be seen
as a lower bound for the performance of Crawling-
Mowgli.

4.4 Results

This is the result of the testset from blocket.se. The
entities that were extracted where phone number
and email.

Total number of companies 928
Successfully parsed the homepages 89.3 %
Recall 30.1 %
Extracted some entities 52.0 %
Extracted phone entity 45.7 %

Blocket.se did only list the main phone number to
the company and since many homepages have pho-
ne numbers to different parts of their organization a
lot of extra phone numbers are found. This makes
it difficult to estimate the precision of the algorithm
with the current testset.

4.5 Improvements

There are a lot of room for improvements. One of
the more interesting areas that could improve the
result significant is the machine learning parts of
CrawlingMowgli that currently are very basic. By
collecting statistics on the elements near the entities
that are found in a HTML pages it would be possible
to construct better triggers. Maybe by using somet-
hing inspired by tf-idf or more advanced methods.

Not all of the proposed transformation rules in the
training algorithm for regular expressions proposed
by (Yunyao Li, Rajasekar Krishnamurthy, Sriram
Raghavan, Shivakumar Vaithyanathan, 2008) whe-
re implemented. One of these rules was the negative
lookahead transformation that can negate a positive
match if a certain pattern are proceeding the origi-
nal pattern. If it’s better to add this transformation to
the extraction pattern or to implement negative trig-
gers is something that needs some more research but
it will almost certain improve the end results’ preci-
sion.

Another function that could be implemented
around the triggers are different weights for different
HTML element containers. For example, if a trigger
is found inside a table it would cost more to try to ex-
tract something outside that table. This is since the
probability for something that is inside a table would
have connections to something outside of it is low.
This way, different HTML elements could be seen
as “information energy potentials” that you need a
certain energy in order to escape from it. Extraction
can only be made up to that energy level that is as-
sociated with the trigger that was fired.

Many entities contains some parts that can be mat-
ched agains a database as a part of the validation of

an entity candidate. For example, many phone num-
bers often contains an area code that can be mat-
ched agains a database. By checking if a phone-like
number sequence contains an area code would be a
strong indicator that this number sequence really is
a phone number.

References
Yunyao Li, Rajasekar Krishnamurthy, Sriram Ragha-

van, Shivakumar Vaithyanathan. 2008. Regu-
lar Expression Learning for Information Extrac-
tion. IBM Almaden Research Center. San Jo-
se, CA 95120 http://www.aclweb.org/
anthology-new/D/D08/D08-1003.pdf.

Beautiful Soap. HTML parsing library. http://www.
crummy.com/software/BeautifulSoup/.

Pylons A framework for building websites. http://
pylonshq.com/.

Blocket.se. A swedish site with adverts and companies.
http://www.blocket.se.

Python 2.6. A programming language. http://www.
python.org/.

