
Detection of phone numbers, dates, time and names in handset text 
messages

Camilla Kirkegaard
University of Lund 

Lund, Sweden
camilla.kirkegaard.282@student.lu.se

Tobias Ek
University of Lund 

Lund, Sweden
tobias.ek.017@student.lu.se

Abstract

To extract information from handset text mes-
sages is an area without a lot of previous re-
search.  This  report  contains  an  overview  of 
some  of  the  challenges.  The  areas  we  re-
searched  were  gathering  of  corpus,  witch  is 
hard since it usually implies unrewarded con-
tributions from handset users. With Java's reg-
ular expressions it was quite straightforward to 
reach 80% recognition of named entities. 

Different tools can be helpful during program 
developing,  for  instance  DTD  provides  a 
grammar  check  on  the  output  and  thereby 
gives early error detection. XSLT can be used 
as  a  way to visualize the result  and make it 
easier  during  the  development  process  since 
annotated  corpus's  in  large  quantities  aren't 
particular readable for people.

It is necessary to develop a good way of mea-
suring the performance to keep focus on the 
result  when  developing  the  program. Some 
other  programs  performance  numbers  are 
equally  important  to  be  able  to  evaluate  the 
performance of the developed program.

1 Introduction

Handsets are all  the time handling information, 
mostly either sending or receiving it, but the in-
formation is  not  often analysed or used by the 
handset applications. This is somewhat of an un-
derutilised area and now as smart phones are be-
ing to more commonplaces there are lot research 
areas emerging.

What if the handsets started to display an intelli-
gent  behaviour  and  used  the  information  han-
dled. Just by analyzing the conversation between 
the two users, suggest to the user to schedule a 

meeting in his  or  her calendar or  that  the new 
number is detected that isn't in the users contact 
list perhaps it should be saved. This would pro-
vide freedom to the user, a freedom of not need-
ing to keep things in her or his mind. 

Sony Ericsson provided us with a description of 
this kind of an application that they want to be 
developed. They wanted first of all to see if there 
existed techniques good enough for this purpose. 
This project had as a goal to construct an initial 
framework  for  such  application  development. 
This  also  included  doing  an  overview  of  the 
problems in the area and suggesting possible so-
lutions. 

A  first  step  in  such  a  research  was  to  detect 
phone  numbers,  dates,  time  and  names  within 
text messages and annotate them properly. It also 
included constructing a method on how to evalu-
ate  the  result  and  to  compare  it  with  existing 
standards.  And  finally  should  conclude  with 
some conclusions  about  how usable  the  exam-
ined techniques are and suggest where further re-
search is needed or which techniques we could 
involve. 

2 Areas of research

2.1 Corpus

We started out with a corpus that was provided 
by Sony Ericsson. The corpus contains 214 text 
messages  composed  approximately  from  2350 
words. The corpus is in a JSON format and con-
tains additional information such as caller id, ser-
vice center, date, etcetera that was irrelevant for 
our purposes in this early stage and thus had to 
be ignored. We normalized corpus i.e. only lower 



case letters and divided the text into separate text 
messages.

The larger the corpus is the more likely it is that 
it  is  represent  able  and  useful.  A  problem we 
faced was that many handset users did not want 
to voluntary give up their own private text mes-
sages  for  research  possibilities.  Having  a  too 
small corpus to work against increases the risk 
that the annotator will be overly adapted to that 
particular  corpus  and  that  it  will  be  little  use 
against  other corpus's  i.e.  its  over  fitted.  If  we 
don't  encounter  an specific entity of  something 
we want to annotate its likely we won't consider 
that entity at all. You might even have a suffi-
cient large corpus but if the corpus is in Swedish 
and you try to use your annotator on a corpus in 
another language it  will  fail  to  reach the same 
performance. The major reason is that different 
standards are used in different countries for rep-
resenting dates and times.

The small corpus and the possibility of an over 
fitted annotation program set  the project  on an 
unstable foundation. If the program is over fitted, 
it  returns  unfairly  a  high  performance  result 
against  the  current  corpus  but  as  the  corpus 
grows  larger  it  will  degrade  over  time  and 
against a different corpus it will perform poorly.

The issue with corpus gathering was not foreseen 
and  the  project  was  forced  to  continue  even 
though the corpus was considered too small. We 
had anticipated incorrectly that our SMS corpus 
would grow larger during the project but a viable 
alternative could have been working on an email 
corpus until  a sufficient  large SMS corpus had 
been gathered.

2.2 Detection 

To detect entities of name, phone numbers, dates 
and times was straight forward process and even 
with quite simple regular expressions a moderate 
performance  was  achieved.  To  detect  phone 
numbers the following regular expressions were 
used to catch a variety of number formats: 

[0][\\d][\\s-]?\\d[\\s-]?([\\s]?\\d){6,7} 
E.g. 046-123456.

([00]|[+])\\d{2}[-\\s]?([\\s]?\\d){6,} 
E.g. +4646-123456

To detect dates we developed this regular expres-
sion that is naive but still frames the majority of 
dates: 

\\d{4}|\\d{2})[.-/]?[01]\\d [.-/]?[0123]\\d[^\\d] 
e.g. 2010-01-11 and 10.01.11

With times we had to deal with the presence of 
"am" or "pm" and the different denominator use 
of either '.'  or ':'  which we did in the following 
regular expressions:

(\\D)([012]?\\d[:.][0-5]\\d(am|pm)  e.g. 11:25pm

[012]?\\d[:.][0-5]\\d     e.g. 23.25

[012]?\\d(am|pm))    e.g. 11pm

Since we are aware of the possibility of over fit-
ting  our  regular  expressions  against  the  small 
corpus, we decided to not put much effort on de-
velop the expressions much further at this point 
than what is shown in previous examples. Like-
wise if we had introduced our own imagined en-
tities in attempt to expand the small corpus we 
would likely encounter the very same over fitting 
issue. We redirected our focus to spend the time 
on getting an orientation of the different problem 
areas and look at viable solutions to accomplish 
the project goals.

Some conceptual problems were encountered as 
how to interpret a number like "091011", is it 9th 
of September 2009? Numbers like 1234 might be 
12:34 o'clock,  a direct number under a compa-
ny's  telephone  switch  or  something  completely 
uninteresting for annotation. 
Handset user don't always conform to any stan-
dardised  way to  represent  time,  date  or  phone 
numbers they are very likely to try to compress a 
sentence to as few characters as possible. Numer-
al  examples  like  31.e  which  easily  is  deduced 
from the context to mean 31th of some month.

2.3 Standard annotation

It is important to comply to a well used standard 
since it encourages and simplifies further devel-
opment if ever reused. By this reason we choose 
to comply with the Message Understanding Con-
ferences (MUC) annotation scheme as its one of 
most popular  one.  MUC includes annotation to 
handle a wide range of different entities in every 
conceivable  permutation  out  of  these  we  use 
TIMEX and ENAMEX. 



TIMEX3 covers  times and dates and is  a very 
comprehensive standard but at this point we have 
no need for it's full complexity. We use only the 
following two formats.

<TIMEX3 type="DATE" value="XXXX-10-
20">oktober 20</TIMEX3> 
<TIMEX3 type="TIME" 
value="T15:45">15.45</TIMEX3> 

Since  there  are  different  ways  of  representing 
times and dates, the value attribute has to be nor-
malized for further use just  as for  phone num-
bers. For instance a partial date as "October 20" 
XXXX is a filled as place holder for the year to 
indicate the information is missing, the TIMEX 
scheme we follow represent dates in the format 
"YYYY-MM-DD".

ENAMEX is used to annotate several  different 
named entities as organizations, persons and lo-
cations. We considered only the person identifi-
cation in this project even though we had loca-
tion in mind for later use in our master thesis.

<ENAMEX 
type="PERSON">jens</ENAMEX> 

To annotate phone numbers we created our own 
annotation since there was no common standard 
scheme  in  use.  Our  phone  number  annotation 
uses the same format as the others and is  in a 
normalized format  in  the  attribute  value where 
they are stripped of dashes, spaces and parenthe-
sis.

<PHONENUMBER value="046123456">046-
123456</PHONENUMBER>

2.4 Gold annotation

To be  able  to  measure  the  annotator’s  perfor-
mance for the entities, it is necessary to have a 
gold standard which is a hand annotated part of 
the corpus. But in our case the gold standard had 
to be whole corpus. A gold standard annotation 
means that it is annotated by a human and there-
by should be an ideal annotation.

To gold annotate a part of the corpus is not al-
ways trivial, it raises several questions and things 
have to be thought through before you start the 
process. For instance should there be an duration 
attribute  attached  to  TIMEX  annotation  if  so 
when should it apply if there are two dates that 

are close together or maybe just if there is an ob-
vious denominator between them.

The corpus includes some tricky entities that we 
as human beings can easily detect especially with 
help of the context but isn't realistic found by a 
(simple) automated annotator. We ended up de-
cided to be strict in our annotation and used the 
rule "if we understood something as date we an-
notated it as such". This could imply that entities 
like "let’s meet on the 25" should be annotated as 
the 25th in either this or the coming month, de-
pending on the current date. These kinds of enti-
ties  are  not  detected  by  our  annotator  yet  and 
played a part of why it was hard to increase the 
performance of  our  annotating program after  a 
certain level of success.

To hand annotate a corpus is  a very time con-
suming process and we also had to redo the an-
notation  a  few  times,  since  our  annotation 
scheme and our understanding on the proper way 
to annotate entities changed during the project.

2.5 DTD as a grammar check

DTD provides a grammar check for the annotat-
ed  output.  It  enforces  that  the  annotations  are 
constructed  in  a  standard  way  and  are  well 
formed.  Since DTD detects  malformed annota-
tions its can be very helpful during developing of 
the software to detect and locate errors quickly.

We  used  a  fast  test  cycle combined  with  the 
DTD grammar check. This combination gave a 
good clues of which commit that went wrong and 
speeds up the tracking of newly introduced bugs. 
It gives a fast and repeatable test that everything 
that worked before a change was still working af-
ter the change. 

2.6 Visual overview with XSLT

Our XSLT program takes an XML file as input 
and transforms the XML into XHTML. Viewed 
in a web browser the XHTML provides a visual 
overview of how the annotation has been carried 
out. As our XHTML highlights each type of enti-
ties  of  dates,  times,  and  phone  numbers  in  its 
own colour. It made it relative quick and easy to 
compare against the gold annotated corpus if the 
annotations are correct, missed, partial or incor-
rectly annotated.

2.7 Evaluation

Both the DTD and XSLT were an intermediate 
step to measure performance but they didn't pro-



vide exact results. To evaluate the result it is re-
quired to gold annotate a slice of the original cor-
pus and then compare it with the output that the 
annotation program provides. The standard is to 
use  a  harmonic  mean,  generally  called  F-mea-
sure, to describe the performance. F-measure is 
calculated as a mean value between the precision 
and the recall.

Recall=
retrevied tags∩relevant tags

relevant tags

Precision=
retrived tags∩relevant tags

retrived tags

F measure=
2∗Precision∗Recall

PrecisionRecall

Precision is "how many of the entities are accu-
rate" and recall is "how many of the entities were 
found". We found it convenient to both evaluate 
how good the overall performance was, as well 
as  to  evaluate  how good each  entity  type  per-
formed. This gave a fast clue of how well a spe-
cific  feature  of  the  program  worked.  A  good 
evaluation program is necessary to be able to de-
velop in a result focused way.

2.8 Comparison

As soon as the annotating program together with 
the evaluation program starting produce outputs, 
performance started to climb and the most obvi-
ous errors could be corrected. Next step was to 
compare it with existing software on the market 
to get a hint of real performance. We used the 
Macintosh's Apple Mail that is included in OS X 

v10.6  which  is  its  default  mail  program  it's  a 
very capable program and truly is the state of the 
art. 

The initial  results were too optimistic from our 
point of view but as it turned out, it was not com-
parable,  since  our  annotator  also  annotated 
names  from  a  contact  list  and  some  Swedish 
words  that  the  Apple  mail  can't  handle.  This 
made the comparison unfair and by this reason, 
we cut our annotators ability to recognize names 
and  Swedish  words  to  have  them compete  on 
equal grounds. After the revised comparison our 
annotator and Apple Mail performed with quite 
similar result.  Still there were some key differ-
ences,  our  annotator  has  slightly  more  entities 
annotated than the Apple Mail but it still outper-
forms our annotator because it has a higher preci-
sion on its annotations. 

As can be seen on figure 1, there are just 91 enti-
ties  (excluding names)  from the 214 text  mes-
sages  reveals  that  there  is  a  high risk that  our 
program is over fitted which puts a shadow on 
the result. Then add the knowledge that the Ap-
ple  Mail  is  being  more  language  neutral  than 
ours  and  thereby has  to  consider  several  more 
conventions  of  writing  date,  times  and  phone 
numbers, as generality usually comes with a cost 
and  in  this  instance  it  affects  overall  perfor-
mance. To evaluate  the  Apple  Mail  we  simply 
email our self the XML file and then manually 
checked  if  the  Apple  Mail  was  able  to  detect 
each entity, obviously a very crude method and 
the realization of an automatic comparison tech-
nique dawned on us. 

Our annotator
Gold Correct Incorrect R P F-measure

Name 51 51 0 1 1 1
Date 39 28 5 0.72 0.85 0.78
Time 41 34 0 0.83 1 0.91
Phone 11 7 1 0.64 0.88 0.74
Total 142 120 6 0.85 0.95 0.9

Our annotator, names are excluded
Gold Correct Incorrect R P F-measure

Date 20 12 8 0.6 0.6 0.6
Time 41 34 0 0.83 1 0.91
Phone 11 7 1 0.64 0.88 0.74
Total 72 53 9 0.74 0.85 0.79

Apple Mail(OS X v10.6) 
Gold Correct Incorrect R P F-measure

Date 20 15 1 0.75 0.94 0.83
Time 41 28 0 0.68 1 0.81
Phone 11 7 1 0.64 0.88 0.74
Total 72 50 2 0.69 0.96 0.81



3 Summary

3.1 Gathering a corpus

To gather a corpus of handset text messages is 
harder than it  might seem, the average handset 
users aren't  willing or  doesn't  or  see  why they 
should contribute with their text messages to fur-
ther research. Some kind of reward system might 
be a solution to address this matter. The need of 
a corpus of at least 10,000 words and preferably 
much more is required to overcome the over fit-
ting problem.

3.2 Detection 

It is quite straight forward to detect the majority 
of the entities in the corpus with relatively simple 
regular expressions, in our case a detection rate 
near 80%. To refine the numbers more sophisti-
cated regular expressions and probably a combi-
nation  with  other  techniques  are  needed.  The 
area of machine learning might be of interest.

3.3 Annotation

MUC provides a comprehensive standard for an-
notation  of  dates,  times,  names  and  locations, 
where the latter will be useful in a further appli-
cation development. For phone numbers there is 
no widely used standard yet and we have to de-
velop our own. 

3.4 DTD

A DTD showed itself  to be useful  in grammar 
checking the result after any change to the anno-
tation process. The DTD provided instant errors 
if the output did not corresponded to the rules we 
had in place. The DTD is mostly useful  in the 
early  stages  of  development  but  is  convenient 
later on as well.

3.5 XSLT

It is hard to read annotated text with annotations. 
It is hard to see if any mistakes were made, as in 
wrong, lacking or double annotation. The XSLT 
provided an XML file which was viewable with-
in a web browser and each kind of entities, e.g. 
phone number,  was easy distinguished with its 
specific colour. 

3.6 Evaluation

It  is  standard to  use  a harmonic mean,  F-mea-
sure, to describe the performance. A good evalu-
ation program is essential to be able to develop 
in a result focused way. 

3.7 Comparison

When having a program and evaluation program 
that works the final part has to be to compare the 
performance  with  existing  programs  to  get  an 
idea of how good it is and which parts that has to 
be improved. This part would benefit greatly by 
an automated process to avoid unnecessary man-
ual work. 

3.8 Future work

To reach a higher score for recognised entities, 
there are different things that could be done. Im-
proving the regular expressions, make them more 
exhaustive to cover more kinds of entities, more 
work is also needed in improving their accuracy 
on matches. A convenient way of adding more 
regular expressions for specific matches is need-
ed without having to increase the complexity of a 
single expression. Keeping the expressions sim-
ple would have huge benefits in debugging and 
improve matching. We also ran into a undocu-
mented bug in the Java regular expression engine 
that  hinder  development.  There  might  be  li-
braries that are more capable or more up to spec-
ification that could be used instead.

Taking context into account seems to be an im-
portant  next  step  for  the  application.  Context 
could involve certain key words that might imply 
that a meeting is about to occur between users. 
We would like to be able to match occurrences 
like "I'll see you at one". Knowing that "at" is a 
key word if followed by a number, others key-
words could be o'clock, meet or see. 

We would like to give the program an appear-
ance of an intelligent  behaviour for instance to 
analyse an chain of messages between users, sav-
ing the annotations found in previous messages 
and see if the receiver answers back with infor-
mation that has been annotated. 

Example given:

A Sends a SMS including a date.
B Returns the SMS including a time and a loca-
tion.
A Receives the SMS. 

Here we would like to  suggest  to  person A to 
schedule a meeting with B at the given location, 
date and time. If then the conversation continues:



A Sends an accepting phrase, e.g. "ok".
B Receive the SMS from A. 

Here user B would be prompted to schedule the 
same meeting.

Utilise the meta data that comes with the corpus 
to aid in filling partial dates, connecting names to 
numbers, see the time frame messages are being 
sent  if  they  are  a  candidate  for  scheduling  a 
meeting.

We would like to examine the possibilities of us-
ing  machine  learning  techniques  and  explore 
ways of combination them with regular expres-
sions.

Acknowledgments
We want to thank Pierre Nugues for a good guid-
ance and support  throughout  the  entire  project. 
Håkan Jonsson at Sony Ericsson for assisting us 
with the project idea and a corpus. Lund's Uni-
versity for lending us a Mac and providing tech-
nical support with it.

References 

Pierre Nugues.  An Introduction to Language Pro-
cessing  with  Perl  and  Prolog.  http://www.c-
s.lth.se/home/Pierre_Nugues/ilppp/

ENAMEX 
http://cs.nyu.edu/cs/faculty/grishman/NEtask20.bo
ok_9.html#HEADING30

TIMEX Guidelines for Temporal Expression An-
notation  for  English  for  TempEval  2010, 
www.timeml.org/tempeval2/tempeval2-
trial/guidelines/timex3guidelines-072009.pdf. 


