
Abstract

This document gives a brief introduction to
syntactic parsing, and describes a method for
improving the accuracy of the parsing by using
nouns classes. Several versions are tested, and
some do lead to a significant improvement,
whereas others decrease the accuracy. Some
issues are examined which could cause this
decrease.

1 Dependency parsing and syntactical
parsing

This article deals with dependency parsing and
syntactical parsing of natural written language.
Dependency parsing means identifying how words
relate to each other, for example that a particular
noun is the argument to a particular verb, or an
adjective to a noun. Syntactical parsing extends this
to also include the nature of the relation, known as
the function, for example whether the noun is the
subject or object of the verb.

The basic parser algorithm we used was developed
by Joakim Nivre. The idea is to transform the tree
structure of dependency to a sequence of
operations, and vice versa. The parser uses a stack
and a queue, starting with the whole sentence in the
queue and the stack empty. The four possible
operations are:

• Shift, moves the first element in the queue
to the stack

• Reduce, removes the top element from the
stack

• Left arc, makes the top element of the stack
a dependant of the first element in the
queue, and removes the top element from
the stack

Improving syntactical parsing
using noun classes

Niklas Zechner
Department of Science

Lund University, Sweden
niklas.zechner@gmail.com

• Right arc, makes the first element in the
queue a dependant of the top element of the
stack, and moves the first element in the
queue to the stack

With these operations, any dependency tree can be
described.

In the training step, the parser interprets the tree as
a list of operations, and for each operation notes
certain properties of the words in the stack and in
the queue, known as features. If we are using
functions, it also notes the function for each left arc
or right arc operation. We let the parser do this with
a large training corpus, and send the results to a
machine learning program which builds a model. In
the parsing step, the parser uses the model to
predict the operations from the features, and thus
construct the dependency tree.

2 Issues with the technique and a possible
method for improvement

The technique of using statistics to determine
syntactical roles is based on the assumption that the
text in question has a relatively fixed word order.
The extent to which this is true varies between
languages and types of text. Isolating languages
such as Chinese are very suitable for this type of
analysis, whereas synthetic languages such as Latin
are less suitable. (It is also worth noting that from
the perspective of a simple statistical analysis, a
more synthetic language will cause other
difficulties. From equivalent texts, it will give a
smaller corpus but a larger lexicon than a more
isolating language. Any statistical analysis will be
less effective, and particularly so if the analysis
also relies on the actual word rather than the part of
speech. For the most synthetic languages, analysing
words as such would be meaningless, but that kind
of languages are rare.) The languages on which this
work is focused are Swedish and English. They
could both be said to be somewhere in the middle
on the scale, with English slightly more isolating,
and both languages developing towards a higher
degree of isolation. There is also in both these
languages a clear difference between more and less
formal text. Formal text is likely to have a higher
degree of synthesis, and a more predictable word
order (but, on the other hand, more complex
sentence structures).

In general, grammar rules are flexible, including
those of word order, in any language. Statistical
analysis which only relies on word order can
therefore never reach more than a certain accuracy;
the probability of a word being correctly
interpreted cannot be higher than the probability
that the rule on which it is based applies. In English
and Swedish, the general rule is that the subject
comes before the verb it relates to, and the object

mailto:niklas.zechner@gmail.com
mailto:niklas.zechner@gmail.com

comes after; they are said to be SVO languages.
But there are exceptions to this rule. From
Swedish:

Vad äter musen?
Osten äter musen.

what eat-PRES mouse-DEF ?
cheese-DEF eat-PRES mouse-DEF .

This example would not be possible in English,
but there are other examples where there are
ambiguities. Consider the difference between the
following:

the mouse eating cheese

the cheese-eating mouse

Some verbs are particularly prone to confusion:

“Hello”, said the man.

Having an annotated corpus, we can easily check
just how accurate the SVO rule is for each
language. We simply count which fraction of
subjects occur before their respective verbs, and
similarly for objects. This method isn’t quite “fair”;
the rule is not supposed to act on that level, but it
can hopefully give some indication of how firm the
word order is.

For Swedish, we find that 78% of the subjects
and 97% of the objects are in the expected place.
For English, it is 95% and 98%.

There are also other cases where the parser goes
wrong if it only looks at the parts of speech. A
typical example is

They had tea in the kitchen.

Statistically, ‘in the’ is often followed by a time,
such as ‘afternoon’. Since ‘kitchen’ and ‘afternoon’
are both nouns, there is no way of telling which one
is correct here, so the parser naturally assumes that
it is a time. A similar example is

They ate a while.

Here, the parser only knows that ‘while’ is a
noun, and therefore interprets it as the object, the
thing being eaten. All these things could be solved
if we give the parser the information of the actual
word, but depending on the nature of the parser and
the corpus this might not be practical. Some
classifiers (such as the one used here) have
difficulties dealing with large numbers of possible
values. Also, unless the training corpus is

extremely large, many words will occur so few
times that they might be difficult to interpret.

One way to try to improve the parsing is by
using noun classes. We divide the nouns into
different groups on a semantic basis, effectively
treating them as different parts of speech. There are
several sets of noun classes that we could use. One
possibility is to use animate versus inanimate
nouns; ‘animate’ meaning words for things which
can be the instigator of an action - essentially living
beings. This should help identify the subject and
object in the above examples, as we know that the
subject of ‘eat’ must be animate, and so on. Another
distinction is between concrete nouns (that is,
physical objects) and abstract nouns. This could
possibly solve the example with ‘while’, since we
know that the object of ‘ate’ can only be a concrete
noun. A problem here is that we don’t have any
information about the verb. Perhaps more effective
then is to have a specific class for times; that would
solve both the example with ‘while’ (by telling the
parser that it is dealing with a time) and the
example with ‘in the kitchen’ (by telling the parser
that it is not dealing with a time).

3 Method

We used a Java implementation of Nivre’s parser
written by Pierre Nugues, which was modified to
include slightly different features, and also
functions. For machine learning we used Weka, and
the classifier J48. The corpuses we used were the
Talbanken corpus for Swedish and the Penn
Treebank corpus used in CONLL 2008 for English.

The parser originally looks at the two top words
in the stack and in the queue. The result is
reasonable, but not impressive. We try to add a
third word, in the stack and in the queue, but there
is little difference in the result. There are various
other features we could add to the parser to
improve the accuracy, but those are not the focus of
this article.

Instead, the parser was rewritten to look at the
specific functions for each relation, such as whether
a noun is the subject of its head verb or the object,
making it a syntactical parser rather than just a
dependency parser.

We attempt to improve the parsing by involving
classes. For the Swedish corpus, we settle on the
following classes:

• things (concrete inanimate)
• animate
• abstract
• locations

A program goes through the words, and finds all
nouns which occur at least ten times in the union of
the training corpus and the test corpus. Each of
these words is manually assigned a class. The
corpuses are then updated, replacing the noun
symbol with a symbol for the specific class of
noun, effectively treating nouns as five different
parts of speech (four for the classes, and one for the
remaining words which have not been classified).

Next we try using the English corpus, first
without classes. Then we add classes, this time for
the words which occur at least 100 times (since it’s
a much bigger corpus). The results are encouraging,
so we try again with all words which occur at least
25 times. We have now also added a fifth class, for
times.

Since we have no information on the verbs, but
are using the classes solely to predict which
function each word is likely to have, an idea
springs to mind: What if we simply use one class
for each function, assigning the word to the class
corresponding to the function which it most
commonly has in the training set? This can easily
be done automatically, so we can now assign a
class to every noun, not just to the most common
ones.

4 Results

 Total % Nouns % Others %
Swe, two words 81.11 86.04 79.71
Swe, three words 81.11 86.04 79.71
Swe, with functions 67.91 78.75 64.83
Swe, with classes 66.99 77.13 64.11
Eng, no classes 73.12 73.57 72.91
Eng, classes to 100 73.43 74.67 72.83
Eng, classes to 25 73.54 75.03 72.84
Eng, function-classes 72.56 73.98 71.88

5 Analysis

The original parser has a reasonable accuracy, but
is far from what the best parsers can do. When we
try adding a third word to the stack and queue, this
changes the interpretation of about one percent of
the words - some for the better and some for the
worse - but oddly enough the net result is less than
0.01%. We see that the nouns are already
considerably easier to assess than the rest of the
words, which is certainly of interest for our
purposes.

(It should be noted that the program used here to
count the percentages is not the standard CONLL
evaluation program, since a program was required
to investigate the nouns specifically, and there is a
minute difference in the results due to issues of
punctuation, but this is not significant to the

conclusions. The difference for the first part is
0.03%.)

With functions, the parser predicts much more
information, so we naturally expect a much lower
percentage. The result of 68% is not surprising.

Rather disappointingly we find that adding
classes gives a lower accuracy. How can this be?
We are giving more information to the parser, so
we would expect the result to be better, or at least
not worse than before. The answer must be that the
parser has lost a vital piece of information: the fact
that these classes have something in common, that
they are all nouns. Not being able to draw
information from the nouns outside the given class
gives the same effects as having a smaller corpus.
Presumably there is also a positive effect, but it is
obscured by this negative effect. If the corpus was
larger, we would probably see a different result: As
the corpus grows larger, the accuracy continues to
improve, but the improvement gets smaller, so at
some point the consequence of effectively cutting
the corpus in four parts (as far as the nouns are
concerned) becomes smaller than the positive effect
of adding classes. Another way to get around this
problem is by doing the process in several steps. If
we first parse the sentences without classes, and
then post-process with classes, we should be able to
make use of both pieces of information. It might
also be possible to simply consider class a separate
feature, rather than mixing it with part of speech.
Currently this parser is not equipped for those
things, so that will have to be left for future work.

We should also consider the distribution of
classes. If one class is much smaller than the
others, that class would be particularly difficult to
parse. Looking at the classified nouns for this
corpus, we find

4.7% things
20.4% animate
70.6% abstract
4.4% locations

The percentage of locations and animate nouns
could probably be considered rather normal, since
most texts are partly but not entirely about people,
and locations are generally a less common
category. What is noteworthy is the fact that the
abstract words greatly outnumber the things. It is
no surprise, since the text is a rather convoluted and
bureaucratic one. One might question the
annotators’ choice of text here; although it is
desirable to have a realistic text and not a
constructed example text, there should be texts
available which are natural but somewhat less
complicated. It is after all common scientific
practice to start with simpler examples and make

sure to master them before moving on to more
complex ones.

However, there is no other available corpus in
Swedish which serves our purpose, so we look at
the English corpus. It has a higher overall
percentage, but that is not something we should be
overly concerned with. Part of the reason is of
course that the corpus is bigger. That does not
account for the whole difference; when using only
a part of it, with the same size as the Swedish
corpus, the result is still about two percentage
points higher than for the Swedish. This corpus also
comes from a different source, and of course there
is some effect of changing languages - one is
tempted to say that the above comparison of word
order rules shows that English is easier to parse in
this way than Swedish. Most of the effect is
probably due to various language differences, and
the different set of parts of speech. Either way, the
results are not comparable for our purposes, but
should be considered separately.

What might be of some interest is the fact that
the nouns are far worse. This could be due to some
unforeseen property of the language, but there is
another possibility. The English corpus, unlike the
Swedish, uses different tags for singular and plural
nouns. It seems unlikely that this would have any
significant positive effect, since the same noun can
usually have the same functions regardless of its
number - if one mouse can eat cheese, two mice
can also eat cheese. But as we noticed before,
arbitrary classes can have a negative effect on the
result. The English corpus also contains quite a few
proper nouns, which makes four classes for nouns.

A brief attempt at removing the number
distinctions yields a significantly worse result. It
might be that removing them and replacing with the
classes would improve something. Perhaps there is
in some sense an ideal number of classes - a few
divisions is good, but too many ruins the
classification. This needs to be investigated further.

In the next step we find perhaps the most
enlightening results. First, we notice that the
overall result is better with classes than without.
Second, we see that it is only the nouns which have
improved; the rest of the words actually have a
slightly worse result than before. It seems that the
classes have had the desired effect, making the
nouns’ functions easier to predict, whereas the
negative effect can be seen in all the words. The
function of the nouns themselves is connected to
the classes, but the function of other words n
relation to the nouns has little or no such
connection. Therefore the prediction of functions
for words of other parts of speech is not improved.

The improvement when classifying more words
is expected. The slight change in the result for the
non-nouns is too small to draw any conclusions
from.

The distribution of the classes is now

7.9% things
27.7% animate
53.5% abstract
7.9% locations
3.0% times

It is possible that the smaller fraction of abstract
nouns makes this corpus easier to interpret, and
hopefully the inclusion of time words as a specific
class also improved the results.

Finally, we look at the automatically generated
classes. The result is somewhat ambiguous. For the
non-nouns, we can see that the negative effect is
bigger than before; there are more classes, making
each class less common. For the nouns, the result is
better than when we had no classes, but not as good
as for the semantic classes we used before. The
reason could be that while the positive effect is
bigger than before, the negative effect has
increased more. If we had an even bigger training
corpus - quite a lot bigger - the negative effect
might be negligible, and then we might see an
improvement with this sort of classes.

6 Future work

There are other classifiers that might be better
for large data sets.

There may be other noun classes that would be
more effective.

Adding other features would no doubt improve
the parsing. While this is nothing new, it could be
interesting to see how the addition of classes affects
a really good parser.

When an even bigger corpus becomes available,
the function-classes might be worth testing. On the
other hand, with a classifier which can handle the
word itself as a feature, this type of class might be
completely obsolete.

The process could be divided into steps, so that
the classes are applied separately. This could work
better with a different classifier, one that can output
several answers and their probabilities. Other
simple improvements would be post-processing to
check that grammar rules are being followed; a
sentence should not have more than one root, a
verb should not have more than one subject, etc.

The use of noun classes would probably work
very well together with certain types of valency
lexicon. Lexicons such as FrameNet have complex
systems of semantic categories, and would require
a similarly complex system of classes to reach its
full potential. For Swedish, The Lexin valency
lexicon classifies verb arguments as “persons” and
“things”; in other words, animate and inanimate. It
should therefore work well together with this type
of noun classes. If one prefers to base things on the
training corpus alone (which would make it
language-independent), it would certainly be
possible to automatically classify the verbs
according to their most common arguments.

7 References

J a n E i n a r s s o n . 1 9 7 6 . T a l b a n k e n s
skriftspråkskonkordans. Lund University,
Department of Scandinavian Languages.

Mitchell P Marcus, Mary Ann Marcinkiewicz and
Beatrice Santorini. 1993. Building A Large
Annotated Corpus Of English: The Penn
Treebank. University of Pennsylvania, Philadelphia.

Jens Nilsson, Johan Hall and Joakim Nivre. 2005.
MAMBA Meets TIGER: Reconstructing a
Swedish Treebank from Antiquity. Proceedings of
the NODALIDA Special Session on Treebanks.

Jens Nilsson and Johan Hall. 2005. Reconstruction of
the Swedish Treebank Talbanken. MSI report
05067. Växjö University, School of Mathematics and
Systems Engineering.

Joakim Nivre. 2003. An Efficient Algorithm for
Projective Dependency Parsing. Proceedings of
the 8th International Workshop on Parsing
Technologies (IWPT 03), 149-160. Nancy.

Joakim Nivre, Jens Nilsson and Johan Hall. 2006.
Talbanken05: A Swedish Treebank with Phrase
Structure and Dependency Annotation.
Proceedings of the fifth international conference on
Language Resources and Evaluation (LREC2006).
Genoa.

Pierre Nugues. 2008. Nivre parser implemented in java.
EDA171 course web. http://fileadmin.cs.lth.se/cs/
Education/EDA171/Programs/parsing/Nivre.zip.

Mihai Surdeanu, Richard Johansson, Adam Meyers,
Lluís Màrquez and Joakim Nivre. 2008. The
CoNLL-2008 Shared Task on Joint Parsing of
Syntactic and Semantic Dependencies.
P r o c e e d i n g s o f t h e 1 2 t h C o n f e r e n c e o n
Computational Natural Language Learning
(CoNLL-2008).

http://stp.lingfil.uu.se/~nivre/docs/talbanken05.pdf
http://stp.lingfil.uu.se/~nivre/docs/talbanken05.pdf
http://stp.lingfil.uu.se/~nivre/docs/talbanken05.pdf
http://stp.lingfil.uu.se/~nivre/docs/talbanken05.pdf

