
Abstract

This document gives a brief introduction to 
syntactic parsing, and describes a method for 
improving the accuracy of the parsing by using 
nouns classes.  Several versions are tested, and 
some do lead to a significant improvement, 
whereas others decrease the accuracy. Some 
issues are examined which could cause this 
decrease.

1 Dependency parsing and syntactical 
parsing

This article deals with dependency parsing and 
syntactical parsing of natural written language. 
Dependency parsing means identifying how words 
relate to each other, for example that a particular 
noun is the argument  to a particular verb, or an 
adjective to a noun. Syntactical parsing extends this 
to also include the nature of the relation, known as 
the function, for example whether the noun is the 
subject or object of the verb.

The basic parser algorithm we used was developed 
by Joakim Nivre. The idea is to transform the tree 
structure of dependency to a sequence of 
operations, and vice versa. The parser uses a stack 
and a queue, starting with the whole sentence in the 
queue and the stack empty. The four possible 
operations are:

• Shift, moves the first  element in the queue 
to the stack

• Reduce, removes the top element from the 
stack

• Left arc, makes the top element of the stack 
a dependant  of the first element  in the 
queue, and removes the top element  from 
the stack

Improving syntactical parsing 
using noun classes

Niklas Zechner
Department of Science

Lund University, Sweden
niklas.zechner@gmail.com

• Right arc, makes the first element in the 
queue a dependant  of the top element  of the 
stack, and moves the first  element  in the 
queue to the stack

With these operations, any dependency tree can be 
described.

In the training step, the parser interprets the tree as 
a list of operations, and for each operation notes 
certain properties of the words in the stack and in 
the queue, known as features. If we are using 
functions, it  also notes the function for each left arc 
or right  arc operation. We let the parser do this with 
a large training corpus, and send the results to a 
machine learning program which builds a model. In 
the parsing step, the parser uses the model to 
predict the operations from the features, and thus 
construct the dependency tree.

2 Issues with the technique and a possible 
method for improvement 

The technique of using statistics to determine 
syntactical roles is based on the assumption that the 
text in question has a relatively fixed word order. 
The extent  to which this is true varies between 
languages and types of text. Isolating languages 
such as Chinese are very suitable for this type of 
analysis, whereas synthetic languages such as Latin 
are less suitable. (It  is also worth noting that from 
the perspective of a simple statistical analysis, a 
more synthetic language will cause other 
difficulties. From equivalent  texts, it will give a 
smaller corpus but  a larger lexicon than a more 
isolating language. Any statistical analysis will be 
less effective, and particularly so if the analysis 
also relies on the actual word rather than the part  of 
speech. For the most synthetic languages, analysing 
words as such would be meaningless, but  that  kind 
of languages are rare.) The languages on which this 
work is focused are Swedish and English. They 
could both be said to be somewhere in the middle 
on the scale, with English slightly more isolating, 
and both languages developing towards a higher 
degree of isolation. There is also in both these 
languages a clear difference between more and less 
formal text. Formal text is likely to have a higher 
degree of synthesis, and a more predictable word 
order (but, on the other hand, more complex 
sentence structures).

In general, grammar rules are flexible, including 
those of word order, in any language. Statistical 
analysis which only relies on word order can 
therefore never reach more than a certain accuracy; 
the probability of a word being correctly 
interpreted cannot be higher than the probability 
that the rule on which it is based applies. In English 
and Swedish, the general rule is that  the subject 
comes before the verb it  relates to, and the object 

mailto:niklas.zechner@gmail.com
mailto:niklas.zechner@gmail.com


comes after; they are said to be SVO languages. 
But there are exceptions to this rule. From 
Swedish:

Vad äter musen?
Osten äter musen.

what eat-PRES mouse-DEF ?
cheese-DEF eat-PRES mouse-DEF .

This example would not be possible in English, 
but there are other examples where there are 
ambiguities. Consider the difference between the 
following:

the mouse eating cheese

the cheese-eating mouse

Some verbs are particularly prone to confusion:

“Hello”, said the man.

Having an annotated corpus, we can easily check 
just  how accurate the SVO rule is for each 
language. We simply count  which fraction of 
subjects occur before their respective verbs, and 
similarly for objects. This method isn’t  quite “fair”; 
the rule is not  supposed to act  on that  level, but  it 
can hopefully give some indication of how firm the 
word order is.

For Swedish, we find that  78% of the subjects 
and 97% of the objects are in the expected place. 
For English, it is 95% and 98%.

There are also other cases where the parser goes 
wrong if it only looks at the parts of speech. A 
typical example is

They had tea in the kitchen.

Statistically, ‘in the’ is often followed by a time, 
such as ‘afternoon’. Since ‘kitchen’ and ‘afternoon’ 
are both nouns, there is no way of telling which one 
is correct here, so the parser naturally assumes that 
it is a time. A similar example is

They ate a while.

Here, the parser only knows that ‘while’ is a 
noun, and therefore interprets it as the object, the 
thing being eaten. All these things could be solved 
if we give the parser the information of the actual 
word, but depending on the nature of the parser and 
the corpus this might  not be practical. Some 
classifiers (such as the one used here) have 
difficulties dealing with large numbers of possible 
values. Also, unless the training corpus is 

extremely large, many words will occur so few 
times that they might be difficult to interpret.

One way to try to improve the parsing is by 
using noun classes. We divide the nouns into 
different  groups on a semantic basis, effectively 
treating them as different parts of speech. There are 
several sets of noun classes that we could use. One 
possibility is to use animate versus inanimate 
nouns; ‘animate’ meaning words for things which 
can be the instigator of an action - essentially living 
beings. This should help identify the subject  and 
object  in the above examples, as we know that  the 
subject of ‘eat’ must be animate, and so on. Another 
distinction is between concrete nouns (that is, 
physical objects) and abstract  nouns. This could 
possibly solve the example with ‘while’, since we 
know that the object  of ‘ate’ can only be a concrete 
noun. A problem here is that we don’t have any 
information about  the verb. Perhaps more effective 
then is to have a specific class for times; that would 
solve both the example with ‘while’ (by telling the 
parser that it is dealing with a time) and the 
example with ‘in the kitchen’ (by telling the parser 
that it is not dealing with a time).

3 Method 

We used a Java implementation of Nivre’s parser 
written by Pierre Nugues, which was modified to 
include slightly different  features, and also 
functions. For machine learning we used Weka, and 
the classifier J48. The corpuses we used were the 
Talbanken corpus for Swedish and the Penn 
Treebank corpus used in CONLL 2008 for English.

The parser originally looks at the two top words 
in the stack and in the queue. The result  is 
reasonable, but not impressive. We try to add a 
third word, in the stack and in the queue, but there 
is little difference in the result. There are various 
other features we could add to the parser to 
improve the accuracy, but those are not the focus of 
this article.

Instead, the parser was rewritten to look at the 
specific functions for each relation, such as whether 
a noun is the subject  of its head verb or the object, 
making it  a syntactical parser rather than just a 
dependency parser.

We attempt to improve the parsing by involving 
classes. For the Swedish corpus, we settle on the 
following classes:

• things (concrete inanimate)
• animate
• abstract
• locations



A program goes through the words, and finds all 
nouns which occur at least ten times in the union of 
the training corpus and the test corpus. Each of 
these words is manually assigned a class. The 
corpuses are then updated, replacing the noun 
symbol with a symbol for the specific class of 
noun, effectively treating nouns as five different 
parts of speech (four for the classes, and one for the 
remaining words which have not been classified).

Next we try using the English corpus, first 
without  classes. Then we add classes, this time for 
the words which occur at least  100 times (since it’s 
a much bigger corpus). The results are encouraging, 
so we try again with all words which occur at least 
25 times. We have now also added a fifth class, for 
times.

Since we have no information on the verbs, but 
are using the classes solely to predict  which 
function each word is likely to have, an idea 
springs to mind: What if we simply use one class 
for each function, assigning the word to the class 
corresponding to the function which it  most 
commonly has in the training set? This can easily 
be done automatically, so we can now assign a 
class to every noun, not  just to the most common 
ones.

4 Results

 Total % Nouns % Others %
Swe, two words 81.11 86.04 79.71
Swe, three words 81.11 86.04 79.71
Swe, with functions 67.91 78.75 64.83
Swe, with classes 66.99 77.13 64.11
Eng, no classes 73.12 73.57 72.91
Eng, classes to 100 73.43 74.67 72.83
Eng, classes to 25 73.54 75.03 72.84
Eng, function-classes 72.56 73.98 71.88

5 Analysis

The original parser has a reasonable accuracy, but 
is far from what the best  parsers can do. When we 
try adding a third word to the stack and queue, this 
changes the interpretation of about  one percent of 
the words - some for the better and some for the 
worse - but  oddly enough the net result  is less than 
0.01%. We see that  the nouns are already 
considerably easier to assess than the rest  of the 
words, which is certainly of interest  for our 
purposes.

(It should be noted that the program used here to 
count the percentages is not the standard CONLL 
evaluation program, since a program was required 
to investigate the nouns specifically, and there is a 
minute difference in the results due to issues of 
punctuation, but this is not significant to the 

conclusions. The difference for the first  part is 
0.03%.)

With functions, the parser predicts much more 
information, so we naturally expect  a much lower 
percentage. The result of 68% is not surprising.

Rather disappointingly we find that  adding 
classes gives a lower accuracy. How can this be? 
We are giving more information to the parser, so 
we would expect  the result to be better, or at  least 
not worse than before. The answer must  be that the 
parser has lost  a vital piece of information: the fact 
that these classes have something in common, that 
they are all nouns. Not being able to draw 
information from the nouns outside the given class 
gives the same effects as having a smaller corpus. 
Presumably there is also a positive effect, but it is 
obscured by this negative effect. If the corpus was 
larger, we would probably see a different result: As 
the corpus grows larger, the accuracy continues to 
improve, but the improvement  gets smaller, so at 
some point the consequence of effectively cutting 
the corpus in four parts (as far as the nouns are 
concerned) becomes smaller than the positive effect 
of adding classes. Another way to get  around this 
problem is by doing the process in several steps. If 
we first  parse the sentences without classes, and 
then post-process with classes, we should be able to 
make use of both pieces of information. It might 
also be possible to simply consider class a separate 
feature, rather than mixing it  with part of speech. 
Currently this parser is not  equipped for those 
things, so that will have to be left for future work.

We should also consider the distribution of 
classes. If one class is much smaller than the 
others, that class would be particularly difficult to 
parse. Looking at  the classified nouns for this 
corpus, we find

4.7% things
20.4% animate
70.6% abstract
4.4% locations

The percentage of locations and animate nouns 
could probably be considered rather normal, since 
most texts are partly but  not  entirely about people, 
and locations are generally a less common 
category. What  is noteworthy is the fact  that the 
abstract words greatly outnumber the things. It  is 
no surprise, since the text is a rather convoluted and 
bureaucratic one. One might question the 
annotators’ choice of text here; although it  is 
desirable to have a realistic text  and not  a 
constructed example text, there should be texts 
available which are natural but somewhat less 
complicated. It is after all common scientific 
practice to start  with simpler examples and make 



sure to master them before moving on to more 
complex ones.

However, there is no other available corpus in 
Swedish which serves our purpose, so we look at 
the English corpus. It has a higher overall 
percentage, but  that  is not something we should be 
overly concerned with. Part of the reason is of 
course that the corpus is bigger. That does not 
account for the whole difference; when using only 
a part  of it, with the same size as the Swedish 
corpus, the result is still about two percentage 
points higher than for the Swedish. This corpus also 
comes from a different source, and of course there 
is some effect  of changing languages - one is 
tempted to say that  the above comparison of word 
order rules shows that  English is easier to parse in 
this way than Swedish. Most  of the effect is 
probably due to various language differences, and 
the different  set of parts of speech. Either way, the 
results are not comparable for our purposes, but 
should be considered separately.

What  might  be of some interest is the fact  that 
the nouns are far worse. This could be due to some 
unforeseen property of the language, but there is 
another possibility. The English corpus, unlike the 
Swedish, uses different  tags for singular and plural 
nouns. It  seems unlikely that  this would have any 
significant positive effect, since the same noun can 
usually have the same functions regardless of its 
number - if one mouse can eat  cheese, two mice 
can also eat cheese. But  as we noticed before, 
arbitrary classes can have a negative effect on the 
result. The English corpus also contains quite a few 
proper nouns, which makes four classes for nouns.

A brief attempt at removing the number 
distinctions yields a significantly worse result. It 
might  be that removing them and replacing with the 
classes would improve something. Perhaps there is 
in some sense an ideal number of classes - a few 
divisions is good, but  too many ruins the 
classification. This needs to be investigated further.

In the next step we find perhaps the most 
enlightening results. First, we notice that the 
overall result is better with classes than without. 
Second, we see that it  is only the nouns which have 
improved; the rest  of the words actually have a 
slightly worse result  than before. It  seems that the 
classes have had the desired effect, making the 
nouns’ functions easier to predict, whereas the 
negative effect  can be seen in all the words. The 
function of the nouns themselves is connected to 
the classes, but the function of other words n 
relation to the nouns has little or no such 
connection. Therefore the prediction of functions 
for words of other parts of speech is not improved.

The improvement  when classifying more words 
is expected. The slight change in the result  for the 
non-nouns is too small to draw any conclusions 
from.

The distribution of the classes is now

7.9% things
27.7% animate
53.5% abstract
7.9% locations
3.0% times

It  is possible that  the smaller fraction of abstract 
nouns makes this corpus easier to interpret, and 
hopefully the inclusion of time words as a specific 
class also improved the results.

Finally, we look at the automatically generated  
classes. The result  is somewhat ambiguous. For the 
non-nouns, we can see that  the negative effect  is 
bigger than before; there are more classes, making 
each class less common. For the nouns, the result is 
better than when we had no classes, but  not  as good 
as for the semantic classes we used before. The 
reason could be that while the positive effect  is 
bigger than before, the negative effect  has 
increased more. If we had an even bigger training 
corpus - quite a lot  bigger - the negative effect 
might  be negligible, and then we might see an 
improvement with this sort of classes.

6 Future work 

There are other classifiers that  might be better 
for large data sets.

There may be other noun classes that would be 
more effective.

Adding other features would no doubt improve 
the parsing. While this is nothing new, it  could be 
interesting to see how the addition of classes affects 
a really good parser.

When an even bigger corpus becomes available, 
the function-classes might  be worth testing. On the 
other hand, with a classifier which can handle the 
word itself as a feature, this type of class might  be 
completely obsolete.

The process could be divided into steps, so that 
the classes are applied separately. This could work 
better with a different classifier, one that can output 
several answers and their probabilities. Other 
simple improvements would be post-processing to 
check that  grammar rules are being followed; a 
sentence should not have more than one root, a 
verb should not have more than one subject, etc.



The use of noun classes would probably work 
very well together with certain types of valency 
lexicon. Lexicons such as FrameNet have complex 
systems of semantic categories, and would require 
a similarly complex system of classes to reach its 
full potential. For Swedish, The Lexin valency 
lexicon classifies verb arguments as “persons” and 
“things”; in other words, animate and inanimate. It 
should therefore work well together with this type 
of noun classes. If one prefers to base things on the 
training corpus alone (which would make it 
language-independent), it  would certainly be 
possible to automatically classify the verbs 
according to their most common arguments.
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