
Measurements of the effect of linear interpolation values and reduced
bigram model size for text prediction

Marit Ånestad
Lunds Tekniska Högskola
man039@post.uit.no

Michael Geier
Lunds Tekniska Högskola

michael.geier@student.tugraz.at

Abstract

In this paper we present a method for word
prediction especially for mobile phones.
Based on an existing prediction engine we
describe the extensions we implemented to
improve its prediction quality and to reduce
the size of the data model. We present the re-
sults of the benchmarks we ran on the orig-
inal version of the prediction engine and the
results of our improved version. We show
out the amount of improvement of the pre-
diction quality by using a more sophisticated
algorithm, and the effect on the prediction
quality with a model of reduced size.

1 Introduction

Text prediction systems are useful to reduce the
amount of keystrokes needed to write texts on com-
puters with alphanumeric keyboards. Especially on
mobile devices like mobile phones where writing
text is often complicated by the reduced number of
keys, text prediction is important to speed up the
writing of texts. This paper presents improvements
and evaluation of a text prediction system called
HMS and our improvements to the text prediction
engine. In the evaluation of the test results of the
benchmarks we ran on HMS we figure out optimal
values for the text prediction algorithm. In our work
we focused on the Swedish language, which does
not differ much from English or other languages
which use the Latin alphabet.

In Section 2, we give an overview of text predic-
tion for mobile devices in general. There we also

introduce important terms for talking about text pre-
diction systems and we explain how bigram models
and unigram models can be used for text prediction.

After that, in Section 3, we take a look on an ex-
isting text prediction engine called HMS. By text
prediction engine we mean a software which sug-
gests words the user probably wants to write next
based on the letters and/or words written before. In
this section we not only describe how the software
our work is based on this work, but we also explain
the changes we implemented in HMS to improve the
quality of the word prediction.

In Section 4 we describe the tests we did to bench-
mark HMS and we also present the test results to
figure out the differences between the original ver-
sion of HMS and our improved version. Addition-
ally we show how the size of the bigram model in-
fluences the prediction quality. When mixing both
the bigram model and the unigram model for get-
ting better prediction results we show how assigning
different weights to the models influences the pre-
diction results.

Finally, in Section 7 we analyze the test results
to point out optimal values for the implemented text
prediction algorithms.

2 Text Prediction on Mobile Phones

In this section we describe how text prediction
works in general by focusing on the problems of the
application on mobile phones. The approach for text
prediction we describe in our paper is a frequency
based approach (Ganslandt and Jörwall).

The goal of text prediction systems is to reduce
the keystrokes needed to write a word or a whole



text. A measure for the relation keystrokes - total
characters is keystrokes per character or KSPC. In
other words, the goal of text prediction systems is to
minimize KSPC.

KSPC =
∑

k∑
c

In the equation above k stands for the keystrokes
needed to write the desired text including the
keystrokes to select the desired words in word sug-
gestion lists. If the user wants to write ”home”, for
example, and if, after typing ”home” the suggestion
list contains the words ”good”, ”home” and ”gone”
(in this order), k is 4 (for the three letters ”hello”)
plus 1 (for selecting the second word in the sugges-
tion list. c is the number of total characters of the de-
sired text, which would be ”home” in our example.
This word has four letters, which leads to a KSPC-
value of 5/4 = 1.25.

Figure 1: Suggestion list on the Google search page

On most mobile phones, when the user starts writ-
ing a text message, a list of suggestions pops up
where the user can select the desired word. As there
are usually many words in this list, the order of the
suggested words is important. The words the user
most probably wants to write should be on top of
the suggestion list. A measure for how often the de-
sired words are in the beginning of the suggestion
list is called disambiguation accuracy or DA. DAn
is a measure for how probable it is to have the de-
sired word within the first n list entries. DA5, for ex-
ample, denotes the percentage of having the desired
words within the first five list entries when writing a
text. This means that the goal of a prediction engine
should be to maximize the disambiguation accuracy.

Figure 2: Suggestion list on a mobile phone

As one can see in the screenshots (Figure 1 and 2)
there are two different kinds of text prediction: Text
prediction where the number of letters of the pre-
dicted words is equal to the number of letters already
typed (Figure 2), and text prediction where the pre-
dicted words or phrases have more letters than the
text which was already typed (Figure 1). On mo-
bile phones usually the first approach is used. In this
approach KSPC is always greater than one.

DA1, DA5 and KSPC are values we compare in
our test results in Section 4.3.

To create the suggestion lists a dictionary is used.
This includes at least a unigram database (or un-
igram model), which is basically a list of single
words. An additional bigram database can improve
the suggestions. Bigrams are word pairs. By us-
ing bigram models the prediction of the current word
can be improved by considering the previous word.
If a bigram is not in the database the prediction sys-
tem should fall back to the unigram model.

To create the unigram and the bigram models,
a large representative corpus (usually a text file of



plain text) is read from which the number of occur-
rences of the uni- and bigrams are derived. This has
to be done only one time - after this learning pro-
cess the models are trained (which means that the
databases are built up).

2.1 Problems

One major problem of text prediction engines is that
they can require a large amount of memory to create
best results. Especially when using a bigram model
the need of memory is high. Usually mobile devices
cannot provide such a large amount of memory. This
is why the bigram model, or in other words the size
of the bigram database, should be reduced. In Sec-
tion 4.3 we will see how a reduced model will influ-
ence the prediction quality.

The limited keyboard on most mobile phones is
constructed so that one key corresponds to more than
one letter. We will examine if a bigram model will
work in this context.

It is important to use and evaluate the data in a
smart way to get best results. We already mentioned
the fallback strategy where first the bigram model is
used to create a suggestion list and then, if no bi-
grams can be found, the unigram model is used. In
cases where we can find a bigram, different ways
of combining the two models will yield different re-
sults, as we will se in Section 4.3.

3 HMS

HMS stands for the three inventors Hasselgren,
Montnemery and Svensson (Hasselgren et al.2003).
HMS is written in Java and includes the text predic-
tion engine itself and a mobile phone simulator with
a typical keyboard where more than one letter cor-
responds to one key. HMS is written especially for
devices with keyboards where more than one letter
is mapped to one key. This is done by using a data
structure called Trie.

There is a graphical user interface to demonstrate
the behavior of HMS (see Figure 3), but the main
part of HMS is certainly the prediction engine.

The following subsections describe the imple-
mentation of HMS. Section 3.1 first describes the
state before our modifications, Section 3.2 describes
the changes we implemented to improve the predic-
tion engine.

Figure 3: Screenshot of HMS

3.1 Implementation

The text prediction engine of HMS uses a unigram
model and a bigram model. The unigram model is
represented as Trie data structure (see Section 2.1).
Figure 4 illustrates the basic structure of a Trie.

A Trie is a tree of leaves where every leaf repre-
sents a key on the keyboard. Every group of siblings
(= leaves) consists of one sibling per key. Every leaf
contains a list of words which can be created from
the key combination when going down the tree start-
ing at the root, and a value for the frequency of the
word.

The original HMS had to modes: unigram and bi-
gram mode. The unigram mode used only the uni-
gram model. Each unigram or bigram in the mod-
els has a value depending on how often it occur in



Figure 4: Illustration of the Trie data structure

the training set. The bigram mode gave suggestions
both from the bigram and the unigram model using
the these values. It ranks all suggestions from the
bigram model higher than suggestions from the uni-
gram model. The first mode we call unigram mode,
the second we call no interpolation mode

3.2 Changes

We extended the HMS with two more modes: linear
interpolation and optimal linear interpolation. The
linear interpolation mode uses the unigram and bi-
gram model, as the no interpolation mode, but gives
a certain weight to each model. An interpolation of
10 percent multiplies the values of unigram sugges-
tions with 0.1 and value of the bigram suggestions
with 0.9. Then the lists are combined and sorted on
these values with the highest value at the top of the
list. If a word occur in both the unigram and the
bigram list, the two values are combined.

The optimal interpolation mode is a mode to mea-
sure the efficiency of the linear interpolation. In-
stead of having a interpolation weight, this mode has
an oracle. The oracle always know whether the un-
igram model or the bigram model will give the best
prediction. Given this information, it measures the
best case performance of the the linear interpolation
method.

4 Tests

We started by writing a framework for automatic
testing of the performance of HMS. Tests run on the
original HMS implementation gave us a baseline by
which we could measure our improvements. Then
we tested varying values for bigram cut-off and lin-
ear interpolation weights, in order to find optimal
values for both parameters.

4.1 Test Setup

The framework must be able to run tests correspond-
ing to the modes we have implemented. The differ-
ent modes consists of relatively small changes to the
test routine, the basis of the tests are the same. Every
test goes through the test set, word for word. Each
word is translated to a sequence of key strokes on a
9 key keyboard found on most cell phones. This is
then the input to the prediction engine. The result is
evaluated in regard to the word in the test set.

The unigram mode mode uses only the unigram
model. The no optimization mode uses the combi-
nation of unigrams and bigrams of the original HMS
with different values for bigram cutoff. The bigram
mode uses linear interpolation with a given linear
interpolation weight for different values for bigram
cutoff. The linear optimization mode evaluate the
prediction with different weight given to the uni-
gram and bigram model. The bigram cut-off is the
same for all these tests, but the influence of unigram
model vary from 0 - 100 %. The optimal interpo-
lation mode produces the best results possible for
linear interpolation for one bigram cut-off value.

To accommodate for different types of testing, the
testing framework work as a command line tool tak-
ing a number of parameters. It is possible to spec-
ify the dictionary and training file, the test file, the
test type, bigram cut-off value if testing linear inter-
polation values, linear interpolation value if testing
bigram cutoff value and so on.

4.2 Test Data

To be able to test the performance of the system, we
needed a dictionary and written text in some lan-
guage. We chose to use Swedish for our testing.
We had a dictionary file of 118 414 Swedish words
words. For the written text we used Wikipedia en-
tries.



The Wikipedia dump of all pages in a language
gives a large corpus. It is not annotated, but that was
no need of our approach. It displays current usage
of a language, and has many authors, thus reducing
the bias of individual authors. The genre of the text,
though, is quite different than what can be expected
from sms-messages. The articles describes and ex-
plains different phenomena in a scientific and neu-
tral manner, whereas sms messages might contain
more everyday words, dialogue, emotional language
and questions. To overcome this, a corpus of sms’s
or similar communication must be gathered.

We downloaded the newest dump of the whole
Swedish Wikipedia as of December 6th 2009
(Wikipedia2009). This dump was treated according
to the instructions and programs of (Mudge2009) to
remove formatting and non text elements. Then the
dump was split into sentences. Any sentence con-
taining non Latin 1 characters was discarded. This
was necessary, due to a high number of words writ-
ten in other scripts which the HMS system did not
handle well.

From the refined dump the training, test and de-
velopment set were extracted. This happened by
taking every 160 sentence for each set, with 6 sen-
tences between each set.This reduces the influence
of any specific article on the sets, and also reduces
the similarity between the different sets. The train-
ing set were used in all tests. The test set were used
to in tests where the bigram cutoff varies, whereas
the development set is used in tests where the linear
interpolation varies.

After removing the formatting from the
Wikipedia dump it contained about 45 million
words. Our test, training and development set
contained each about 280 000 words. We chose
to use this size because larger data sets would
increased the time to run tests and because of the
limited memory and computational power on our
machines.

4.3 Test Results
First we ran tests on the prediction quality of the
original HMS. Figures 5 and 6 shows that the KSPC
value increases and the DA1 value decreases with
increased bigram cutoff value. The largest model
gives the best prediction as expected. What we did
not expect was that the unigram mode outperforms

the bigram mode, if only by less than 0,2%.

4.3.1 HMS Bigrams vs. Unigrams

Figure 5: HMS without modifications - DA1 in rela-
tion to bigram cut-off value

Figure 6: HMS without modifications - KSPC in re-
lation to bigram cut-off value

4.3.2 Linear Interpolation
Then we implemented linear interpolation. All

these test has a bigram cut-off value of 5, except the
HMS value.

The results for DA1 is found in Figure 7. The up-
permost line show the result of optimal interpolation
mode: 0.945%. This is the best we can do with com-
binations of the bigram and unigram model. As a
baseline we use the original HMS performance with
a cutoff of 4, which gives a DA1 of 0.936%. The



Figure 7: DA1 in relation to linear interpolation
value

unigram mode gives results slightly better than the
original HMS: 0.938%. The results for the linear
interpolation varies with different weight given to
the unigram and bigram models. All these values
lies between the optimal and the baseline result, ex-
cept the instance where the bigram model is the sole
model used. The prediction engine gives the best
results where the unigram model get between 4%
and 60% weight. This DA1 result of 0.944% is only
0.1% below the optimal result, and an improvement
from the unigram mode by 0.5%.

Figure 8: DA5 in relation to linear interpolation
value

In Figure 8 we see that the linear interpolation
value has less influence on the DA5 metric. Any
combination except only the bigram model gives the

modified HMS the same results as the results from
our optimal interpolation mode. The improvement
from the unmodified HMS is small, only a little
more than 0.01%.

Figure 9: KSPC in relation to linear interpolation
value

Figure 9 show the same tendencies for the KSPC
metric as 7 did for the DA1 metric. The original
HMS has a KSPC value of 1.0215, the unigram
model a KSPC of 1.0182 and the the optimal inter-
polation a value of 1.0164. We get the best results
with between 4% and 70% weight to the unigram
model. This gives KSPC values of 1.0167, 0.0048
below the original HMS, 0.0015 below the unigram
model and only 0.0003 above the optimal value.

4.3.3 Bigrams: Best cut-off value
When we had found good interpolation values,

we started to investigate the effect on the prediction
when we reduced the size of the bigram model. The
full model is about 186 000 bigrams, about 83 000
kb in size. We also have about 150 000 unigrams,
about 22 000 kb in size. Figure 10 show the size
of the model in number of bigrams with different
bigram cut-off values. Just removing the bigrams
that occur only once reduces the model by more than
85%. A cut-off of 5 gives a reduction of the model
of almost 98%, to the size of 1660 kb.

All these tests where done with an linear interpo-
lation unigram weight of 2%. The figure 11 and 12
show the effect on the DA1 and KSPC metrics. As
expected, the DA1 results decreases with a smaller
model and the KSPC value increases. This decrease



Figure 10: Model size in relation to bigram cut-off
value

Figure 11: DA1 in relation to bigram cutoff value

and increase are roughly linear in regard to the cut-
off value, while the size of the model is not. A large
reduction of the size of the model gives less of a re-
duction in the prediction performance.

The DA5 value shows almost no change: the dif-
ference between the best and worst value is only
0.007%.

Figure 13 shows the prediction results with differ-
ent bigram cut-off values relative to the results of the
full bigram model. This graph shows that the results
for a bigram cuf-off value of 5 is only 0.4%worse
than the result from the full bigram model. The
KSPC value is only 0.1% higher compared to the
result from the full model.

Figure 12: KSPC in relation to bigram cut-off value

Figure 13: Relative results in relation to bigram cut-
off value

5 Discussion and future work

Our work can be improved in several ways. First, we
have not limited our unigram model enough. Cur-
rently it consists of all words in the dictionary and
the training file, while ideally it should be pruned
like we do with the bigram model. Secondly, our
training and test files have only about 300 000
words. Larger training files will probably give a bet-
ter model, which can be reduced as we have shown.
Third, our corpus is not ideal for applications for text
messages. Our corpus consist of factual texts, where
sms-messages probably will consist of personal and
everyday language.

Our experiments with bigram cut-off shows that it
is possible to reduce the size of the bigram model to



a feasible size and still get improvements. It is possi-
ble to get better prediction by spending a little more
memory on the device to hold the bigram model. But
using linear interpolation will use more computation
on the devices. In also requires a training effort on a
suitable corpus in each language.

6 Related work

There is much work done on input methods for mo-
bile phones. We have used a bigram model and lin-
ear interpolation. (Hasselgren et al.2003) reviews
a number of different text entry methods, focus-
ing on letter based methods, including LetterWise,
which predicts letters based on the previous letters.
The paper also explains the development of HMS.
(Höjer2008) uses n-grams to translate Hindi written
in English to Hindi written in its own script Devana-
gari. (Selander and Svensson2009) describes a text
prediction engine for Indic scripts with large alpha-
beth on a input device with few buttens. It employs
part of speech tags in addition to a bigram model.
(Ganslandt and Jörwall) employs syntax and seman-
tic information together with a bigram model for text
prediction on a standard mobile phone keyboards.
(Gong et al.2008) uses the same approach as Gans-
landt and JÃ¶rwall, but with more investigation on
the effect on even more limited keyboards.

7 Conclusion

We have showed that a text prediction engine that
combines a bigram and unigram model with lin-
ear interpolation way gives better results than a en-
gine that employs only a bigram model or a unigram
model. In our tests, we got the best results when
the unigram model got between 4% and 60% influ-
ence. In addition, we showed that a bigram model
can be reduced by more than 98% and still gain an
improvement compared to a unigram or bigram only
model.

References

Sebastian Ganslandt and Jakob Jörwall. Context-
aware predictive text entry for swedish using
semantics and syntax.

Jun Gong, Peter Tarasewich, and Scott MacKenzie.
2008. Improved word list ordering for text en-
try on ambigous keypads. Proceedings of the

Fifth Nordic Conference on Human-Computer
Interaction - NordiCHI 2008, pages 152–161.

Jon Hasselgren, Erik Montnemery, and Markus
Svensson. 2003. Hms: A predictive text en-
try method using bigrams.

Magnus Höjer. 2008. Phonetic text input for indic
scripts.

Raphael Mudge. 2009. Generating a plain text cor-
pus from wikipedia. Blog article at After the
Deadline, December.

Mitch Selander and Erik Svensson. 2009. Predictive
text input engine for indic scripts.

Wikipedia. 2009. Wikipedia database dump, De-
cember.


	Introduction
	Text Prediction on Mobile Phones
	Problems

	HMS
	Implementation
	Changes

	Tests
	Test Setup
	Test Data
	Test Results
	HMS Bigrams vs. Unigrams
	Linear Interpolation
	Bigrams: Best cut-off value


	Discussion and future work
	Related work
	Conclusion
	References

