
Mapping sentences onto logical form

Dennis Laks
D04, Lund Institute of Technology

Sweden
d04dl@student.lth.se

Olof Olsson
D04, Lund Institute of Technology

Sweden
d04oo@student.lth.se

Abstract

This paper gives a short introduction
to statistical machine translation, logical
forms and parsing. It describes a project
which goal was to recreate the results of
previous work in the field of statistical
machine translation. In this project we
have made use of the pre written soft-
ware GIZA++ and and fair deal of pearl
programming. The result of our work is
still far from the level of previous work
but manages to translate parts of sentences
correctly.

1 Introduction

As the amount of computer users grow we find a
need for high usability in computer software. A
possible way of giving unexperienced computer
users direct control of software is to let them
”speak” to it. If we can teach the software to un-
derstand the users natural communication we can
achieve very high usability and help users do what
they intend. As an example we could imagine a
software that could answer a plain text question
about the weather such as: ”Is it going to rain to-
morrow?” The software could then find informa-
tion from a weather forecast and give the user in-
formation directly answering the question. Pre-
vious work in this field by L. Zettlemoyer and
Michael Collins (Zettlemoyer, 2009) has man-
aged with a good result to build a software that an-
swers plain text questions about air traffic. In our
project we try to recreate the result of aforemen-
tioned software and by doing this, learn the prob-
lems of the field. We will in this paper describe
our work process, present our results and finally
discuss about possible future improvements.

2 Corpus

The corpus used in our work is an ATIS corpus
containing about 4500 sentences. The sentences
are utterances used in a flight booking system
where the user often wants to get a flight from
one airport to another. The collection of sentences
was manually annotated by L. Zettlemoyer and
Michael Collins (Zettlemoyer, 2009) into lambda
calculus form. In this particular syntax the usual
lambda form features of variables or entities and
relations between them are supported by symbols
$0, $1 ... and parantheses. During our work
we changed the corpus somewhat for our exper-
iments. This is discussed more later.

3 The Logical Form and the Lambda
Form

The logical form can be said to be an abstrac-
tion level in which one represents the essence of a
natural language sentence using formal grammar.
This is often used in order to remove unnecessary
words or information and replace the essence with
formal symbols. Logical forms is mostly used in
computers and is necessary if the goal is for the
computer to understand the semantic of informa-
tion. Common logical forms are programming
languages, such as Java, C or SQL.

The lambda form is one type of logical form that
is widely used in, amongst other, computational
linguistics and is suitable to use in computers. We
used the lambda form as well for this project. The
choise of our used syntax was based on available
corpora we could use for our dictionary training
and translation. The corpus we got from Zettle-
moyer proved to be very uselful, with a straight
forward syntax.

The lambda form describes variables and rela-
tions by grouping variables together with some
keywords. The keywords can be a name of a place
for example an airport or a city. It can also be a

direction like to or from.
To give a quick understanding, we give an ex-

ample of a plain text sentence and its lambda trans-
lation equivalent:

“List all flights from Chicago to Milwaukee”
(lambda $0 e (and (flight $0) (from $0

chicago:ci) (to $0 milwaukee:ci)))

4 Giza++

GIZA++ is an extension of the program GIZA
which was developed by the Statistical Machine
Translation team in 1999 at the Center for Lan-
guage and Speech Processing at Johns-Hopkins
University. GIZA is a Statistical machine trans-
lation (SMT)toolkit that takes two corpora as in-
put and maps words from the two corpora to-
gether. GIZA then outputs a dictionary contain-
ing all mappings from the two corpora. To use
GIZA++, one first needs to transform the corpus
to GIZA++ format, and then use the program mk-
cls in order to produce word classes. When this is
done GIZA++ can begin to create a dictionary that
maps one language to the other.

In the resulting mapping from GIZA++, each
input sentence from the corpus outputs three lines:

1. Information about sentence lengths and
alignment score.

2. The translation sentence (in lambda form)
into which GIZA++ tried to align a sentence.

3. A list of the plain text words and to which
translation words this word has been mapped.
The mappings are shown as a list of numbers
relating to word indices in the translation sen-
tence.

An example of how the output from GIZA looks
like can be seen in Figure 1. This example is on
the sentence “what airlines from washington dc to
columbus”.

5 Our Parser

When we now had the bilingual mapping from
GIZA++, we were to write the program that can
take an arbitrary natural language sentence as in-
put and, using the mappings, produce the logical
translation in lambda form. It may be noted that
since the GIZA translation only used sentences
from an ATIS corpus, the dictionary is of course
also suited to be used to translate equivalent sen-
tences. Inputing another arbitrary sentence, e.g “I

wish Santa Claus were here today”, would only
produce nonsense.

To prepare the input of our parser, which takes
two files, one consisting of the translated sen-
tences and one consisting of their mappings, we
split this mappings file into a lambda file and a
parse file using a trivial perl script.

Our main algorithm works in three stages:

• Data collecting

• Sentence building

• Post processing

We will now go through them and describe what
they do. The code is located in Appendix and
could be handy to view at the same time for a
clearer understanding.

5.1 Data collecting

In this first step we build a form of dictionary in
a matrix data form. The matrix consists of a list
of all possible translations for any given plain-
text word. This means that it is used to search-
ing through the matrix for a plain-text word, and if
it exists, all possible translations this word has is
given as a list.

The dictionary is built by for all plain-text
words, reading out the mapping numbers and stor-
ing the corresponding lambda translations in the
translation list in the matrix for that particular
word. When this has been done for all training
sentences, the dictionary is built.

5.2 Sentence building

In this step the algorithm takes a plain-text sen-
tence as input and breaks it down into words. For
every word, we go through the dictionary and re-
trieve the list of the word’s possible translations.
We have here decided to use a probabilistic ap-
proach. This means that for a word with all of its
translations, we collapse the translation list to only
include uniqe translations and add a number that
keeps track of the number of occurrences of this
translation for this word. The information on the
frequency of each possible translation tells us thus
how probable a specific choise of translation is.
We then take the most probable translation of ev-
ery word and concatenate into the translated sen-
tence. The resulting lambda form sentence is the
per-word most probable translation.

Sentence pair (29) source length 7 target length 19 alignment score : 2.93896e-19
(lambda $0 e (exists $1 (and (from $1 washington:ci) (to $1 columbus:ci) (= (airline:e $1) $0))))
NULL ({ 2 3 6 16 17 18 19 }) what ({ 1 }) airlines ({ 4 5 8 11 13 14 15 }) from ({ 7 }) washington ({ 9 })
dc ({ }) to ({ 10 }) columbus ({ 12 })

Table 1: An example output from GIZA

5.3 Post processing

Since there is no real possibility to translate word
by word into lambda form, due to e.g grammar, the
lambda form generated by our algorithm is bound
to be broken in some way. From our results we
concentrated on two main faults:

• Paranthesis closure: In most cases the result-
ing lambda form sentence tended to be un-
balanced and have more opening than closing
paranthesis

• Variable insertion: The resulting lambda
form sentence tended to lack variables ($0,
$1 et.c)

We decided, due to the limited time for this
project, to focus on these two faults in our transla-
tions and try to incorporate a fast and simple way
of accounting for the most obvious ways they oc-
cur.

To close off parantheses, we count the number
of opening and closing parantheses in a translated
lambda form sentence and simply add the differen-
tiating number of closing parantheses at the end of
the sentence, given that there were more opening
than closing parantheses.

In the lambda form notation used, vari-
ables are very often used within closed paran-
theses to represent a noun within, for exam-
ple, (to $1 columbus:ci) or (month $0
august:mn) to represent a place, Columbus, or
a month, August. In our post processor, we try to
recover the missed variables within closed paran-
theses by finding occurences in the form (***
***), meaning “opening paranthesis followed
by something, a space, something and a closing
paranthesis”. In this case we insert a $0 in the mid-
dle.

Our post processing is on a rather basic level,
and therefore the paranthesis insertion for exam-
ple is not always correcting a sentence in a se-
mantically correct fashion. This comes from the
fact that we always insert the closing parantheses
at the very end of the sentence, while they might

instead be needed somewhere within the sentence.
The variable insertion has a surprisingly effective
impact on the result. In more or less any query
of this type in lambda form has at least one oc-
currence of the patterns we search for in order to
insert a variable and very often the pattern should
include a variable that is almost always missed by
our parser. So by just inserting a variable we can
be quite confident on that the editing is reason-
able with respect to the real lambda form. We dis-
cuss improvements on these corrections a bit more
later.

6 Results

In order to get a good understanding of our algo-
rithms preformance, we ran all the training set sen-
tences through our program. Later we ran a small
set of newly written ATIS sentences as well and
found the results to be similar to the corpus sen-
tences.

In Table 2 one can see a few examples of how
the algorithm performed. We denote the plain text
sentence with Q, the algorithm output with A, and
for a comparison, the manually writted translation
from the corpus with FACIT. The achieved score
is also written.

GIZA’s bilingual mapping often mapped paran-
theses and variables to NULL, meaning no trans-
lation. We tried to correct this problem by creat-
ing a new GIZA translation from a corpus where
we had removed multiple ending parentheses. The
translation did map less words to NULL but it
didn’t make a big difference to the final result. The
NULL translations are of course a major concern
since we believe it to be a major reason for the
somethimes awfully broken lambda syntax the re-
sults from out parser. We have unfortunately not
come up with any reason for the NULL mappings,
but the only thing we can point at is GIZA and that
its algorithms may not be fit to translate between
natural language and the lambda form syntax used
here.

A mean value of the scores from both corpora
was calculated. This score is calculated in the fol-

1
Q: can you list all flights from chicago to milwaukee
A: (lambda $0) (lambda e (flight (from $0 chicago:ci) (to)))
FACIT: (lambda $0 e (and (flight $0) (from $0 chicago:ci) (to $0 milwaukee:ci)))
Score: 0.6321
2
Q: what flights are there from minneapolis to newark on continental
A: (lambda (flight) (lambda (from $0 minneapolis:ci) (to $0 newark:ci)))
FACIT: (lambda $0 e (and (flight $0) (airline $0 co:al) (from $0 minneapolis:ci) (to $0 newark:ci)))
Score: 0.7460
3
Q: please list all the takeoffs and landings for general mitchell international
A:) (lambda)) mke:ap)) (to) mke:ap))
FACIT: (lambda $0 e (and (flight $0) (or (from $0 mke:ap) (to $0 mke:ap))))
Score: 0.1022

Table 2: Examples of how the parser performed. The third example is of a specially bad translation.
Legend: Q: plain text sentence, A: algorithm output, FACIT: correct translation

lowing manner:

• For every word i, a probability of the cho-
sen translation, P (i), is calculated by divid-
ing the frequency of this translation with the
total frequency of the word (i.e sum of the
frequencies of all the words translations).

• The total probability for a sentence of length
n is calculated by score = P (0)∗P (1)∗. . .∗
P (n)

The mean score calculated from all∼ 4500 sen-
tences was:

Corpus including paranthses: 0.3219
Corpus excluding parantheses: 0.2823
This doesn’t necessarily mean that the first at-

tempt got a better result. The score means that
the the chosen word was chosen by GIZA with
a high frequency. In the second attempt we had
a higher number of words to choose from in the
parsing process, due to less words being mapped
to null, and therefore accumulated a lower score.
This measurement is far from ideal when measur-
ing the correctness of the translations. Instead the
amount of correctly assembled parentheses could
be counted and be used as a score. The better mea-
sures were unfortunately not implemented since
we had very little time for the project.

7 Related Work

Our parser was done in order to see how good re-
sults would be achievable with a rather rudimen-
tary statistical algorithm. We were inspired by

Zettlemoyer and Collins and their work on map-
ping context dependent sentences to logical form
(Zettlemoyer, 2009), which definitely is a more
advanced problem with a need of a more sophis-
ticated solution than our work could comprehend.
Yet Zettlemoyer and Collins reached an impres-
sive 83.7% correct recovery of the logical form.
This number may, once again, not be fully compa-
rable with our 32.2% since we have used a differ-
ent method to compute recoverability.

8 Future Work

An important extension would be to first of all im-
plement a method of more accurately calculate the
actual performance of this algorithm, for example
using the aforementioned method.

8.1 Improvements

There are three major parts to expand in the parser.
The parenthesis correction, the variable insertion
and a control of keywords.

The parenthesis correction is now only inserting
closing parentheses into the end of the sentence.
With more logic the parser could place the ending
parentheses more accurately. This would greatly
improve our result and also help the variable inser-
tion since our resulting syntax is as of now, rather
broken due to misplaced closing parantheses.

The variable insertion could be made to insert
variables even in non closed parentheses. This is
quite often the case but was never achieved by our
parser. See the first result example in section Re-

sults.
The parser could also start looking at some

common combination of keywords. An exam-
ple of this would be that places always should be
combined with a word like from or to. We know
that locations have a high probability of being cor-
rectly translated so if the keywords could be in-
serted together with a variable we should always
create at least one correct relation.

9 Possible uses

This method of translating natural language into
logical form could work very well with other eas-
ier database languages such as SQL. This could
greatly improve the usability in webpages and
software.

Another future use could be to translate pseudo
code into high level code such as java or c#.
This could make it possible even for inexperienced
users to create their own specialized software.

Acknowledgements

We would like to thank Pierre Nugues for all his
help and encouraging throughout the project. We
would also like to take the opportunity to thank
Luke Zettlemoyer for letting us use his manually
translated ATIS corpus.

References
Luke Zettlemoyer and Michael Collins. 2009. Learn-

ing Context-dependent Mappings from Sentences to
Logical Form. MIT CSAIL, Cambridge MA.

Parser code

($lambda, $parse, $plain) = @ARGV;
open IN1, $lambda || die "readfail lambda";
open IN2, $parse || die "readfail parse";
open IN3, $plain || die "readfail plain";
open OUT, ">>resultat.txt" || die "openfail res";

while ($line = <IN1>){
$lamb = $line;
$line2 = <IN2>;
$par = $line2;
@words = split(/ /, $lamb);
@bindings = split(/\) /,$par);
for ($i = 0; $i <= $#bindings-1; $i++) {

$word = substr($bindings[$i], 0, index($bindings[$i], ’ ’, 0));
$word =˜ tr/ //;
$temp = substr($bindings[$i], index($bindings[$i], ’{’, 0)+2,

index($bindings[$i], ’}’, 0)-index($bindings[$i],
’{’, 0)-2)."\n";

@indices = split(/ /,$temp);
for ($j = 0; $j <= $#indices -1; $j++) {

$translations[$j] = $words[$indices[$j]-1];
}
if(!exists($super{$word})){

$super{$word} = [@translations];
}
else{

push @{ $super{$word} }, @translations;
}
undef @indices;
undef $temp;
undef @tempA;
undef @translations;

}
}
close IN1;
close IN2;

open IN1, $lambda || die "readfail lambda";

while($l = <IN3>){
$q = <IN1>;
$sentence = $l;
$tak = $q;

@words2 = split(/ /,$sentence);
@matrix = ();
$wordnumber = 0;
for ($i = 0; $i <= $#words2; $i++) {

@transes = @{$super{$words2[$i]}};

%seen = ();
@translist;
@freqlist;
foreach $item (@transes) {

push(@uniq, $item) unless $seen{$item}++;
}
for $item(keys %seen) {

push(@translist, $item);
push(@freqlist, $seen{$item});
$seen{$b} <=> $seen{$a};

}
for($j=0; $j<=$#translist; $j++){

$matrix[$j][$wordnumber] = $translist[$j]."[".$freqlist[$j]."]";
}
undef %seen;
undef @translist;
undef @freqlist;
$wordnumber++;

}
$score =1;
for ($y=0;$y <=$#{$matrix[0]};$y++){

for ($i=0;$i <=$#matrix; $i++){
$this_probability = substr($matrix[$i][$y],

index($matrix[$i][$y], ’[’, 0)+1,
index($matrix[$i][$y], ’]’, 0)-index($matrix[$i][$y],
’[’, 1)-1);

$totalfrq += $this_probability;
if($probability < $this_probability){

$most_prob = $matrix[$i][$y];
$probability = $this_probability;

}
}
$sent = $sent.substr($most_prob,0,index($most_prob, ’[’, 0))." ";
if($totalfrq == 0){

$slh1 = 1;
}
else{

$slh1 = $probability/$totalfrq;
}
$score = $score * $slh1;

push(@preproc,substr($most_prob,0,index($most_prob, ’[’, 0)));
push(@count, $probability);
push(@slh, $slh1);

$most_prob = "";
$probability = 0;
$totalfrq=0;

}

print OUT "\nFACIT: ".$tak;

print OUT "PRE PP: "."@preproc"."\n";
@preproc = para_add(@preproc);
$preproc = var_add(@preproc);
print OUT "POST PP: ".$preproc."\n";
print OUT "Score: ".substr($score,0,6);
print OUT "----------------------------------\n";
push (@scorelist, $score);
print $loadingbar++;

}

foreach $value (@scorelist) {
$sum += $value;

}
print OUT "Mean of all scores is: ".$sum/$#scorelist;

##

sub para_add{
my(@preproc) = @_;
for($i=0;$i<=$#preproc;$i++){

if(index(@preproc[$i],’(’,0) >= 0){
$open = $open + 1;

}
if(index(@preproc[$i],’)’,0) >= 0){

$close = $close + 1;
}

}
$nbr = $open-$close;
for ($i=0;$i < $nbr;$i++){

push(@preproc, ")");
}
return @preproc;

}

sub var_add{
my(@preproc) = @_;
$sentence = "@preproc";
#$sentence =˜ s/(\([ˆ($]+?)()([ˆ($]+?\))/\1 $0 \3/;
$sentence =˜ s/(\([ˆ($]+?)()([ˆ($]+?\))/$1 \$0 $3/;
return $sentence;

}

