
Dependency Parsing

Axel Antonsson
Department of Computer Science

Lund University, Sweden
pi05aa8@student.lth.se

Jimmy Pettersson
Department of Computer Science

Lund University, Sweden
pi05jp6@student.lth.se

Abstract

The goal of this project was to write an ef-
ficient dependency parser for Swedish. De-
pendency parsing is a way of structuring a
sentence by assigning every word a head
and thus linking the words in a tree of de-
pendency relations. This has been done by
extending a pre-written implementation of
Nivres algorithm. The focus has been to in-
crease the score for unlabeled parsing and
the main work has therefor been placed on
finding an optimal feature set.

1 Introduction

This report is the final project in the course Lan-
guage Processing and Computational Linguistics,
EDA171 (Nugues, 2009a). The goal was to chose
any field in either language processing or computa-
tional linguistics and implement a program of said
topic. The chosen topic was to extend an imple-
mentation of Nivre’s dependency parser algorithm.
Dependency parsing is briefly put a technique of
finding links between words in a sentence an thus
finding the overall structure of every sentence in a
text. In the CoNLL-X (Tenth Conference on Natural
Language Learning) Joakim Nivres algorithm was
the most successful at labeled dependency parsing
(CoNLL-X, 2006) and since one of the programing
assignments of the course were to improve an im-
plementation of this algorithm the choice to use the
implementation as a foundation for this project was
natural (Nugues, 2008a; Nugues, 2008c).

The corpus used in this project is the hand-
annotated Swedish corpus from Talbanken (Nivre,

2005). This was the same corpus that was used
in the CoNLL-X conference. This implementation
uses a data mining tool called Weka which fea-
tures many different statistical classifiers. The clas-
sifier used in the project was the J48 decision tree.
These tools was together with an implementation
of Joakim Nivre’s algorithm used throughout this
project.

The main goal of this project was to increase
the score for unlabeled dependency parsing and the
main work was spent on the features since this
was the simplest way to increase the overall score.
Many different features was implemented and most
of them were useful in the original feature set but
many of them were discarded since too many fea-
tures decreases the score. Finally a so called optimal
feature set was found although more work could be
spent on finding an even better one.

2 Corpora

A corpus is a collection of data which is correctly
hand-annotated with respect to the gold standard. It
is crucial when training a parser that you have ac-
cess to a to good corpus. What makes a good corpus
is not only the size but the diversity of the corpus
to make it as representative of the language as pos-
sible. The corpora were originally hand-annotated
but today are now mainly derived by an automated
process, which later is corrected by hand.

CoNLL-X defined a format of the corpora used
in the competition which contains ten columns for
the features and is encoded in UTF-8. The set of
ten features in the corpora represents a token and
is expressed by a word or a punctuation sign. The

sentences are numbered from one and up and each
sentence is ended by a blank line.
The layout of a single token in the corpora is demon-
strated below.

ID The token counter starting at one for
each sentence.

Form The lexical form of the
word/punctuation mark is shown
here.

Lemma This is the basic form of a word,
i.e the words eat, eats, eating etc.
has the lemma eat. How this word
is chosen can differ from corpus to
corpus and varies with different lan-
guages.

CPOS Coarse Part-Of-Speech. The CPOS
tag represents a more coarse part of
speech tagging while the POS tag
is more precise. The CPOS tag set
varies with different languages.

POS Fine Part-Of-Speech. The POS
tag represents classes of words that
have common grammatical proper-
ties. Also known as word class.

Features Unordered set of syntactic and/or
morphological features. Depending
on the language and type of corpus
a word class can have a different
amount of features.

Head This is the head of the current token
which takes the value of ID or zero
if the tokes is the ROOT.

Deprel Dependency relation. Shows the re-
lation between the head and its de-
pendent.

Phead Projective Head. Shows the projec-
tive head of the current token which
takes the values of ID, zero (if
ROOT), or underscore if not avail-
able. It represents the best tolera-
ble dependent of the real head while
keeping the graph projective.

Pdeprel Projective Dependency Relation.
Equivalent to the Deprel but shows
the relation between the projective
head and its dependent.

3 Shift-Reduce algorithm

The shift-reduce algorithm takes the input file which
is built up token by token in the queue. The tokens
are then partially processed one by one and put in the
stack. Depending on a set of rules different actions
will be taken on the processed tokens. The set of
rules are as follows:

Shift Push the fist token of the queue onto the stack

Reduce Pop the stack

Right-Arc Add an arc from the token on top of the
stack to the preceding token in the queue and
pushes that token to the top of the stack.

Left-Arc Add an arc from the preceding token in
the queue to the token on top of the stack and
then pop the stack.

4 Gold Standard Parsing

Gold standard parsing consists of taking a hand an-
notated corpus as input and then using the shift-
reduce algorithm to determine what sequence of ac-
tions what would produce the best result (best being
the same result). To determine what action to take
the following scheme is used:

• If the word at the top of the stack is the head of
the word first in the queue then do a right-arc.

• Else if the first word in the queue is the head
of the word in the top of the stack then do a
left-arc.

• Else if the there is a head anywhere in the de-
pendency graph to the first word in the queue
then do a reduce.

• If none of the above applies then do a shift.

5 Dependency Parsing

Dependency parsing is a technique that utilizes the
internal relations of a single sentence to parse it.
For all the words in the sentence, the root word ex-
cluded, there is a head which in the state of pars-
ing helps to build the graph. The word without a
head, the root word, is assigned as a dependant of
the auxiliary word ”ROOT”. This is done to make

the parser implementation easier and to show where
the sentence begins. Figure 1 shows an example sen-
tence. It consists of nine words, punctuation sign
and ROOT included. The arc points from every
word to its head, the only word left without a head
is ”ROOT”.

Figure 1: Sentence with unlabeled arcs

6 Training and parsing

6.1 Training
When training the classifier a stand alone soft-
ware for machine learning called Weka was used
(Waikato, 2009). In order for Weka to work with
the data a so called arff-file has to be provided to
the software. Weka comes with a set of classifier
algorithms that are used for training the data. The
algorithm J48 was used in this project to train the
classifier, it builds a decision tree that Weka exports
as a model-file. This model is then used in the pars-
ing of the data to predict what action to take given
the features provided.

6.2 J48
The classifier algorithm used by Weka is known as
J48. J48 is an extension of an earlier algorithm de-
veloped by J. Ross Quinlan (2009), the C4.5 algo-
rithm. J48 produces a decision tree and decision
trees are a typical way to represent information from
a machine learning algorithm, and offer a fast and
powerful way to express structures in data. There are
however a lot of other different classifiers that can
be used in machine learning such as Support Vector
Machines, Linear Regression, Neural Networks etc.

6.3 Parsing
When parsing the data the trained model produced
by Weka is used to determine what actions to take
in the parsing state. The result from the parsing is a
dependency graph that can be translated in to a data-
file in the CoNLL format. This output file can then
be compared to another file in the CoNLL format
and provide a score based on the number of devia-
tions from the gold standard.

7 Features

The main focus of this project was the imple-
mentation and selection of features. Many differ-
ent features was implemented and most of them
yielded a higher score in some feature set but only
a handful was kept in the final and optimal fea-
ture set. The initial feature-set were the follow-
ing: first postag stack, first postag queue, can ra,
can la, can re and action. After this many differ-
ent new features was implemented. First some of
the most obvious such as more POS tags from stack
and queue, the POS tag from the Head of the stack
and the queue and also some lexical features. Al-
though one could easily find features that improved
the score from the original feature set it soon be-
came obvious that finding features that worked well
together was a bit more complex. The features that
ended up in the so called optimal feature set were:

Top pos stack The POS tag of the first word in the
stack

Second pos stack The POS tag of the second word
in the stack

First pos queue The POS tag of the first word in
the queue

Second pos queue The POS tag of the second
word in the queue

Third pos queue The POS tag of the third word in
the queue

Fourth pos queue The POS tag of the forth word
in the queue

FirstHeadPostag The POS tag of the head to the
first word in the queue

SecondHeadPostag The POS tag of the head to the
second word in the queue

Random1 See section 7.1

Random2 See section 7.1

DeprelHead The dependency relation from the first
word in the queue to its head

PredPostagStack The POS tag of the word imme-
diately before the word in the stack in the orig-
inal sentence

FirstWordStack The lexical value of the first word
in the stack. See section 7.2

Can do leftarc Whether or not it is possible to do
a left arc in the current state

Can do rightarc Whether or not it is possible to do
a right arc in the current state

Can reduce Whether or not it is possible to reduce
in the current state

Action The action preformed.

7.1 Random features
Perhaps the most interesting part of this project are
the two random features. These were found during a
debugging and were never intended to be features at
all. Nevertheless they were among the features that
increased the score the most so they were eventually
included in the final feature set. If these features
have any real meaning or could be explained from
a theoretical point of view is left unanswered in this
project.

To understand the random features one must first
understand how the dependency graph is repre-
sented. In the implementation of Nivres algorithm
used in this project the graph is represented by an
arraylist. Every time a right or a left arc is created
the element is placed last in the arraylist. The depen-
dency relations are represented by a integer value in
each element called Head. This value simply tells
you which word is the head of any given word in
the graph. The feature Random1 checks if it is at
the given state possible to do a right arc, and if so
it extracts the last element in the graph. The feature
Random2 on the other hand checks if its possible to
do a left arc and if it is it extracts the first element in
the graph.

7.2 Lexical features
The lexical features were the hardest to implement
because the number of words included would have
to be carefully fitted. The parser is given a list
of words and then checks any incoming word if a
match is made in the list, if so the parser returns

the word itself otherwise it returns the string ”Noth-
ing”. The words to include in this list turned out
to be of great significance. Many different sets of
words were tested and a list of just 17 words were
found to be the best fit of the many different possibil-
ities tried. The words included were the following:
”och”, ”att”, ”i”, ”det”, ”som”, ”en”, ”av”, ”man”,
”den”, ”de”, ”inte”, ”har”, ”med”, ”till”, ”ett”, ”om”
and ”kan”. More work could be done in the selection
of the words to include/exclude.

Many features were discarded but some of the fea-
tures that at the time they were implemented yielded
a higher score may still be worth mentioning. These
features included:

X Postag Stack/Queue Much experimentation
were made with how many POS tags from the
stack and queue would give the highest score.

Leftmost/Rightmost Children from Stack/Queue
Others have used this features in their final
feature-set, but in the one used in this project
they reduced the score.

Succ. Postag Stack and Pred. Postag Queue
These features are more or less the same as
predPostagStack but would not fit in the final
feature-set

First Word Queue and Second Word Queue In
the final feature set only one lexical feature
were included

Stack/Queue ID The position of a word in the orig-
inal sentence. On the time it was implemented
it increased the score but ware later removed

in graph Number of elements in the graph at a
given state.

Stack/Queue in graph The number of times the
word in the queue/stack occurred in the graph.

Much work could still be done in the feature
selection but perhaps a more systematical method
preferably scripted would be preferred to the Edis-
onian approach tried in this project.

8 Results

The final results for our unlabeled dependency pars-
ing was 88.95%. This value represents the num-
ber of words assigned a correct head divided by
the total number of words. This is an increase of
16.69 percentage points from the original implemen-
tation. We wont go over the progression of the score
chronologically as the work progressed because of
the sheer number of different feature sets tested. In-
stead we will include only a handful of the feature
sets to give the reader a feel of the importance of
different features. One must keep in mind the dif-
ference between the improvement a feature yields
when added to the original feature set and the very
same feature added to a set of already ”high scor-
ing” features. As previously mentioned many of
the features implemented yielded a higher score at
the time of implementation but were later discarded
when they were found out to lower the score in a
different set of features. With that said we did not
achieve our highest score by adding new features in
the later stages of the project but rather removing
features to get a higher score.

The first improvement made was to alter the num-
ber of POS tags included from the stack and the
queue. We ended up taking two POS tags from the
stack and four POS tags from the queue. These extra
feature alone increased the score to 80.08% which
is almost 50% of the total increase in percentage
points. For the next improvement we looked at the
POS tags for the head of both the first and the sec-
ond word. Some experimenting was done here with
the number of POS tags to include and taking only
the first and the second proved to result in the high-
est score. With these POS tags the score increased
to 84.86%. Next step was to look at the dependency
relation between words in the queue and their re-
spective heads. Here it was made clear that if more
than one word from the queue was included it would
result in a decrease in score but when including only
the first word in the queue the score increased, and
together with the other features already added the
score was increased to 87.45%. Next we looked at
the POS tags of the predecessor and successor words
in the stack. What this means is that you take the
first word in the stack and look at the POS tag of
the word that is immediately before/after this word

in the original sentence. We ended up only having
the POS tag of the predecessor since the POS tag of
the successor resulted in a lower score. With this
feature added the score rose to 87.91%. In the later
stages of the project we started working with lexi-
cal features, which we knew decision trees such as
J48 did not handle very well so many of the lexi-
cal features implemented yielded lower scores time
and time again. However the feature ”first word in
stack” which is explained above did after some trial
and error work put the score up to 88.47%. Finally
the two random features were added on top of all
these features mentioned above and the final score
88.95% was reached.

9 Improvements and discussion

Much could be done to improve the results in this
project. The most obvious and important change
would probably be the change of classifier. Ei-
ther Linear Regression or Support Vector Machines
would probably result in a score above the 90% mark
although this is hard to confirm before the imple-
mentation is done. Implementing these would result
in a need to re-pick the feature-set seeing the feature-
set is optimized for the J48 classifier. This re-pick of
features could then be done either manually as it was
done in the project or it could be done in a more sys-
tematic way. Even if the J48 classifier was kept the
results could probably benefit from this approach to
the selection of features. If one were to script an
optimization of the features we propose it would be
done in the following way.

First a small part of the training-set would have
to be broken off from the rest of the set and be used
to train the classifier since training it on the actual
training-set would result in an over-fit to this set.
Then a script would have to be written to automati-
cally choose different sets of features to try out. One
could probably come up with hundreds of features
or variations of features that could be tested but test-
ing these manually would not be feasible seeing the
total number of combinations would be enormous.
The script could then start from a small set of fea-
tures and every time make the greedy choice, that is
to pick the feature from the list that gives the highest
increase in the result. It could also be done the other
way around that is to start the script with all the fea-

tures and remove the greedy choice. This approach
would probably get near the optimal subset of the
features implemented but it can not guarantee that
an optimal solution would be chosen. Another way
to find this optimal subset would be a genetic algo-
rithm. Letting a solution evolve in the genetic algo-
rithm would probably be very time consuming but
could find solutions that the greedy algorithm could
not. Even a combination of the two would be pos-
sible, letting the genetic algorithm run and choose a
different solutions and then see if any greedy choices
were possible from these.

References
Pierre Nugues. 2009a. Eda171 course web.

http://cs.lth.se/eda171/

Pierre Nugues 2009b. Assignment 5: Depen-
dency parsing using machine learning techniques.
http://http://cs.lth.se/english/course/eda171/coursewo
rk/assignment 5 java/

Pierre Nugues. 2009c. Nivre parser implemented in java.
http://fileadmin.cs.lth.se/cs/Education/EDA171/Progr
ams/parsing/Nivre.zip

WEKA. 2009. http://www.cs.waikato.ac.nz/ml/weka/

Joakim Nivre. 2005. Talbanken 05.
http://w3.msi.vxu.se/ nivre/research/Talbanken05.html

CoNLL-X. 2006. Conll-x 2006 shared task: Multilin-
gual dependency parsing. http://nextens.uvt.nl/ conll/

Ross Quinlan. Ross quinlans personal homepage.
http://www.rulequest.com/Personal/

