
Question answering system for a dedicated database

Max Martinsson
Department of Computer Science

Lund University, Sweden
max@serenity.nu

Anton Spanne
Department of Computer Science

Lund University, Sweden
anton@serenity.nu

Abstract

This report describes the implementation of
a natural language question answering sys-
tem for a specific problem domain, but we
also consider the more general case. The
main question for the project is whether it is
more effective to create such a system than
manually creating the database queries. Our
results indicate that there is considerable
overhead when constructing predefined rules
for a new problem domain, which makes us
draw the conclusion that effective methods
of creating rules has to be developed before
any gain from using this system emerges.
We therefore propose three methods for con-
structing general constraints that span sev-
eral domains.

1 Introduction

More and more information is being stored in dig-
ital form and is often organised in some form of
database system, where it is supposed to be easily re-
trieved. The people who are using the data are, how-
ever, not themselves database experts. This means
that they depend on someone else to extract the in-
formation they need from the system. An ideal solu-
tion would be if the information could be extracted
by any user, without technical knowledge. The pur-
pose of this project is therefore to construct a system
which enables the extraction of data from a database
using natural language.

1.1 Problem domain

The system will be built and evaluated against a spe-
cific domain, though the intention is to be able to
construct a more general system later on. The do-
main that we use in this project will contain data
concerning root intrusions in water and sewage
pipes. The intrusion of tree roots is a big prob-
lem in urban areas. By analysing statistics about
trees and known intrusions, researchers are trying to
find guidelines to reduce the damage done by roots.
A simple example could be a minimum distance
from pipes to newly planted trees. The database for
this domain contains information about more than
100,000 trees, 5,000 pipes and 25,000 intrusions. In-
formation could only be extracted by writing com-
plex SQL queries. This had to be done by an external
expert which caused unnecessary delay and costs.

2 Lexical semantics

The ontology in our system reflects the structure
of the database. We divide the world into three
classes; entities, attributes and constraints. Attribute
is the most primitive class and they are used to ac-
tually define the entities. That is, an entity is the at-
tributes it contains. Furthermore, entities may them-
selves be attributes; for example, the intrusions’s
pipe. Constraints limit an attribute, filtering the en-
tities in the data set. It may either limit the attribute
to an absolute value (ex. length < 5 meters),
or it may relate to another entity’s attribute (ex.
position(a) = position(b)). The ontology rep-
resenting this attribute structure is illustrated in fig-
ure 1.



Figure 1: Attribute ontology

A simplified list of the entities and their attributes
we used in the project is shown here:
Tree: position, size, age, species
Pipe: start position, end position,

diameter, material, age
Intrusion: pipe, position,

time of discovery

These attributes in combination with the ontology
form the semantic network that the parser will use
to rule out combinations of constraints and entities.
The attributes are mainly meronyms, but also con-
tain some hyponyms such as species of trees. This
is mainly to make the structure more similar to that
of the database.

A fourth class could be added, that would repre-
sent the overall action of the query – what to do with
the data (ex. show, count, graph etc.). But this is be-
yond the scope of this project; in all examples, show
will be used as the action.

Queries to the system will be transformed into a
logical structure, containing action and a main en-
tity. The entity will in turn have constraints, that
could be recursive. This structure is then used to
build SQL queries that retrieves the data from the
database.

3 Implementation

Our implementation performs the transformation be-
tween natural language and the logical structure de-
scribed above. It uses a part-of-speech tagger and a
dependency parser to build a hierarchical model of
the query. This model contains the dependency rela-
tions aswell as all the information from the POS tag-
ger (word, lemma, part-of-speech). A Java program
is then used to analyze this model using pre-defined
rules to find the entities and their constraints.

3.1 Part-of-speech tagger

The part-of-speech tagger we used is the Granska
tagger (Carlberger and Kann, 1999). It is a stochas-
tic tagger based on a Markov model. It uses
the Stockholm-Umeå-corpus (SUC) which uses the
part-of-speech tagset with the same name. Other
than tagging the words in the query with a part-of-
speech, it also produces lemma information for the
words that are being tagged.

3.2 Dependency parser

We used the MALT dependency parser (Nivre, Hall
and Nilsson, 2006) to build the dependency tree,
using the result from the Granska tagger. Since
Granska uses the SUC tagset, and the pre-trained
MALT model for Swedish uses the Talbanken tagset,
we had to train a new model using the SUC tagset
instead of Talbanken. This corpus was only a sub-
set of the original Talbanken corpus, which might
have been the cause of some problems with differ-
ent query expression forms.

3.3 Java program

An example of the dependency tree for the question
“Show trees that are at least 5 meters from any other
tree” (in swedish: “Visa träd som befinner sig minst
5 meter från något annat träd”) is shown here:

(ROOT) visa (vb)
(OBJ) träd (nn)

(ATT) befinner (vb)
(SUB) som (hp)
(OBJ) sig (pn)
(OBJ) meter (nn)

(DET) 5 (rg)
(ADV) minst (ab)

(ADV) från (pp)
(PR) träd (nn)

(DET) något (dt)
(DET) annat (jj)

(ADV) . (P)

The dependency tree tends to vary in structure de-
pending on different ways of expressing the same
query. For example, in the expression “that are
within”, the “that are” can be left out. The depen-
dency parser we used had a problem with this type
of expressions where the verb is left out. As a result,
we decided that the Java program should use par-
tial parsing when applying the rules. This means
that the rules are matched against keywords and de-
pendency structures of the query. While this could



leed to that information from the query might get
discarded, the goal is to use as much information
from the query as possible.

In many other similar systems, the user input is
done by speech and in such systems it is often a
good strategy to have a template where the blanks
are filled in iteratively during multiple queries or in
dialog with the user. Often information is gathered
from the querys using keywords. This means that
important information could be easily missed, es-
pecially due to the speech recognition process. In
these cases, it is important that the system gives un-
derstandable feedback about which “blanks” are un-
known. (Mast, Kummert, Ehrlich, Fink, Kuhn, Nie-
mann and Sagerer, 1994)

Since our system doesn’t share the speech recog-
nition problem, we can rely on that the information
given to the parsers is semantically correct and well
behaved. This means that it should be possible to ex-
tract most of the vital information from the queries,
even without using templates and keywords. This is
an important feature since we want the user to have
very free hands with the queries. Asking the user
to clarify what he want, would require the system to
know what the user is asking for and limiting ques-
tions to a predefined set of query-templates.

The rules are written in XML format and they
specify which combinations of dependencies, part-
of-speech and lemma that constitutes a certain con-
straint. Since there are many ways of expressing the
same constraint, several rules may specify the same
type of constraint. An example of a rule specifying
the distance between entities is:
<constraint class="Distance">

<word dep="(CC|ATT)">
<word dep="(PRD|OBJ)"

id="unit">
<word dep="DET"

pos="rg"
lemma="\d+"
id="length" />

</word>
<word dep="ADV"

id="root">
<word dep="PR" />

</word>
</word>

</constraint>

This rule will match the previously shown
dependency tree. It is applied on the branch
under the main entity (OBJ) träd (vb).

Hence <word dep="(CC|ATT)"> will match
(ATT) befinner (vb) and so forth. The partial
parsing causes the two words “som” and “sig” that
does not match anything to be discarded.

The Java program performs the following tasks
when it parses the dependency tree:

1. Find action by parsing the ROOT (which
should be a verb)

2. Find the main entity by looking for the noun
closest to the root

3. Match rules to parts of the dependency tree,
originating at the same depth as the entity. If
a match is found, the corresponding constraint
is created and is then responsible for parsing
subtrees within itself.

(a) If a constraint requires an attribute from
the entity, that the entity does not have,
then the constraint discards itself.

(b) If a constraint doesn’t find all the data it
needs, it discards itself.

(c) If a constraint is relative to another entity,
the process described in (3) is repeated for
that entity.

After these steps, the Java program has created the
logical representation of the natural language query.
The textual representation of the result is:

Query: {
Action: ShowAction
Subject: TreeSubject. Constraints: {

Distance: {
5 meter. Subject: TreeSubject

}
}

}

This shows the important building blocks of the
logical structure. The structure is called a query,
which consists of an action and a subject. The
action describes what to to with data and how to
collect it. The subject references to the main entity,
and also the constraints that filters which entities
form the database that should be used.



4 Results

The purpose of the project was to examine if the pro-
cess of extracting data could be made more efficient
using natural language queries. The original prob-
lem was that the user had to ask a database expert
to extract the data, and in our solution the natural
language interface would do this for user. But in or-
der to be able to interpret the wide range of queries
that can be expressed by a user, some expert has to
write a large number of constraint rules. These rules
has to be extracted from existing natural language
queries, which may have to be unique to the problem
at hand. This means that there is a large overhead in
addressing a new problem domain. A successful and
effective implementation of our system would have
to consist of general rules, applicable to several do-
mains, thus reducing this overhead. It is hard to say
how difficult it would be to create such general rules.
In the next section, we describe some ideas concern-
ing such an approach.

5 Future work

General constraints could be based upon general at-
tribute types instead of being constructed based on
the attributes of the entities in the problem domain.
For example, such a general constraint might con-
cern the size of entities; largest, smallest etc. This
constraint would then be applicable to all entities
with the size attribute. With a large enough collec-
tion of such general constraints, the overhead of new
problem domains could probably be reduced signif-
icantly since many attributes reoccur in several do-
mains.

The use of attributes as a identifier for both enti-
ties and constraints makes it easier to resolve coref-
erences. This could be used both within a single
query, and between sentences in a dialog system.
Such a system could be used to construct a more
complex logical structure, adding constraints itera-
tively. It could also be used to define new constraints
and entities, that the system does not know about
yet. The new entities and constraints would then be
represented with the same type of logical structure
as the queries. This would enable the domain ex-
perts to take over much of the work from the system
expert.

It would probably be a good idea to include all

hyponyms in the ontology, rather than intruducing
them as attributes. An oak should for example be
considered a tree, and not a species of a tree. This
would make the parsing for entities more straight
forward.

Finally, machine-learning methods could be used
to create rules using an annotated set of queries. This
could be done in at least two ways. Either the depen-
dency tree or the linear sequence of words could be
annotated. It is hard to say which of these would be
more efficient without trying it.

References
Carlberger, J. and Kann, V. (1999) Implementing an Ef-

ficient Part-Of-Speech Tagger. Software Practice and
Experience, 29(9):815–832

Mast, M., Kummert, F., Ehrlich, U., Fink, GA, Kuhn, T.,
Niemann, H., Sagerer, G. (1994) A speech under-
standing and dialog system with a homogeneouslin-
guistic knowledge base IEEE Transactions on Pattern
Analysis and Machine Intelligence, 16(2):179–194

Nivre, J., Hall, J. and Nilsson, J. (2006) Malt-
Parser: A Data-Driven Parser-Generator for Depen-
dency Parsing. In Proceedings of the fifth interna-
tional conference on Language Resources and Eval-
uation (LREC2006), May 24-26, 2006, Genoa, Italy,
pp. 2216-2219

Nugues, P. (2006) An Introduction to Language Pro-
cessing with Perl and Prolog. Springer-Verlag, Berlin,
DE.


