
Dependency Parsing

Johan Aulin
D03

Department of Computer Science
Lund University, Sweden

d03jau@student.lth.se

Carl-Ola Boketoft
ID03

Department of Computing Science
Umeå University, Sweden

calle_boketoft@hotmail.com

Abstract

The aim of this project was to extend an im-
plementation of Joakim Nivre’s dependency
parser for the Swedish language. Depen-
dency parsing consists of finding links be-
tween words in a setence. This is done
through building a structure of dependency
relations among the words by assigning
them with values of heads and dependents.
In order to increase the accuracy of the
parser, a number of features were added to
the algorithm and the use of a different clas-
sifier was explored. There was an evident in-
crease in accuracy for the parsing algorithm
after the new features were implemented.
The use of another classifier was not suc-
cessful and was not further investigated.

1 Introduction

This is the final project for the course in Language
Processing and Computational Linguistics, EDA171
(Nugues, 2008b). The objective for the project was
to define a study topic and an application in either
the field of language processing or computational
linguistics.

The topic chosen for this project was inspired by
the CoNLL-X (Tenth Conference on Natural Lan-
guage Learning) Shared Task: Multi-lingual Depen-
dency parsing (CoNLL-X, 2006), 2006, where the
task was to implement an algorithm for a depen-
dency parser. Dependency parsing can shortly be
described as a technique of finding relations between
words in a sentence. Many different algorithms were

developed for the conference and Joakim Nivre’s de-
pendency parser for the Swedish language was the
algorithm with the highest accuracy rate for labeled
parsing (CoNLL-X, 2006).

It was decided to work with an implementation of
Nivre’s algorithm for this project due to its reported
success in the conference. Since one of the pro-
gramming assignments for the course EDA171 was
to improve a Java implementation of Nivre’s parser
(Nugues, 2008a; Nugues, 2008c), it was convenient
to use this as a foundation for the implementation of
the project. The implemetation was using a statisti-
cal classifier in the data mining tool Weka to decide
parse actions (WEKA, 2009).

The aim of the project was to improve the avail-
able implementation of Nivre’s dependency parsing
algorithm by adding new features and using differ-
ent classifiers.

The test and training sets used as gold standard
in the project were the manually annotated Swedish
corpus Talbanken05 (Nivre, 2005). Talbanken05
was also used in the CoNLL-X conference and it
contains all the tags that were used in the features
for the parsing algorithm for the Swedish language.
The training set consists of 6316 sentences of
informative prose.

The first step of the algorithm is a so called
gold standard parsing, which is explained in further
detail later in the report, that uses Nivre’s algorithm
to parse the hand annotated corpus. The result
from the procedure is stored in an output file with
a special format to be used with Weka. The next
step is to import the output file in Weka to create a



decision tree classifier. The decision tree classifier
is then used by Nivre’s algorithm in the process
of parsing a test file with a number of sentences.
The parsing results in a file where the words in
the sentences have been assigned tags that identify
them as heads and dependents, according to the
method of dependency parsing. In order to evaluate
the results, a perl script was used to calculate a ratio
of accuracy for the implemented parsing algorithm.

The two aspects that were investigated in order
to improve the accuracy of the algorithm were the
implementation of new features for the parser and
the use of different classifiers in Weka.

The most successful results were acquired by im-
plementing new features. The features that were
implemented included the relation between words
with different grammatical values, dependency re-
lations between words and the frequency of words
with different lexical value. Throughout the project,
a classifier called J48 was used when producing the
decision trees in Weka. Another algorithm called
Naïve Bayes was used to produce another decision
tree model but the results from using the model were
much lower than the results acquired when using the
J48 model, so no more experiments with that classi-
fier were conducted.

2 Corpora

When training a parser, some sort of correct data
must be used. Such a collection of data is called a
corpus, and it contains gold standard annotated sen-
tences. This means that someone (or indeed a large
group of people) has manually annotated a text.

A corpus has to be large and diverse, in order
to be representative of a language. This means
that corpora normally contain tens of thousands of
sentences. Parsing them manually is obviously a
huge piece of work, and therefore many corpora are
reused for a long time, perhaps with additions but
essentially the same.

CoNLL-X defined a corpus format to use in the
shared task. A CoNLL-X corpus is a text file en-
coded in UTF-8, with ten columns representing the
different features of tokens. A token can be either
a word or a punctuation sign. Each sentence ends
with a blank line, and each word within a sentence

is numbered, starting from one.
The following list describes all the different ele-

ments that are contained in CoNLL-X formatted cor-
pora.

ID This is merely a token counter, starting at one
for each new sentence.

Form If the token is a punctuation mark, the mark
itself is displayed, otherwise the form of the to-
ken is shown. For a word, this means the actual
word as it is spelled out.

Lemma The lemma of a word is a basic form of
a word. How to select this basic form varies
between languages. It can also vary from one
corpus to another, depending on the purpose,
structure and what is most convenient for that
particular corpus.

One lexeme contains many forms, and one of
these is chosen as the lemma. For example, the
lexeme containing run, runs, ran and running
has the lemma run. This enables, among other
things, the counting of different forms with the
same lemma as the same word, when doing fre-
quency analysis.

Coarse part-of-speech (CPOS) The coarse part of
speech is used for languages that have hierar-
chical grammars. The CPOS tag then repre-
sents the main category, while the POS tag rep-
resents the precise part of speech.

Fine part-of-speech (POS) The lexicon can be di-
vided into parts of speech (POS), that are
classes in which the words share similar gram-
matical properties (Nugues, 2006). A part of
speech can also be called a word class.

Features (feats) A word class can have an arbitrary
amount of features, depending on language. In
English, the word class pronoun can be either
first, second or third person, and it can be sin-
gular or plural. The word “we” would then be
a pronoun with the features “person: 1” and
“number: singular”. Some languages don’t rec-
ognize grammatical features at all.

Head (head) This determines which other token in
the sentence is the head of the current token.



This may for instance be an adjective describ-
ing a noun, which would then have the noun as
its head.

Dependency relation (deprel) This is the type of
relation a dependent has to its head. For the
relation between an auxiliary verb and its main
verb, this could for example be “AUX”.

Projective head (phead) If a projective graph is re-
quired, the projective head can be used for
those arcs that are non-projective. This rep-
resents the closest permissible ancestor of the
real head, such that the graph remains projec-
tive (Nivre and Kübler, 2006).

Projective dependency relation (pdeprel) This is
the same as dependency relation, but covers the
relation between a dependent and its projective
head.

3 Dependency Parser

A dependency parser is a parser that uses the inter-
nal dependencies of a sentence to parse it. Every
word in a sentence, except the root word, has a gov-
ernor, also called head. Words that have heads are
called dependents.

The figure below shows an example sentence, that
consists of six words, one punctuation sign and one
meta word called ROOT. The arrows on the arcs
point from the dependent to the head. The structure
of arcs shows that for example “dagens” is a depen-
dent of “samhälle”. The only word without a head,
is the root word, “Är”. Though in the figure, “Är” is
marked as a dependent of ROOT. This ROOT is an
easy way to show where the sentence starts, and to
make a parser easier to implement.

A labeled dependency parser, would have labels
on every arc, to further describe the dependency be-
tween dependent and head. The parser implemented
in this project is unlabeled, and so does not have any
labeled arcs.

Figure 1: Example sentence with unlabeled dependency arcs

4 Nivre’s Algorithm

Nivre uses a dependency parsing algorithm that
starts with gold standard parsing. After this, a clas-
sifier should be trained so that the algorithm has a
model to use for its final step, the parsing. Each of
these steps will be explained below. First though,
the shift-reduce algorithm extended with left-arc and
right-arc will be presented. This algorithm is used
throughout the whole process.

4.1 Shift/reduce/left-arc/right-arc algorithm

The input file is stored token for token in a queue.
A stack is used to store partially processed tokens.
Each token is then processed and an action is taken
based on certain facts. The different rules and their
meaning is described below:

Shift Pushes the first token of the queue onto the top
of the stack.

Reduce Pops the stack.

Right-arc Adds an arc from the token on top of the
stack to the next token in the queue, and pushes
the latter onto the top of the stack.

Left-arc Adds an arc from the next token in the
queue to the token on top of the stack, and pops
the stack.

4.2 Gold Standard Parsing

Gold standard parsing means reading a hand anno-
tated corpus, and determining what series of actions
in the set {shift, reduce, left-arc, right-arc} would
obtain the same result. The process for selecting an
action can be described in pseudo code as follows:

• If the first word in the queue has the top word
on the stack as its head, then do right-arc.

• Else, if the top word of the stack has the first
word of the queue as its head, then do left-arc.

• Else, if the first word in the queue has a head
anywhere in the dependency graph, then do re-
duce.

• Else, do shift.



Then the feature set for each word is saved in an
output file that can be read by the classifier software
used. In this project, a so called arff file is created.
Entries in this file describe the current state of the
algorithm and which action to choose in that state.
The arff file also contains a header, describing all the
different features, and each of their possible values.

4.3 Training the Classifier
In order to train a classifier, the code can be built
into the parser software, or it can be done us-
ing a standalone application. This project uses a
standalone application for machine learning, called
Weka. Weka reads a so called arff file, with a for-
matting specific for Weka, and extracts data from it.
When this is done, a classifier algorithm must be se-
lected. For example, in this project, both the algo-
rithm J48 and Naïve Bayes were used.

Weka then creates a model, which contains the
classifier that will be used when parsing. For J48,
this will be a decision tree. For other algorithms,
this could be something completely different, such
as a rules engine, a function or a neural net. The
model is then used in the parsing step to predict the
next parsing action from the current features.

4.4 Parsing
In the parsing step, the parser is finally put to use.
The input data for this step should be different from
the training data. It is possible to overfit a parser
to a certain vocabulary, if the corpus lacks diversity.
Parsing a completely different input file, and evalu-
ating the result can give a hint on whether or not this
is the case.

In order to parse a file, Nivre’s algorithm uses the
trained model to make decisions about which action
to take in each parser state. In using different ac-
tions as dictated by the model, all the words in the
input queue receive a head. The result is a depen-
dency graph that can be output to a file, for example
in CoNLL format.

The advantage of using the CoNLL format, is that
the output can then be compared to a manually anno-
tated corpus. The CoNLL website(CoNLL-X, 2006)
contains an evaluation script that gives a score based
on the gold standard file being correct. Every devia-
tion from the gold standard file in the output file will
deduct from the score.

4.5 Evaluation

Run an evaluation program with the CoNLL test file
and the result file from the parse. The rate of accu-
racy of the parser is then calculated by dividing the
number of words with a correct assigned head with
the total number of words in the test file.

4.6 Classifier

The implementation of Nivre’s algorithm that was
provided as a basis for the project was designed to
be used with an algorithm called J48. This J48 is
an implementation of the decision tree learner C4.5
by Ross Quinlan. (Quinlan, ) A decision tree learner
analyzes a source statistically, and builds a tree that
can later be used to quickly make decisions based on
those statistics.

A decision tree learner is only one type of classi-
fier. There are other types, and often a vast amount
of different classifiers belonging to the same type.
One other type, which was also tried in this project
is Naïve Bayes. What is different about this classi-
fier, is that looks at all features independently, and
adds their results up afterwards.

Other examples of classifiers are Support Vector
Machines, Neural Networks and Linear classifiers.

4.7 Implemented Features

The improvement of the algorithm was mainly done
by adding features to the initial version of the parser
from the lab. A number of features were already in
use in the base implementation so there was a rela-
tively high accuracy rate from the parse using only
the already available features, as seen in the result
section. Comparing those results with state of the
art results from the CoNLL-X conference, it was ev-
ident that there was much room for improvement to
reach higher accuracy scores. A number of features
were added to the implementation and assesed to see
how the success rate of the algorithm was affected.
The selection for these was simply based on com-
mon sense and guessing what would be most suc-
cessful in improving the parsing result. A list of the
features that were used in the implementation of the
algorithm is shown below.

Features numbered 1 through 7 are the initial fea-
tures that were available in the implementation for
the lab. Features 8 through 11 were the ones added



during the process in order to raise the score.

1. Can do left arc Whether or not the algorithm is
able to perform a left arc in the current state.

2. Can do right arc Whether or not the algorithm
is able to perform a right arc in the current state.

3. Can reduce Whether or not the algorithm is
able to perform a reduction in the current state.

4. First POS from stack The part of speech from
the token on top of the stack.

5. First POS from queue The part of speech from
the first token in the queue.

6. Second POS from stack The part of speech
from the second token in the stack.

7. Second POS from queue The part of speech
from the second token in the queue.

8. Third POS from stack The part of speech from
the third token in the stack.

9. Third POS from the queue The part of speech
from the third token in the queue.

10. First deprel from stack The dependency rela-
tion from the token on top of the stack.

11. First form from stack The form, or lexicality,
of the token on top of the stack. This feature is
different in the sense that it looks for the most
common words in the corpus (which were de-
termined beforehand) and ignores tokens with
other form.

5 Results and Discussion

After gold standard parsing and the training of a
classifier, the parser was set to parse the test file from
CoNLL-X, disregarding the columns that later were
going to be produced by the parser. The resulting
output was stored in a file of the same format as the
test file.

In order to evaluate the result, a CoNLL evalua-
tion script was used. This script assumes that the
test file is correct gold standard and deducts points
for deviations occuring in the output file. More pre-
cisely, the score is

score = 100 · tokenscorrectly_parsed

tokensgold_standard

The results in section ?? represent the full out-
put of the evaluation script. The project has imple-
mented an unlabeled parser; however the result still
shows a labeled attachment score and a label accu-
racy score, none of which is zero.

The reason why these scores are not zero, is that
the parser reuses the input file. Since both the
test- and training input files contain both labels and
dependencies beforehand, and because the parser
changes only the dependencies, the labels remain in-
tact. This results in the label accuracy getting a score
of 100% and the labeled attachment score to be the
same as the unlabeled attachment score.

The reader is advised to simply ignore the results
of labeled scores.

The script is run as below:
perl eval.pl -q
-g swedish_talbanken05_test.conll
-s resultWeka.conll

5.1 Project results
When running the script on the initial seven features,
the results were taken as the baseline. This baseline
scored as follows:
Labeled attachment score:

4054 / 5021 * 100 = 80.74 %
Unlabeled attachment score:

4054 / 5021 * 100 = 80.74 %
Label accuracy score:

5021 / 5021 * 100 = 100.00 %

When the part of speech tag for the third word on
the stack and the third word from the queue were
added to the set of features, the score increased with
0.26 percentage points.
Labeled attachment score:

4067 / 5021 * 100 = 81.00 %
Unlabeled attachment score:

4067 / 5021 * 100 = 81.00 %
Label accuracy score:

5021 / 5021 * 100 = 100.00 %

With the addition of an tenth feature, the depen-
dency relation from the top token on the stack, the
result managed to climb a bit more; 0.52 percentage
points. This is an increase of 0.78 percentage points
since the baseline.



Labeled attachment score:
4093 / 5021 * 100 = 81.52 %

Unlabeled attachment score:
4093 / 5021 * 100 = 81.52 %

Label accuracy score:
5021 / 5021 * 100 = 100.00 %

It was decided that lexicality should be added as an
eleventh feature, by using the form of the top word
on the stack. The program was modified to look for
the 22 most common words (listed in Appendix A)
in the training file. This number was arbitrarily se-
lected, by a pseudo random procedure.

The resulting score now rose 1.16 percentage
points from the baseline, which seems like a very
good result.
Labeled attachment score:

4112 / 5021 * 100 = 81.90 %
Unlabeled attachment score:

4112 / 5021 * 100 = 81.90 %
Label accuracy score:

5021 / 5021 * 100 = 100.00 %

In order to see the difference between different
classifiers, a quicker classifier, Naïve Bayes, was
used. The result was remarkably worse, even with
the same amount of features.
Labeled attachment score:

752 / 5021 * 100 = 14.98 %
Unlabeled attachment score:

752 / 5021 * 100 = 14.98 %
Label accuracy score:

5021 / 5021 * 100 = 100.00 %

It was later realized than due to an error in the
counting method, the most common words picked
were not in fact not the most common words. After
replacing the word list with the correct one and pars-
ing the input using the J48 classifier, the result was
actually lower.

This, it was speculated, could be due to the fact
that the most common words may be featured in the
corpus with more varying other features, such as part
of speech. In contrast, less common words, may ac-
tually be a better measurement, as they should be
more likely to have consistent features. The result
when using the correct words (see table ??) was:
Labeled attachment score:

4104 / 5021 * 100 = 81.74 %
Unlabeled attachment score:

4104 / 5021 * 100 = 81.74 %
Label accuracy score:

5021 / 5021 * 100 = 100.00 %

This is still 1.0 percentage points above the baseline,
and a good result.

An increased number of features might have given
a better score. However, there is a very large amount
of combinations of words from the queue and the
stack and the features that define them. Finding
the right combination consists of trial and error, as
processing certain features may actually lower the
score.

6 Related work

Many different dependency parsers were submitted
to the CoNLL-X conference held in June 8-9, 2006
(CoNLL-X, 2006) and were all compared by the rate
of their accuracy for different languages. The accu-
racy was calculated with Dan Bikel’s Randomized
Parsing Evaluation Comparator (Statistical Signifi-
cance Tester for evalb Output) (Bikel, 2006), which
has also been used to evaluate the scores for the im-
plementation in this project. The best labeled at-
tachment accuracy score for Swedish was 84.58%
from the algorithm developed by Joakim Nivre, Jo-
han Hall, Jens Nilsson, Gulsen Eryigit, Svetoslav
Marinov from Växjö University, Istanbul Technical
University and University of Skövde. The best un-
labeled attachment accuracy score for Swedish was
89.54%, by Simon Corston-Oliver and Anthony Aue
for Microsoft Research.

7 Conclusions

Comparing the results achieved in the project with
the scores shown in the state of the art implementa-
tions, it is clear that our implementation needs many
improvements to be interesting in such a competi-
tion. Still it was very interesting to develop the im-
plementation by adding new features and using the
different classifiers.

When implementing the algorithm for other lan-
guages than Swedish, there are sometimes other tags
availiable in the corpus that can be used to form new
features. Some of the tags that were not included in
the Talbanken05 corpus, were missing for the sim-
ple reason that they do not apply to the structure of
the Swedish language.

We were told that the J48 algorithm that was used
in the project was not the best algorithm in terms of
producing the best classifier, other implementations
using LibLinear or SVM (Support Vector Machines)
could have resulted in reaching higher scores. The



implication with using LibLinear for the project was
that it proved to be too tricky to incorporate in the
original implementation of the algorithm that was
supplied from the lab.

Initial attempts to use LibLinear led to the insight
that it took too much time from working towards
the main goal of the project, so we went back to
using the available implemetation with Weka. An
additional from-scratch attempt was made in paral-
lel with the main version, to implement LibLinear
support alongside Weka support. This attempt was
abandoned as too time consuming.

We learned that SVM could prove to be signifi-
cantly better than using Weka, except that its com-
puting times were much longer, and therefore not
applicable in the given scope of the lab.

The adding of new features led to a constant in-
crease of accuracy scores when evaluated and we be-
lieve that it would be interesting to try adding more
features to explore how the scores can further be im-
proved.

References
Dan Bikel. 2006. Randomized parsing evaluation

comparator. http://www.cis.upenn.edu/
~dbikel/software.html#comparator, last
accessed 2009-01-09.

CoNLL-X. 2006. Conll-x 2006 shared task: Multi-
lingual dependency parsing. http://nextens.
uvt.nl/~conll/, last accessed 2009-01-08.

Joakim Nivre and Sandra Kübler. 2006. De-
pendency parsing. Tutorial at COLING-ACL,
Sydney 2006. http://stp.lingfil.uu.se/
~nivre/docs/ACLslides.pdf, last accessed
2009-01-09.

Joakim Nivre. 2005. Talbanken 05. http:
//w3.msi.vxu.se/~nivre/research/
Talbanken05.html, last accessed 2009-01-08.

Pierre Nugues. 2006. An Introduction to Language Pro-
cessing with Perl and Prolog. Cognitive Technologies.
Springer.

Pierre Nugues. 2008a. Assignment 5: Depen-
dency parsing using machine learning techniques. java
version. http://www.cs.lth.se/EDA171/
cw5-java.shtml, last accessed 2009-01-08.

Pierre Nugues. 2008b. Eda171 course web. http://
www.cs.lth.se/EDA171/, last accessed 2009-
01-08.

Pierre Nugues. 2008c. Nivre parser implemented in java.
EDA171 course web. http://www.cs.lth.se/
EDA171/Programs/parsing/Nivre.tar, last
accessed 2009-01-08.

Ross Quinlan. Ross quinlan’s personal homepage.
http://www.rulequest.com/Personal/,
last accessed 2009-01-09.

WEKA. 2009. Weka. http://www.cs.waikato.
ac.nz/ml/weka/, last accessed 2009-01-08.



A Tables and Figures

och 5348
att 5269

i 4420
är 3563

det 3412
som 3395

en 3181
av 2330
på 2303
för 2253

man 2082
den 2076
de 1817

inte 1795
har 1684

med 1667
till 1666
ett 1557

om 1500
kan 1316
sig 1114
så 834

Table 1: The 22 most common words in the training set

B Running the program

The program is implemented in java and it includes
a few libraries. Since the project was initially meant
to include LibLinear integration, two LibLinear li-
braries are included. Support for LibLinear was only
partly implemented and so this functionality is not
available. Although the program will run in arff
mode without the liblinear libraries, they were in-
cluded in the release as well as in the JAR manifest
file’s classpath, for reference.

The libraries required to run are included in the
lib folder, and the source code resides in src. The
data folder contains the CoNLL-X files used for in-
put, the evaluation script, the final arff file and model
and also the parsed output from Naïve Bayes and
J48.

In the root folder of the release is a JAR file con-
taining the packaged code. In order to run the pro-
gram the following commandline is used for train-

ing:
java -Xmx1024m -jar ExtendedNivre.jar
-train -(arff|liblinear)
input_file output_file

and the one below for parsing:
java -Xmx1024m -jar ExtendedNivre.jar
-parse -(arff|liblinear)
arff_file model_file input_file output_file

The first parameter decides whether the parser
should train a classifier or parse an input file. Since
liblinear is not fully implemented, the second pa-
rameter should always be -arff.

When running in training mode, the input file
should be
swedish_talbanken05_train.conll
residing in the data folder. The output file will be
an arff file, and the user must manually use Weka to
process this file to generate a model.

When parsing, the user should supply the arff file
and classifier model created in the training phase.
The input should be
swedish_talbanken05_test.conll and
the output will be a parsed corpus in CoNLL-X
format. The result of this, can be evaluated by using
the evaluation script in the data folder.


