
Unsupervised and Semi-Supervised Clustering

Henrik Ljungdahl
Department of Computer Science

C03, Institute of Technology
Lund University, Sweden
c03hlj@efd.lth.se

Abstract

This document describes an effort to cluster a
large amount of documents into a given num-
ber of categories using unsupervised cluster-
ing, an explanation of why this was unman-
ageable, and a revised, semi-supervised ap-
proach. Basic elements and techniques of doc-
ument clustering are explained, as are evalua-
tion measures. Results do not come close to
the state of the art algorithms but the algo-
rithms are basic, conceptual and understand-
able.

1 Introduction

Clustering means analyzing a number of texts and
putting them together in groups where all documents
share some property or properties. Depending on the
purpose, this could mean different things. The texts
in a cluster could for instance all be of the same lan-
guage, subject, author or any other property. For the
analysis, there must be some measure that can be
made to examine the similarity between the docu-
ments and this measure can be more or less difficult
to design, depending on what property is to be used
for the clustering. For instance, it is a lot easier to
note a difference between two documents written in
English and Swedish respectively, than it is to tell
documents written by different workers within the
same organization apart.

1.1 Practical uses
The Internet is already an incomprehensibly big col-
lection of information with no supervision of con-
tent organization whatsoever. Clustering is one way

of grouping information so that related information
can be found easily. But there are also other uses for
these techniques. Work has already been done to use
clustering methods to group medical articles and in-
formation (Johansson, 2002). As information pools
grow and evolve over time, their previous partitions
may become obsolete and automatic text clustering
is a cheap and efficient way to update these parti-
tions (Rosell, 2005). Refined methods will possibly
be valuable in police work to find similarities be-
tween crimes described in reports from vast areas,
thus helping with identifying criminals that are very
hard to find today.

2 Clustering

To perform the clustering itself, what is needed is
of course a number of texts, a way to compare them
based on the relevant property and a desired number
of clusters to put them in. A commonly used way to
compare the similarity between texts is to represent
them with vector space models and then measure the
cosine similarity between the models. This is also
what has been done in this project. In this section,
the fundamentals of clustering are explained.

2.1 Corpus

The text collection used in the experiments is the
RCV1-v2/LYRL2004, a test collection based on the
Reuters Corpus (Lewis et al., 2004). It consists of
804,414 news articles, manually annotated with var-
ious meta data including categories such as Mar-
ket, Corporate/Industrial, Economics and Govern-
ment/Social. The collection is distributed as both
XML-formatted documents and in a tokenized ver-

sion, which is the one mainly used for the experi-
ments within this project.

2.2 Document representation
The vector space model is a representation of one
text in an arbitrarily large collection of texts. The
idea is to define a vector1 containing the same
number of elements as there are unique words
in the text collection. Every unique word has its
own index in the vector. Each document can then
be represented by a vector as long as the word
vector, but containing the respective document’s
word count of every word, rather than the words
themselves. Consider the following example:

D1: I have a white Aston Martin
D2: I have a blue Aston Martin
D3: Martin wants a white Aston Martin

The resulting word vector would be:
{I, have, a, white, Aston, Martin,
blue, wants}

And the documents could be represented by:
D1: {1, 1, 1, 1, 1, 1, 0, 0}
D2: {1, 1, 1, 0, 1, 1, 1, 0}
D3: {0, 0, 1, 1, 1, 2, 0, 1}

Note that the order of the words within the
respective documents is discarded in this repre-
sentation, which is why the vector space model is
sometimes described as a bag-of-words representa-
tion. With a large collection, it is easily understood
that the number of unique words and thus the length
of each document vector can grow unreasonably
large. To avoid this, the lemmatized and normalized
form of each word has here been used to construct
the word vector.

2.2.1 Term weighting
To increase the importance of words common in

one document but not in the others and accordingly
decrease the importance of words common through-
out the entire collection, tf-idf weights can be applied
to the word counts. This is a statistical measure used
to avoid excess influence from very common words

1Here, the term vector is used in a computer programming
context rather than a mathematical context.

such as ’the’ or ’a’. Without using tf-idf weights,
such words could play a significant role in the sim-
ilarity examination, which in turn could lead to an
erroneous result. The word count wt in the example
above is replaced by a weighted number calculated
as follows:

wt = tfi,j ·idfi =
ni,j∑
k nk,j

·log
|D|

|{dj : ti ∈ dj}|
(1)

where the first fraction is the tf-part consisting of
the count ni,j of the word i in the document j, that
is the numbers in the vectors in the example above.
The denominator is the total count of all words in
that document. Thus, the tf fraction is only based
on the importance of a specific word within the cur-
rent document. We can now understand the non-
abbreviated name, term frequency. The second frac-
tion is the idf-part, which stands for inverse docu-
ment frequency. It is a way to examine the impor-
tance of the word in the entire text collection. The
numerator |D| is the total number of documents in
the collection and the denominator is the number
of documents in the collection in which the current
word ti appears. The log value of the quotient is the
idf-value for the word (Salton et al., 1974).

In the tokenized RCV1-v2/LYRL2004 corpus, a
variant of tf-idf weighting has been used, called ltc
term weighting. The formula is a bit different and
looks like this:

wt = (1 + loge ni,j) · loge

|D|
|{dj : ti ∈ dj}|

(2)

with the same mappings as in (1) (Lewis et al.,
2004).

2.3 Similarity measure
My goal was to replicate the text categorization in
the corpus using automatic clustering and see how
close I could get to the manual annotation. Since I
wanted to measure the ’overall’ similarity between
the documents, I chose the standard way of measur-
ing document similarity, namely by calculating the
cosine similarity between the vectors.

The normalized document vectors constitute a
spanning set for an n-dimensional space Rn where n
is the length of the word vector. In the experiments,
in which only the stemmed and de-capitalized word
forms were used, the vectors spanned a space

R47,237. Each of the document vectors end in a point
in this space, and by calculating the distance be-
tween these points, one can get a measure of how
similar the documents are. The cosine similarity be-
tween two documents

−→
d1 and

−→
d2 is calculated with

the formula below:

sim(
−→
d1,
−→
d2) =

−→
d1 •
−→
d2

|
−→
d1| · |

−→
d2|

(3)

where the numerator is the dot product of the docu-
ment vectors and the denominator is the multiplied
lengths of the vectors (Manning et al., 2008). How-
ever, all of the document vectors in the corpus used
were length normalized, so the dot product alone
was enough to produce a similarity measure.

2.4 Clustering
With all documents represented in a comparable way
and with a similarity measure, the only thing remain-
ing is the clustering itself. There are several known
algorithms to use for clustering, all with different
performance regarding both speed and correctness.
For this project, the rather straightforward K-means
algorithm was chosen.

2.4.1 The K-means algorithm
With the K-means algorithm, the idea is to define

a number of clusters and then assign a random text
from the collection to every cluster. These texts are
now the initial centroid of every cluster. A centroid
is the mean vector of all the vectors that are currently
in the cluster. Whenever a new document is added to
the cluster ω the centroid−→c needs to be recalculated
and this is done as follows:

−→c ω =
1
|ω|

∑
−→
d ∈ω

−→
d (4)

Another measure used in the algorithm is the
residual sum of squares or RSS, which is a measure
of how well a centroid actually represents the texts
it is made of, that is all the texts in its cluster. It is
calculated as follows:

RSSω =
∑
−→
d ∈ωk

|
−→
d −−→c (ωk)|2 (5)

The K-means algorithm creates the initial clus-
ters, adds all the texts in the collection to their appro-
priate clusters and then starts ’moving’ the centroids

around by reassigning texts to other clusters and re-
calculating the centroids. The moving stops either
after a pre-defined number of iterations or when the
sum of the clusters’ RSS value reaches a pre-defined
threshold. In other words, the algorithm tries to as-
sign texts to the clusters in a way which maximizes
the centroids’ potential to represent the texts in their
respective clusters (Manning et al., 2008).

2.4.2 Downsides of unsupervised clustering
There is a major problem with clustering big col-

lections of text using the strategies described so far.
The problem is memory, or rather the lack of it.
The initial assigning of text to clusters is no prob-
lem, since the centroids can be calculated accumu-
latively without saving any information from earlier
documents other than the centroid itself, which of
course is a mean of all earlier documents. How-
ever, in order to perform the RSS calculations, the
algorithm needs to examine the full vectors of all
the texts in the cluster. A word vector has 47,237
elements of the type double. A double is 8 bytes,
which means that every vector occupies≈369 KB of
memory. Analyzing the Reuters Corpus would thus
require 283.1 GB of RAM. In other words, no regu-
lar computer can hold all of this information in the
random access memory, so the hard drive must be
used to store the information. This makes the clus-
tering so slow it is practically impossible to carry out
without a new approach. This is why unsupervised
clustering in this project was discarded in favor of
semi-supervised.

2.4.3 Semi-supervised clustering
The semi-supervised clustering techniques is

rather a way of categorizing than clustering. The dif-
ference might seem subtle, but is really quite clear.
Categorizing means that the texts in a collection are
sorted into given categories with specified proper-
ties, while unsupervised clustering tries to find pat-
terns that connect texts into clusters without any pre-
vious knowledge. Semi-supervised clustering is a
hybrid between these two procedures.

The algorithm requires some input consisting of
some of the texts from the collection that is sup-
posed to be clustered. These texts have to be man-
ually annotated with information about which clus-
ter(s) they should be part of. When these ’seeds’ are

planted, the centroids for the clusters are calculated
and the rest of the texts in the collection are put in
the cluster(s) they match best. No RSS calculations
are made, and thus the algorithm does not require as
much memory.

2.5 Our experiments

After realizing that we would not be able to use
unsupervised clustering without extremely slow
workarounds, we decided to try and classify all of
the texts into the four main categories of the Reuters
Corpus using semi-supervised clustering. The clus-
tering application creates four clusters and seeds
them with 100 texts each. Many of the texts in the
corpus belong to more than one of the four main cat-
egories, but to achieve a sufficient initial distance be-
tween the clusters, documents that belonged to no
more than one category were chosen as seeds.

2.5.1 Clustering semi-supervised

In the algorithm, all of the texts were compared
to each of the clusters, and if the euclidean distance
turned out to be below a certain threshold, the text
was considered to belong to that cluster. This meant
that each text could be put in more than one category.
This matched the way the texts were annotated from
the beginning. After a text was added to a cluster,
we decided not to recalculate the centroid, since this
would allow influence from texts that belonged to
other categories as well.

To find an appropriate threshold value, we experi-
mented with a range of different values until the one
that gave the best F1.0-score was found (more about
this in section 3.1). The best threshold we found for
the euclidean distance was 1.00722.

2.5.2 Revision one

The results were disheartening. When evaluating
the clustering results (as described in section 3) we
realized that even random clustering gave better re-
sults. We suspected that that the problem lied in
the comparison with the centroids created from the
seeds. Because of this, the algorithm was altered so
that instead of creating centroids from the seed doc-
uments, each document

−→
d was compared to all of

the seed documents S of each cluster ω and a score
σω was created from the sum of the similarity mea-

sures (see formula below).

σω =
∑
−→s ∈Sω

sim(
−→
d ,−→s) (6)

The document was assigned to the cluster ω if the
similarity score σω was greater than a specified
threshold.

3 Evaluation

The Reuters Corpus is manually annotated with cat-
egory information. This made it fairly uncompli-
cated to compare the clustering results with refer-
ence annotations and in this way evaluate the results.
F1.0-score measures were used for the evaluation.

3.1 F1.0-score

A commonly used measure of test accuracy is the
F1.0 score. To calculate it, we must first calculate
the recallR and precision P of the test. This is done
as shown in equations (7) and (8) below.

R =
C

C +M
(7)

P =
C

C + I
(8)

C is the number of documents correctly assigned to
a category, I is the number of documents that were
incorrectly assigned to a category and M is the num-
ber of documents that did not get assigned to a cat-
egory they should have been assigned to. We now
calculate the F1.0 measure as follows (Lewis et al.,
2004):

F1.0 =
2RP
R+ P

(9)

4 Results

4.1 State-of-the-art results

It is hard to find results that serve as valid candidates
for comparison, since this would require exactly the
same experimental setup. Lewis et al. has used
four different algorithms to categorize the collection
with impressive results, and they have been able to
reach F1.0-scores as high as around 0.9 (Lewis et al.,
2004), but this has been done with supervised tech-
niques rather than semi-supervised. Moreover, the

scores comprise categorization based on other prop-
erties than topics, such as for instance region cate-
gories. This renders the results useless for compari-
son, but they still give an idea of what performance
can be reached with state-of-the-art techniques.

4.2 Our results

The table below shows the evaluation results for the
different categories.

Category F1.0-score
Market .280
Economics .161
Corporate .500
Governmental .373

5 Conclusions

It is fairly obvious that the results are quite far from
the state-of-the-art ones. The reason for this is prob-
ably (at least partly) that the word vector is very
large in comparison to the individual text lengths.
The consequence of this is that every document vec-
tor contains mostly zero-value elements, which can
affect the performance of clustering algorithms in a
negative way (Lewis et al., 2004). There is a way
to milden these effects, though beyond the scope of
this project, called supervised feature selection. In
short, this means that only the words most relevant
for the individuality of the texts are used to create
the word vector, and the length of the word vector
can therefore be set arbitrarily. Probably the correct-
ness of the algorithm would have been better if this
technique was implemented.

References

Peter Johansson. 2002. Klustring av svenska texter.
Kungliga Tekniska Högskolan, Stockholm, Sweden.

David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li.
2004. RCV1: A New Benchmark Collection for Text
Categorization Research. Journal of Machine Learn-
ing Research, 5:361–397.

Christopher D. Manning, Prabhakar Raghavan and Hin-
rich Schütze. 2008. An Introduction to Information
Retrieval. Cambridge University Press, Cambridge,
England.

Magnus Rosell. 2005. Clustering in Swedish. Kungliga
Tekniska Högskolan, Stockholm, Sweden.

Gerard Salton, A. Wong and C. S. Yang. 1974. A Vec-
tor Space Model for Automatic Indexing (TR74-218).
Department of Computer Science, Cornell University,
Ithacha, NY.

