
POS Tagging Toolbox for UTF-8 Text

Bereket Z. Gichamo

Department of Computer Science, Lund

University,Lund,Sweden

bereket-

z.gichamo.471@student.lu.se

Ehsan Bouhendi

Department of Computer Scinece , Lund

University,Lund , Sweden

eh-

san.bouhendi.239@student.lu

.se

Abstract

This paper describes a Part-of-speech (POS)

tagging program which assigns a POS for a

word in UTF-8 format based on its frequency

in the training set. It is done as a project in a

Language Processing and Computational

Linguistics course.

1 Introduction

Annotation of words with grammatical catego-

ries is an important part of natural language

processing (NLP) system. More complex NLP

applications such as information extraction, syn-

tactic parsing, machine translation or semantic

field annotation often make use of Corpora

tagged with POS as prerequisite. Training of sta-

tistical models is also done by making use of

such Corpora.

 This paper is intended to discuss a POS tag-

ging toolbox (program) that is developed to POS

tag words whose characters are encoded in UTF-

8 format. The program is implemented using Ja-

va as a programming language and it has yielded

reasonable outputs when tested with the Corpora

of the English, Swedish and Persian languages.

2 POS tagging

POS tagging is an automatic annotation of words

with grammatical categories also called POS tags

[3]. POS tagger marks up the words in a text as

corresponding to a particular part of speech,

based on both its definition, as well as its con-

text. For example if a sentence,

I will give you the book.

is POS tagged correctly, it is tagged as:

I/pronoun will/modal give/verb you/pronoun

the/determiner book/noun.

But automatic and correct POS tagging is not

such easy since words can have more than one

POS tags in according to the context they are

used. For example the word will in the above

sentence can be used as a noun in another con-

text like in:

I used my will power.

So any POS tagger should have a way to deal

with such ambiguities. Different POS tagging

methods have been devised with different sug-

gested methods of marking a word with its cor-

rect POS tag.

2.1 Baseline POS tagger

A POS tagger that uses the frequency of a word

in a training set to mark it with its corresponding

part of speech is called Baseline POS tagger. It is

named so for the accuracy obtained using this

tagger is the minimal one (Baseline figure [3]).

Our POS tagging toolbox is a baseline. The base-

line figure can be improved using methods based

on either rules or statistics.

2.2 Rule based POS tagger

Rule-based POS tagger is a POS tagger that uses

symbolic rules designed by hand or derived au-

tomatically from hand-annotated corpora.

Rules

consider the left and right context of the word to

disambiguate, that is, either discard or replace a

wrong part of speech. The famous POS tagger

that uses this method is the Brill’s POS tagger

(1995) [3].

2.3 Statistical POS tagger

A Statistical POS tagger is a POS tagger that as-

signs the most likely tags to words in a sentence

based on probabilistic models applied on the se-

quence statistics which is automatically learned

from hand-annotated corpora [3].

3 Character encoding

Words whose POS tags we are concerned about

are formed from characters and these characters

are encoded in different character encodings

based on a format of symbols used in a language.

Among the various character encodings, UTF-8

is one of the Unicode Transformation formats

which uses 8 bit variable-width (which maximiz-

es compatibility to ASCII) [5].

 A POS tagger that is designed to handle texts

from different languages need to be designed

using a programming/scripting language that has

adequate facilities for such demands of encoding.

In our case, our POS tagger is designed to handle

the Persian language, which uses special symbols

as alphabets, in addition to the languages that use

Latin alphabets like Swedish and English.

 Persian/Farsi is the official Language of Iran

and Tajikistan and one of the main languages

spoken in Afghanistan. It has 32 letters. Al-

though its script is similar to Arabic, Persian lan-

guage has four more extra letters than Arabic i.e

(pe), (che) , (ge) and (zhe). Its grammat-

ical structure is Subject-Object-Verb(SOV) and

doesn’t have masculine and feminine variations

of words or pronouns[2].

 Bijankhan's Corpus from University of Tehran

is the only manually POS tagged corpus devel-

oped for Persian language. The corpus contains

almost 2.6 million of words which are manually

tagged with 550 different POS tags [4]. The

characters in the corpus are encoded using UTF-

8 encoding, and compound words like

(kasb o kar), which is ‘Business’ in its meaning,

are constructed by putting the single words sepa-

rated by single space. The normal word to word

separation is double space.

4 Implementation

The POS tagging toolbox is made up of the fol-

lowing four different parts which are discussed

in detail in the subsections 4.1 - 4.4. They are

 Graphical user interface: to access all of

the functionalities given by the toolbox

and display the results.

 Table generator: to generate a table to be

used by the tagger to tag input.

 Baseline tagger: to tag the input text

based on the table generated by Table

Generator.

 Evaluator: to evaluate the result by com-

paring the manually POS tagged words

in the test set with the POS tagged file

generated by the baseline tagger.

 All of these parts are implemented using Java

programming language which has good support

of different code pages (especially UTF-8),

strong data structures and good regular expres-

sion class libraries. The strong data structures in

Java have made the generated frequency table

easier for saving on a memory of a PC for a sub-

sequent faster search of a word and its corres-

ponding POS tag. The good facilities of regular

expressions have also simplified the tokenization

of words. The whole code is put under Appendix

A.

4.1 Graphical User Interface

The GUI application is selectable between table

generator and POS Tagger (Base line tagger).

Snap shots of the graphical user interface of the

tool box are depicted in figures 1 and 2. Figure 1

illustrates the toolbox when the Table generator

is selected while figure 2 illustrates the toolbox

when the tagger is selected.

Figure 1: table generator selected

Figure 2: tagger is selected

4.2 Table Generator

The table generator collects all the word-POS

combinations and their corresponding frequency

of their existence in the training set, and then it

assigns for each word a POS tag, eliminates less

used POS tag and assigning the maximum used

POS tag. It will store the result with a tab deli-

mited text format into a file which can be used

later by baseline tagger.

 Another feature of this application is ignoring

less frequent word by using a threshold value for

the frequency of a word to be included in the

table. Such low frequent word will be tagged by

the POS tag defined for \LFW. \LFW, Low Fre-

quent Words is a predefined word which is added

by the table generator at the end of the table to

tag words which are not in the training set. \LFW

will be tagged by the POS that has maximum

frequency in the training set. To select a POS tag

for \LFW, some other approaches can be used as

well, such as selecting the maximum POS tag

which is used for eliminated words, or selecting

the maximum used POS tag before removing less

used POS tag for each word (contrasted to the

first way on which the maximum POS tag was

selected after removing less used POS tag).

4.3 Base Line Tagger

Base line tagger loads the table generated in the

previous phase. The table file can be used for

tagging several files without generating the table

again. The tagger gives a POS tag for each word

based on the POS tag specified for that word in

the table file. The tagger uses \LFW POS tag for

words which are not found in the table. To read

the training/test set, the tagger uses the delimiter

defined by the user. This provides seemless ad-

justment when reading differently formatted

training/test sets.

4.4 Evaluator

Evaluator compares the POS tags given by

the tagger against their original POS tags in

the training/test set and evaluates the

resulting accuracy in percentage. The

accuracy of the Baseline tagger is calculated

as:

accuracy=
Nc

Total
× 100

Where Nc is the number of correctly tagged

words.

5 Result

The following results are found when the toolbox

is tested with the English, Persian and Swedish

languages. For English and Swedish the training

and the test sets are taken from the CONLL web

site [1].The sizes of the training and the test sets

are given in the Table 1 along with the percen-

tage of accuracy the baseline tagger has yielded.

Language Size of

Training

set

Size of

Test set

Accuracy

in %

English 211727 47377 88.81

Persian 2597937 87414 75.96

Swedish 191467 5656 79.66

Table 1

The most frequent POS tags that are used as

\LFW based on the given corpora are NNP,

N_SIN and NN for English, Persian and Swedish

respectively.

6 Conclusion

Studying different kinds of POS tagger and im-

plementing one of them (i.e. the baseline POS

tagger) has a plus towards better understanding

of one of the basic fields of natural language

processing. The requirements such as making the

POS tagger be able to handle UTF-8 encoding

have surfaced opportunities to learn more the

ways of dealing with real problems and examin-

ing the possible solutions that have shaped the

overall implementations.

 The results found in all of the three languages

are encouraging and in line with what is expected

from such POS tagger. For further improvements

of the resulting figures, using the rule-based or

statistical POS tagger is generally recommended.

For the Persian language, refining the corpus in a

way that reduces the number of tags is also be-

lieved to improve the obtained result.

Acknowledgment

Our hearty gratitude goes to Richard Johansson

for all his support and valuable pieces of advices

throughout the duration of the project.

Reference

Conference on Computational Natural Language

Learning. 2008. English and Swedish Corpora,

http://www.cnts.ua.ac.be/conll. Date: 08/12/20 at

20:00

John Andrew Boyle. 1966. Grammar of modern

Persian. WIESB.

Pierre M. Nugues. 2006. An Introduction to Lan

guage Processing with Perl and Prolog. Sprin-

ger.

Web site of Bijankhan corpus. 2008. Persian Corpus,

,http://ece.ut.ac.ir/DBRG/Bijankhan. Date:

08/12/20 at 20:00

Wikipedia, different authers. 2008. Unicode,

http://en.wikipedia.org/wiki/Unicode. Date:

08/12/20 at 20:00

http://www.cnts.ua.ac.be/conll
http://ece.ut.ac.ir/DBRG/Bijankhan
http://en.wikipedia.org/wiki/Unicode

Appendix A. Source Code

MostFrequent.java

import java.util.*;

import java.io.*;

public class MostFrequent {

 private static Hashtable<String, Integer> frequences;

 public static Hashtable<String, String> taggs;

 private String delimiter;

 private String trainFile;

 private String taggFile;

 private int wordIndex = 0;

 private int posIndex = 1;

 /**

 * Constructor

 * */

 public MostFrequent(String trainFile, String taggFile,String delimeter)

{

 frequences = new Hashtable<String,Integer>();

 taggs = new Hashtable<String,String>();

 this.trainFile = trainFile;

 this.taggFile = taggFile;

 setDelimiter(delimeter);

 }

 public static void main(String argv[]) throws FileNotFoundException,

IOException{

 MostFrequent instance = new MostFrequent(

"c:\\datn06\\data\\train.txt",

"c:\\datn06\\data\\en.tbl",

"\\p{javaWhitespace}");

 instance.extractTaggs();

 instance.exportTagTables();

 }

 public void extractTaggs()throws FileNotFoundException, IOException {

 extractFrequences();

 fillTaggs(0);

 }

 public void exportTagTables() throws FileNotFoundException,

 IOException {

 File outputFile = new File(taggFile);

 OutputStreamWriter outStream =

 new OutputStreamWriter(new FileOutput-

Stream(outputFile),"UTF-8");

 for (Iterator<String> it = taggs.keySet().iterator();

it.hasNext();){

 String word = it.next();

 outStream.write(word);

 outStream.write("\t");

 outStream.write(taggs.get(word));

 outStream.write("\n");

 }

 outStream.close();

 }

 private void fillTaggs(int eliminationThreshold) {

 Hashtable<String, Integer> countedWord = new Hashta-

ble<String,Integer>();

 Hashtable<String, Integer> countedPos = new Hashta-

ble<String,Integer>();

 for (Iterator<String> it = frequences.keySet().iterator();

it.hasNext();){

 String currentKey = it.next();

 String word = currentKey.substring(0,currentKey.indexOf("^"));

 String pos = currentKey.substring(currentKey.indexOf("^")+1);

 if (countedWord.get(word) == null){

 countedWord.put(word,1);

 taggs.put(word,pos);

 } else {

 if (countedWord.get(word) < frequences.get(currentKey)){

 countedWord.put(word,frequences.get(currentKey));

 taggs.put(word,pos);

 }

 }

 if (countedPos.get(pos) == null){

 countedPos.put(pos,1);

 } else {

 countedPos.put(pos,countedPos.get(pos) + 1);

 }

 }

 countedWord = null;

 String targetPos = "";

 if (eliminationThreshold == 0) {

 int maxCountedPos = 0;

 for (Iterator<String> it = countedPos.keySet().iterator();

it.hasNext();){

 String key = it.next();

 if (countedPos.get(key) > maxCountedPos){

 maxCountedPos = countedPos.get(key);

 targetPos = key;

 }

 }

 }

 //System.out.print(countedPos.size());

 countedPos = null;

 if (eliminationThreshold > 0) {

 Iterator<String> i;

 Hashtable<String,Integer> lfPoses = new Hashtable();

 int maxCount = 0;

 for (i = countedWord.keySet().iterator(); i.hasNext();) {

 String word = i.next();

 if (countedWord.get(word) <= eliminationThreshold){

 if (lfPoses.get(taggs.get(word)) == null){

 lfPoses.put(taggs.get(word), counted-

Word.get(word));

 } else {

 lfPoses.put(taggs.get(word), lfPos-

es.get(taggs.get(word)) + countedWord.get(word));

 }

 if (lfPoses.get(taggs.get(word)) > maxCount) {

 maxCount = lfPoses.get(taggs.get(word));

 targetPos = taggs.get(word);

 }

 taggs.remove(word);

 }

 } // FOR

 }

 taggs.put("\\LFW", targetPos);

 }

 private void extractFrequences() throws IOException, FileNotFoundExcep-

tion {

 frequences = new Hashtable<String,Integer>();

 taggs = new Hashtable<String,String>();

 File inputFile = new File(trainFile);

 InputStreamReader inputStream =

 new InputStreamReader(new FileInputStream(inputFile),"UTF-8");

 Scanner input = new Scanner(inputStream);

 int l = 0;

 while (input.hasNext()){

 String line = input.nextLine();

 String tokens[] = line.split(delimiter);

 if (tokens.length < 2)

 continue;

 String word = tokens[wordIndex];

 if (word.matches("(\\d+\\S*)+")){

 word = "00";

 }

 String pos = tokens[posIndex];

 if (frequences.get(word+"^"+pos) == null){

 frequences.put(word+"^"+pos,1);

 }else {

 frequences.put(word+"^"+pos,frequences.get(word+"^"+pos)

+1);

 }// end if*/

 }

 }

 /**

 * @param delimiter the delimiter to set

 */

 public void setDelimiter(String delimiter) {

 this.delimiter = delimiter;

 }

 /**

 * @return the delimiter

 */

 public String getDelimiter() {

 return delimiter;

 }

 /**

 * @param wordIndex the wordIndex to set

 */

 public void setWordIndex(int wordIndex) {

 this.wordIndex = wordIndex;

 }

 /**

 * @return the wordIndex

 */

 public int getWordIndex() {

 return wordIndex;

 }

 /**

 * @param posIndex the posIndex to set

 */

 public void setPosIndex(int posIndex) {

 this.posIndex = posIndex;

 }

 /**

 * @return the posIndex

 */

 public int getPosIndex() {

 return posIndex;

 }

}

BaseLineTagger.java

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.InputStreamReader;

import java.io.OutputStreamWriter;

import java.lang.*;

import java.util.Hashtable;

import java.util.Scanner;

public class ArffMaker {

 private static Hashtable<String, String> taggs;

 public static void main (String argv[]) throws FileNotFoundExcep-

tion, IOException{

 //readTaggsTable();

 makeHeader();

 }

 private static void makeHeader() throws FileNotFoundException, IOEx-

ception {

 File inputFile = new

File("c:\\datn06\\data","persian_train.txt");

 InputStreamReader inputStream = new InputStreamReader(new FileIn-

putStream(inputFile),"UTF-8");

 Scanner input = new Scanner(inputStream);

 File outputFile = new File("c:\\datn06\\data","persian_header.csv");

 OutputStreamWriter outStream = new OutputStreamWriter(new Fi-

leOutputStream(outputFile),"UTF-8");

 outStream.write("Word,POS\n");

 String wPrev = "BOS";

 //input.useDelimiter("((\\s\\s+)|\n)");

 String delimiter = "((\\s\\s+)|\n)";

 int counter = 0;

 while (input.hasNext() && counter <= 100000) {

 counter++;

 String line = input.nextLine();

 String tokens[] = line.split(delimiter);

 if (tokens.length < 2)

 continue;

 //String wCurr = input.next();

 String wCurr = tokens[0];

 /*if (taggs.get(wCurr) == null){

 wCurr = "\\LFW";

 }

 */

 String currPos = tokens[1];

 //input.next();

 if (wCurr.contains("\""))

 continue;

 //outStream.write("\"" + wPrev + "\"");

 //outStream.write(",");

 outStream.write("\"" + wCurr + "\"");

 outStream.write(",");

 outStream.write("\"" + currPos + "\"");

 outStream.write("\n");

 //if (wCurr.matches("[#.]"))

 // wCurr = "BOS";

 //wPrev = wCurr;

 }

 System.out.println("DONE.");

 outStream.close();

 }

 private static void readTaggsTable() throws FileNotFoundException {

 File inputFile = new File("c:\\datn06\\data","POS_taggs.txt");

 InputStreamReader inputStream = new InputStreamReader(new FileIn-

putStream(inputFile));

 Scanner input = new Scanner(inputStream);

 taggs = new Hashtable <String,String>();

 while (input.hasNext()){

 String word = input.next();

 String pos = input.next();

 taggs.put(word,pos);

 }

 }

}

import java.io.*;

import java.util.Scanner;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.UnsupportedEncodingException;

Eval_PosTag.java

public class Eval_PosTag {

 private int corrects = 0;

 private int incorrects = 0;

 private int total = 0;

 private String delimiter;

 private int wordIndex = 0;

 private int posIndex = 1;

 public void evaluate(String refPath, String resPath) throws Unsuppor-

tedEncodingException, FileNotFoundException{

 File refFile = new File(refPath);

 File resFile = new File(resPath);

 InputStreamReader refStream = new InputStreamReader(new FileIn-

putStream(refFile),"UTF-8");

 InputStreamReader resStream = new InputStreamReader(new FileInput-

Stream(resFile),"UTF-8");

 Scanner refInput = new Scanner(refStream);

 Scanner resInput = new Scanner(resStream);

 refInput.useDelimiter(delimiter);

 resInput.useDelimiter("(\t|\n)");

 while (refInput.hasNext() && resInput.hasNext())

 {

 String line = refInput.nextLine();

 String tokens[] = line.split(delimiter);

 if (tokens.length < 2)

 continue;

 String refWord = tokens[wordIndex];

 String refPos = tokens[posIndex];

 String word = resInput.next();

 String pos = resInput.next();

 if(refWord.compareTo(word)==0 && refPos.compareTo(pos)== 0)

 {

 corrects++;

 }

 else

 {

 incorrects++;

 }

 total++;

 }

 }

 public static void main(String [] args) throws FileNotFoundException,

UnsupportedEncodingException

 {

 Eval_PosTag instance = new Eval_PosTag();

 instance.setDelimiter("((\\s\\s+)|\n)");

 instance.evaluate("c:\\datn06\\data\\persian_test.txt",

 "c:\\datn06\\data\\persian_result.txt");

 System.out.println(instance.getIncorrects());

 }

 public String getDelimiter() {

 return delimiter;

 }

 public void setDelimiter(String delimiter) {

 this.delimiter = delimiter;

 }

 public int getCorrects() {

 return corrects;

 }

 public void setCorrects(int corrects) {

 this.corrects = corrects;

 }

 public int getIncorrects() {

 return incorrects;

 }

 public void setIncorrects(int incorrects) {

 this.incorrects = incorrects;

 }

 public int getTotal() {

 return total;

 }

 public void setTotal(int total) {

 this.total = total;

 }

 public int getWordIndex() {

 return wordIndex;

 }

 public void setWordIndex(int wordIndex) {

 this.wordIndex = wordIndex;

 }

 public int getPosIndex() {

 return posIndex;

 }

 public void setPosIndex(int posIndex) {

 this.posIndex = posIndex;

 }

}

