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Abstract

Applications dealing with textual infor-
mation often require knowledge of the
word semantic categories. Constructing
clusters manually is a task whose dif-
ficulty ranges from very hard to prac-
tically impossible, given the number of
possible meanings for all possible words.
In this paper we present an implemen-
tation for the Swedish language of the
UNICON (UNsupervised Induction of
CONcepts) algorithm, found in Lin and
Pantel (2001), along with some improve-
ments/optimisations. Its main advantages
are that it is an unsupervised algorithm and
is not specific to any language, and so the
implementation can be run on any large
corpus.

1 Introduction

Word clustering is the act of placing words into se-
mantically similar groups, so that words are clus-
tered according to their meaning or context. Such
a technique is useful when performing word dis-
ambiguation as we can understand the sense of
a word from the semantic group it belongs to.
Clustering can also be used for automated the-
saurus generation, that is linking together words
with a similar meaning. It takes large resources
to construct such clusters manually, mainly due
to the size of the corpus required to get a good
result. Thus, an algorithm to construct the clus-
ters automatically is required. Additionally due
to the effort required to semantically annotate a
corpus, an unsupervised algorithm is particularly
desirable. In this paper, we present an imple-
mentation of the UNICON algorithm, originally
found in Lin and Pantel (2001), along with some
improvements/optimisations and this is applied to
a Swedish corpus to form clusters of Swedish

words. This algorithm takes words from the cor-
pus and constructs clusters with specific features,
putting each word into the most suitable clusters.
The aim is for each cluster to represent a semantic
class and for it to be possible to assign words not
found in the corpus to clusters based on the con-
text it is found in.

Section 2 discusses previous work in this area.
In Section 3, we present a broad description
of the algorithm and how to construct the in-
put to UNICON . Section 4 is a presentation
of the algorithms used along with our improve-
ments/optimisations. Section 5 discusses our im-
plementation and its details and in Section 6 we
analyse the resulting clusters when our implemen-
tation was run on a Swedish corpus and how we
evaluated the quality of the clusters. Finally Sec-
tion 7 is a short discussion about future work.

2 Related Work

There is a vast amount of previous work in rela-
tion to clustering algorithms (both within language
processing and other areas of computer science).
Clustering algorithms usually belong to one of
the following three categories: Hierarchical, par-
titional and hybrid.

2.1 Hierarchical

Hierarchical algorithms merge and split clusters to
produce a nested partitioning of the data elements.
Due to the way they work, hierarchical algorithms
are quite efficient but they have the disadvantage
that they will not correct bad clustering decisions.
Well known hierarchical clustering algorithms in-
clude:

• AGNES - Starting with each of n elements
defining a cluster, the most similar clusters
are merged iteratively n−1 times (Kaufmann
and Rousseuw, 1990).



• DIANA - Starting with a cluster containing all
the elements, the largest cluster is split into
two iteratively (Kaufmann and Rousseuw,
1990).

2.2 Partitional

Partitional algorithms are probably the most effi-
cient clustering methods. They work by gener-
ating a single partitioning, often of a predefined
size, by optimising some criterion. It is typical that
they are run multiple times with different starting
points, in an attempt to get better results. Parti-
tional clustering algorithms include:

• K-means - Constructs K clusters using K
random words as centroids. Then assigns
each element to it’s “closest” cluster until
convergence, or for a predefined number of
steps (McQueen, 1967).

• Bisecting K-means - A divisive variation of
K-means (M. Steinbach and Kumar, 2000).

• K-menoids - Same as K-means, but at each
iteration a representative element is replaced
by a randomly chosen non-representative el-
ement if the criterion is improved (Kaufmann
and Rousseuw, 1987).

2.3 Hybrid

Hybrid algorithms consist of multiple phases,
combining the above two categories. Some hybrid
clustering algorithms are:

• Buckshot - Same as K-means, but the K ini-
tial words which form clusters are selected by
applying coverage-link to a random sample
of
√

n elements (D. R. Cutting et al., 1992).

• Birch - Constructs a structure called a CF-
tree containing all the data and then applies
any clustering algorithm on the leaves of the
CF-tree (T. Zhang and Livny, 1996).

• Cure - Clusters are represented by a set of
points that are initially well-scattered, and are
shrunk towards the center of gravity of the
cluster (S. Guha and Shim, 1998).

• Rock - An algorithm for clustering binary
and categorical data (S. Guha and Kyuseok,
1999).

• Chameleon - Combines the advantages of
CURE and ROCK while employing dynamic
modelling of clusters to improve clustering
quality (G. Karypis and Kumar, 1999).

• CBC (Clustering By Committees) - Similar
to the UNICON algorithm (discussed in de-
tail below), but using committees in place of
centroids (Pantel, 2003).

The UNICON algorithm is a hybrid cluster-
ing algorithm. It was chosen for this analysis of
the Swedish language due to its success with re-
gards to English language compared to its com-
plexity to implement. Another benefit was that it
is unsupervised, so it could be run on a semanti-
cally unannotated corpus.

Whilst most analyses of clustering algorithms
have been applied to English, several algorithms
have been applied to non-English languages, for
example Russian (Mitrofanova et al., 2007).

3 Dependency relationships

The structure of a sentence can be described us-
ing dependency relationships between the words
in that sentence (Tesnière, 1959). The relation-
ship between a pair of words can be represented
as a directed edge, with the head pointing to the
modifier. Furthermore each edge can be given a
function that describes the type of relationship be-
tween the two words. Using this representation a
sentence can be drawn as a tree with words being
the nodes and edges being the dependency rela-
tionships. The root of the tree is known as the root
of the sentence. An example sentence with its cor-
responding dependency tree is shown in Figure 1.
There are a number of algorithms to compute these
dependency relationships efficiently and to a high
accuracy for a given corpus, one example is found
in Nivre et al. (2004).

Each dependency relationship can be used to
form a triple (w, r, w′) where w is the head, w′

is the modifier and r is the function. We can then
use a hashtable to store the set of all dependency
triples, in such a way that efficient look-ups of all
triples related to a given word can be made. This
set is the input for the algorithm described in Sec-
tion 4. It is these dependency triples which allow
the sense of a word to be determined automati-
cally. The basic idea of the algorithm is to clus-
ter together words which share similar dependency
triples.



Figure 1: Dependency relationships for a Swedish sentence. The letters over the edges show the
function of the dependency relationship.

4 The algorithms and their
implementations

The main algorithm that we implemented was
UNICON (Lin and Pantel, 2001) and this in turn
used two other algorithms as sub-routines: com-
puting maximal cliques (Lin and Pantel, 2001) and
computing similarity matrices (Lin, 1998). All
three algorithms broadly followed their original
designs. However, we made improvements to al-
low some parts of the computations to be done us-
ing parallel processes. The two smaller algorithms
are described first, and the main algorithm after-
wards.

4.1 Similarity matrix algorithm

The similarity matrix is a measure of how simi-
lar each pair of words are and the algorithm to
construct it is described in Algorithm 1. The al-
gorithm is largely based on Lin (1998), but some
improvements were made. The input to the algo-
rithm was the set of dependency triples described
above and the output was for each word a list of
similar words with their similarity score.

The mutual information content I(w, r, w′) of
two words w and w′ for a function r is defined as,

I(w, r, w′) = log
||w, r, w′|| × ||∗, r, ∗||
||w, r, ∗|| × ||∗, r, w′||

where ||w, r, w′|| is the number of occurrences
of the dependency triple (w, r, w′) in the corpus,
and a ∗ represents a wildcard, e.g. (∗, r, ∗) means
all triples with function r. T (w) is the set of
(r, w′) for word w for which the mutual informa-
tion is positive. Finally the similarity between two
words w1 and w2 is

sim(w1, w2) =∑
(r,w)∈T (w1)∩T (w2) (I(w1, r, w) + I(w2, r, w))∑

(r,w)∈T (w1) I(w1, r, w) +
∑

(r,w)∈T (w2) I(w2, r, w)

This algorithm was particularly suited for mul-
tiple parallel computation and we did this in
three main areas. The frequency of each depen-
dency triple was counted in parallel. This was
done by each parallel process counting a part of
all the triples and the counts being merged af-
terwards. The information content of each de-
pendency triple I(w, r, w′) could be computed
independently from every other triple. Thus,
I(w, r, w′) for all triples could be computed using
parallel computations, with each parallel process
computing a part of all the mutual information val-
ues and the results being merged at the end. This
was also similarly true for T (w). Once I and T
had been computed for all words, the similarity
score between all pairs of words (with the same
part of speech (POS) tags) could be computed.
The similarity score for each pair of words could
be calculated independently from all other pairs of
words and so parallel computations could again
be used. Each parallel process would compute a
portion of all similarity scores and they would be
merged at the end.

4.2 Maximal cliques algorithm

The CLIMAX algorithm is almost the same as
described in Lin and Pantel (2001) and is shown in
Algorithm 2. However, instead of using a heuris-
tic to compute the maximal cliques we used an
exact algorithm, as described in Bron and Ker-
bosch (1973). Computing maximal cliques is NP-
Complete, however by using small graphs (setting



Algorithm 1 SIMMATRIX
Input: Set of dependency triples.
Count the frequency of each dependency triple
(w, r, w′) using parallel computations.
Compute information content of each triple,
I(w, r, w′) and T (w) using parallel computa-
tions.
for all pairs of words, w1, w2 with the same
POS tag. do

Compute sim(w1, w2) using parallel compu-
tation if the number of occurrences of w1 and
w2 is greater than some threshold.

end for
for all words, w. do

Compute a list of the N most similar words
to w, storing both the similar word and the
similarity score.

end for
Output: For each word a list of the N most
similar words and the similarity scores.

n small) this could be computed in a reasonable
amount of time, and generally produced better re-
sults. At the end of the algorithm cliques which
overlapped were removed. We decided that the
degree of overlapping could be set by the user to
ensure flexibility.

Algorithm 2 CLIMAX
Input: A similarity matrix M for a list of ele-
ments E and a number n.
for all e ∈ E do

Se ← e and top n most similar elements to e
Ce ← collection of all maximal cliques in Se

using (Bron and Kerbosch, 1973)
C ←

⋃
e∈E Ce

end for
Sort the collection of cliques in C in descend-
ing order of clique size and average similarity
among clique members.
Remove cliques in C that have some overlap
with higher ranked cliques.
Output: A list of clusters.

4.3 UNICON algorithm
The UNICON algorithm is the same as de-
scribed in Lin and Pantel (2001). The pseudocode
has been modified slightly to fit in with our imple-
mentation and is shown in Algorithm 3. The input
is the set of dependency triples described in Sec-

tion 3 and a number which decides how big the
graphs in CLIMAX are.

Algorithm 3 UNICON

Input: A set of dependency triples D and a
number n.
M ← SIMMATRIX(D) and set E to be the
list of words in M .
C ← CLIMAX(M,E, n)
repeat

for all c ∈ C do
Compute the centroid of c.

end for
M ′ ← SIMMATRIX(all centroids), the
similarity matrix between all the centroids.
S ← CLIMAX(M ′, C, n), where S is a
collection of subsets of C. Each subset is a
cluster of clusters.
for all elements in S do

Remove the clusters from C that belong to
the element and create a new cluster in C
that is the union of these clusters.

end for
until S is empty.
Compute the centroids of all the clusters in C
and add them as pseudo-words in D.
Find all the similar words, above a certain
threshold to the centroids, and add them to the
corresponding clusters and store their similarity
to the centroid.
for all words w ∈ C. do

Find all clusters w belongs to and the similar-
ities to the clusters.
Remove w from clusters where it’s similarity
score is lower than 90% of the highest simi-
larity between w and all clusters.

end for
Output: C, a list of clusters.

A centroid of a cluster is a pseudo-word which
is representative of the cluster. That is to say the
centroid’s features are the average of all the fea-
tures of all the words in the cluster. Algorithm 4
shows how a cluster’s centroid can be computed.
By computing the similarity score between a cen-
troid and a particular word we can see how similar
the word is to the cluster. This is important when
deciding membership of words in each cluster.

The output of UNICON is a list of clusters,
where each cluster has a unique name and POS,
and a list of the words which are included in each
of the clusters. The words in each cluster share



Algorithm 4 Compute centroid
Input: A cluster of words c, and a set of depen-
dency triples D.
Create the centroid, t, which initially has no de-
pendency triples associated with it.
for each word w in c. do

for each distinct dependency triple (w, r, w′)
of w do

Count the number of occurrences of the
triple.
Average this number by multiplying the
count by the number of occurrences of w
and dividing by the total number of depen-
dency triples for the cluster.
Append this number of dependency triples
(t, r, w′) to t.

end for
end for
Output: The centroid t.

the same POS with the cluster. It is also possible
to output the clusters’ centroids as pseudo-words,
which would allow words not in the corpus to be
placed into clusters (by computing the similarity
between the word and centroid).

5 Implementation

5.1 Preprocessing the corpus

The corpus that we ran the UNICON algorithm
on was the first half of the Proceedings of the
EU in Swedish (Koehn, 2005), which contained
around 16 million words. The corpus comes com-
pletely unannotated, so in order to get it ready for
input for our implementation we needed to trans-
form it into a form where the dependency relation-
ships had been calculated for each sentence. The
corpus was first tokenised and afterwards tagged
with suitable POS. We chose Granska (Domeij et
al., 2000) to do both of these as it is one of the
best POS taggers for Swedish. After this the POS
tagged corpus needed to be dependency parsed.
We used MaltParser 0.4 (Nivre et al., 2007) to
achieve this as it has a high accuracy for Swedish.
The machine that we used for these tasks had an
8-core 64-bit processor and 32G of RAM avail-
able. Granksa ran very fast (less than 2 hours for
16 million words), whilst Maltparser took consid-
erably longer (18 days for 16 million words). In
order to process the corpus in a reasonable amount
of time the corpus was split into smaller sections

and Maltparser was run in parallel on each section,
recombining the corpus afterwards.

5.2 Implementation details

For the actual implementation of the algorithms
described in Section 4 we used Python. The imple-
mentation for computing the similarity matrix was
optimised to use multiple processors as described
above. In SIMMATRIX we required that each
word appeared in the corpus at least 100 times be-
fore the similarity score between it and any other
word was computed. In CLIMAX we used the
Python NetworkX package1 to compute the maxi-
mal cliques, and this library used the algorithm de-
scribed in Bron and Kerbosch (1973). The size of
the graphs we used were n = 10, which ensured
the maximal cliques could be found in a reason-
able amount of time. The amount that two clusters
needed to overlap before we removed the smaller
cluster was 70%. In UNICON we set the mini-
mum required similarity score between a word and
a centroid to place the word into the cluster at 0.5.

Using the corpus and machine described
above, our implementation of UNICON re-
quired slightly more than 31 hours to produce
the clusters. Computing the similarity between
words (in the SIMMATRIX algorithm) took
the largest portion of the time. Due to RAM re-
strictions and the implementation of Python’s mul-
tiprocessing package (that the processes could not
share the data between themselves and had to keep
their own copy in memory), only two processor
cores could be run at the same time. Given larger
amounts of RAM or being able to share the data
in memory between parallel processes, we could
have run the program using more processors in
parallel and this would have greatly reduced the
total running time.

6 Results

An informal discussion of what was observed is
presented first, and afterwards there is a more
quantitative analysis.

6.1 Observations

The results when running the algorithm on the first
half of the proceedings of the EU in Swedish con-
sisted of 6827 clusters. Some of them were very
good, some were generally good but could contain
one or two words that fitted poorly, and some were

1Available from http://networkx.lanl.gov/



bad. Here are some examples of clusters which
vary in quality:

• Good - berört, redogjort, undvikit, belyst, be-
handlat, skildrar, undersökt, löst, formulerat,
debattera, angett, studera, diskuterat, anal-
yserat (touched, described, avoided, high-
lighted (a topic), considered/discussed, por-
tray, investigated, solved, formulated, debate,
reported, study, discussed, analysed)

• Good - avsky, misstro, misstänksamhet,
motvilja (disgust, distrust, suspicion, dislike)

• Partially good - värdesätter, uppskattade,
prägla (appreciate, appreciated, characterise)

• Partially good - anslagit, tilldelade, kontrak-
terat, avsatte (granted, alloted, contracted, al-
locate)

• Bad - välla, slumrade, missbrukas, växlas,
checka, sammanträder, loggade (well, slum-
bered, abuse, change, check, meet/assemble,
logged)

• Bad - inbjudas, vidhålla, renoverades (invite,
hold to, renovated)

Generally, clusters seemed to be small, consist-
ing of a few words. There were 808 clusters which
consisted of no words at all. It was reasoned that
a cluster with no members must have a poor cen-
troid as all words had some better cluster(s) to be-
long to. There were also 2222 clusters with only
one word as member, and these were also regarded
as poor clusters. Either too general that almost no
words are similar, or too specific to a single word.
Additionally, some clusters were of an extremely
large size and were so general that the words in-
side were rarely similar.

6.2 Evaluating the clusters
In order to assess the quality of the algorithm we
required a quantitative analysis method for the en-
tire output. To achieve this, we randomly picked
100 words that belonged to at least one cluster
with size greater than 1. For each of these words
a list was made containing all the clusters that the
word was a member of, which gave 191 clusters
in total. This list was handed out to two native
Swedish speakers and they were asked to assign to
each cluster one of the following scores:

1 The word does not fit well in the cluster.

Table 1: The number of clusters assigned each
score by the average of the two judges.

score appearances on average
1 116
2 5
3 9
4 61
total 191

2 It is hard to decide whether it fits or not.

3 It fits well in the cluster, but also fits some
other cluster that has been marked with a 4
already.

4 It fits well in the cluster, and the cluster could
not be merged with some other.

Using this scoring, it was possible for us to find
out if the clusters are generally good, bad or am-
biguous. This would then reflect on the quality of
the algorithm and implementation, and its ability
to correctly cluster words into their correct mean-
ings.

6.3 Results of the evaluation
The scoring from the two judges were averaged
and Table 1 shows the results of the evaluation.

As more than a third of the clusters were judged
as good (score of 3 or 4) we have shown that this
algorithm can be applied to a Swedish corpus and
obtain a reasonable proportion of sensible clusters.
However, around two thirds of the clusters were
marked as bad and this shows that there is still
room for improvement. One simple way would be
the use of a larger corpus which would improve the
quality of clusters. An impressive result was that
the merging of similar clusters seemed to work
very well, as there were a low number of clusters
with a score of 3.

The evaluation was unfortunately not as robust
as it could have been. Due to the nature of the
corpus it contains a lot of words that are political
or legal or used in a political/legal context. This
meant that meanings of the words that the evalua-
tors were not aware of could have been used, mak-
ing a cluster be marked as poor when it fact it was
good. This was suggested by fact that there were
several clusters which were marked as 1 by one
judge and 4 by the other. If judges whom were fa-
miliar with Swedish legal/political terms had con-



ducted the same evaluation the results would prob-
ably have been better. We can also note that the
output for this algorithm would be suitable for a
semi-automatic analysis, which could further im-
prove the quality of analysing the clusters.

7 Future work

The most important improvement to the imple-
mentation would be to optimise the code, both in
terms of memory usage and doing less compu-
tations, This would have allowed larger corpora
to be evaluated in a reasonable amount of time
(which would improve cluster quality). Not too
much could have been done to reduce the num-
ber of computations, but major improvements in
memory usage could have been made if some
lower level language like C could have been used.
However, this would have significantly increase
the coding effort required. Alternatively the im-
plementation could have been redeveloped to use
a database with efficient look-ups to store the data
(e.g. SQL database), instead of storing them into
less memory efficient data structures.

Other improvements could be made by imple-
menting a better (more complex) algorithm like
Clustering by Committees (Pantel, 2003), which
supersedes the UNICON algorithm. This would
give a higher quality of clustering using the same
corpus.

The Proceedings of the EU is available in mul-
tiple languages and it would be interesting to see
whether running this implementation on the other
languages would produce exactly the same clus-
ters, similar clusters or completely different clus-
ters to the ones from the Swedish version. If the
clusters were in fact similar for the different lan-
guages then possibly the clusters could be used to
translate texts. Assign the word to be translated to
a cluster in the original language, find the corre-
sponding cluster in the other language and choose
a suitable word within that cluster.
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