
A Dialogue System for Robots using VoiceXML

Louise Funke
Department of Computer Science

F03, Institute of Technology
Lund University, Sweden

f03lf@student.lth.se

Marc Bauer
Department of Computational Linguistics

Friedrich-Alexander University
Erlangen-Nuremberg, Germany

mcbauer@linguistik.uni-erlangen.de

Abstract

This paper describes a dialogue system,
based on speech, for interaction between
robots and humans. The dialogue system is
based on a form for a wood sign process.
The dialogue is implemented in VXML. A
file containing all variables is created for
further processing. The paper describes a
project done during the course ”Language
Processing and Computational Linguistics”
in autumn term 2007 at LTH.

1 Introduction

Robots in larger industries are often programmed to
only do one thing, but smaller firms dont have the
capital to invest in several robots, so a robot able
to perform different assignments would be of great
importance for these enterprises.

The European Union has realized this and taken
an initiative to create a project, the SME robot,
which is a cooperation between several enterprises,
e.g. ABB, and universities, e.g. Lund University.

The robot at LTH (see images in Appendix 6.1)
can for example solve sudokus and mill text and fig-
ures onto wooden plates. Our project is based on the
latter process, called the wood sign process.

A speech-controlled robot could be of great use in
the industry, as you dont need direct access to a com-
puter. Our task is to implement a speech-operated
dialogue system for interaction between robots and
humans, based on the form used in the SME-robot-
project for the wood sign process.

2 Dialogue Systems

A dialogue system is a system for interaction
human-machine. The dialogue system may be based
on text, speech, graphics or gestures.

In this case, the dialogue system is based on
speech and interaction between human and robot.
The robot is actually, in this early phase, a computer.
In the future the speech dialogue system could be
transferred to the robot itself.

The dialogue system for this human-robot inter-
action is based on a form for the wood sign process
(see image in Appendix 6.2). Since we start out from
a form, we have a limited number of questions and
for each question there are some options, so the pos-
sible answers are also known. The answers are to be
saved in a .txt-file for later processing.

2.1 Example dialogue
A dialogue may look as follow:

Robot: Welcome to the SME robot voice op-
erating system. Please choose one of the following
options. Wood sign process, startover or quit.
Human: (I’d like) wood sign process (please).
Robot: You have chosen the wood sign process. Do
you want to continue? Say yes to continue or no to
go back to the menu.
Human: Yes.
Robot: Step one, configuration of wood sign
variables. What kind of shape do you want? Sharp
corners, soft corners or cut corners.
Human: Soft corners (please).
Robot: You have chosen soft corners. Is that
correct?

Human: Yes.
Robot: Please give the corner diameter in millime-
tres for the soft corners.
Human: 40.
Robot: You have chosen 40 millimetres. Is that
correct?
Human: Yes.
Robot: Hole configuration. Please give number of
holes.
Human: 2.
Robot: You have chosen 2 holes. Is that correct?
Human: Yes.
Robot: Which pattern should be used?
Human: 1.
Robot: You have chosen pattern number 1. Is that
correct?
Human: Yes.
Robot: Data collected. Summarizing. You have
chosen soft corners with a 40 millimetres radius, 2
holes and pattern number 1. Is that correct?
Human: Yes.

3 VoiceXML

One system to realize the dialogue is the usage
of VoiceXML. VoiceXML is the world wide web
consortium’s (W3C) standard extensible markup
language (XML) for voice dialogues. (Wikipedia
VoiceXML, 2007).

3.1 History and features of VoiceXML

The first version of VoiceXML was developed by
AT&T, IBM, Lucent and Motorola who teamed up
to form one standard instead of the various ones they
were working on (W3C VoiceXML 2.0, 2004). It
was later handed on to the W3C who developed the
2.0 and 2.1 version used in our program.

VoiceXML is made to create audio dialogues
by using speech synthesis, recorded audio, speech
recognition and DTMF input and is capable of
recording audio input, transferring data and even
mixed initiative (2004). Just like with HTML files
and a web browser, all this happens through a voice
browser that interprets the VoiceXML files. This
voice browser has the needed speech recognition
software foundation already installed so there is no
need to program it for each task.

3.2 Structure of a VoiceXML document

The top level of each VoiceXML document is
<VXML> followed by a kind of dialogue, whether
a <MENU> or a <FORM>. Menus are, as the
term self describes, nodes of choices and forms give
and might expect information. If input is expected
there is a <FIELD> needed. Before continuing, the
field must be filled with a value of various predefined
types (e.g. string, number, boolean). Further im-
portant commands are if-else-elseif blocks, defined
grammars and subdialogues.

4 Implementation and Structure

The project’s program was finally developed and
tested in Tellme Studio R© . Tellme, a Microsoft R©
subsidiary, offers free usage of their voice browser.

At the moment the client has to connect via
SkypeTMor telephone to the Tellme Studio R© voice
browser which interprets the VoiceXML files.

The program is structured in the following parts and
also files.

• The menu, that guides to the main program and
later in the future to other parts.

• The main program with questions, confirma-
tions to answers, a summary and a transfer of
data.

• The CGI script that receives the data and stores
it to a text file.

The source code to those files are found in the ap-
pendix.

5 Conclusions

Working with VoiceXML and Tellme Studio
showed to have many positive features. VoiceXML
is very easy to program. Whoever has knowledge
how to program a website with HTML should feel
very comfortable with VoiceXML, both being a
derivate of XML. It is simple structured, readable
and has a steep learning curve. It is even extendable
with other known ”web-languages” as JavaScript
and Perl. And due to the fact that the voice inter-
preting software is already well preprogrammed
it is incredible advanced. The software listens to

keywords, so that the user can effectively talk in
whole sentences with the system.

But the system also has some flaws. In the cur-
rent state the system was very affected by surround-
ing noise. Using the program in its momentary state
in a working environment is impossible. Effective
use was only achieved by total silence and one sin-
gle person speaking, the user. There are howsoever
commands and tricks to reduce this affection. An-
other point is the missing flexibility. The program
has a strict line of commands. If something was not
anticipated by the programer the program itself will
either crash or repeat the same question over and
over again. Each working step is predefined by the
programmer and has to be changed by the program-
mer if the environment or task changes.

Acknowledgements

We would like to thank Pierre Nugues and Math-
ias Haage, dept. of computer science, LTH, for
their support and comments during this project. We
would also like to thank the SME-robot-team at
LTH.

References
Wikipedia.org, various authors. 2007. VoiceXML,

http://en.wikipedia.org/wiki/VoiceXML Date:
2007/12/17 at 21:00

W3C, Scott McGlashan et al.. 2004. Voice Ex-
tensible Markup Language (VoiceXML) Version
2.0, http://www.w3.org/TR/2004/REC-voicexml20-
20040316/ Date: 2007/12/17 at 21:00

Appendix

6 Pictures

6.1 SME robot

6.2 Input form

7 Sourcecode

7.1 The Menu

<?xml version="1.0" encoding="ISO-8859-1"?>
<vxml version="2.0">

<menu id="sme_menu">

<!-- menu prompt -->
<prompt>

Welcome to the S M E robot voice operating system.
Please choose one of the following options.

<break time="200ms"/>
<enumerate/>

</prompt>

<!-- links -->
<choice next="http://www.linguistik.uni-erlangen.de/˜mcbauer/

vxml/project071210.vxml" >(wood sign process)</choice>
<choice next="http://www.linguistik.uni-erlangen.de/˜mcbauer/

vxml/project_presentation.vxml" >(presentation mode)</choice>
<choice next="http://www.linguistik.uni-erlangen.de/˜mcbauer/

vxml/project_menu.vxml" > or (startover)</choice>

<!-- help and exception catching -->
<help>

You are in the menu?
<reprompt/>

</help>
<catch event="noinput nomatch">

Sorry. I didn’t get that.
<reprompt/>

</catch>
<catch event="noinput nomatch" count="2">

Sorry. I didn’t get that.
Please say <enumerate/>.

</catch>

</menu>
</vxml>

7.2 The main program

<?xml version="1.0" encoding="ISO-8859-1"?>
<vxml version="2.0">
<var name="calling_dialog" expr="’none’" />
<var name="user" expr="’unknown’" />
<var name="shape" />

<!--FORM __ confirmation-->
<form id="main">
<!-- boolean type field -->
<field name="yn" type="boolean">
<prompt>

You have chosen the wood sign process.
Do you want to continue?
Say yes to continue or no to go back to the menu.

</prompt>
<!-- help and exception catching -->

<help><reprompt/></help>
<catch event="noinput nomatch">

Sorry. I didn’t get that.<reprompt/>
</catch>
<catch event="noinput nomatch" count="2">

Sorry. I didn’t get that.
Please say yes to continue or no to go back to the menu.

</catch>
<!-- awaiting yes or no as an answer -->
<filled>
<if cond="yn">

<goto next="#var"/>
<else/>

<goto next="http://www.linguistik.uni-erlangen.de/˜mcbauer/
vxml/project_menu.vxml"/>

</if>
</filled>
</field>
</form>

<!--FORM __ variables-->
<form id="var">
<block>

<assign name="calling_dialog" expr="’main’"/>
<assign name="user" expr="’noah’"/>

</block>

<var name="vari" />
<field name="shape">

<!--shape-->
<prompt>

Step one, configuration of wood sign variables.
What kind of shape do you want?
Sharp corners, soft corners or cut corners.

</prompt>
<!-- grammar for predefined answers -->
<grammar type="application/x-gsl" mode="voice">

<![CDATA[
[

[(sharp corners) (sharp)] {<shape "sharp_corners">}
[(soft corners) (soft)] {<shape "soft_corners">}
[(cut corners) (cut)] {<shape "cut_corners">}

]
]]>
</grammar>

<help><reprompt/></help>
<catch event="noinput nomatch">

Sorry. I didn’t get that.<reprompt/>
</catch>
<catch event="noinput nomatch" count="2">

Sorry. I didn’t get that. Please say sharp corners,
soft corners or cut corners.

</catch>

</field>
<!-- calling subdialog for confirmation -->
<subdialog src="#confirmation" name="oResult">
<prompt> You have chosen <value expr="shape"/>.

Is that correct?
</prompt>
<filled>
<if cond="oResult.iconf">
<if cond="’sharp_corners’==shape">

<goto nextitem="holes"/>
<elseif cond="’soft_corners’==shape"/>

<goto nextitem="corner"/>
<elseif cond="’cut_corners’==shape"/>

<goto nextitem="corner"/>
</if>

<else/>
<clear namelist="shape"/>
<clear namelist="oResult"/>

</if>
</filled>
</subdialog>

<!-- holes -->
<field name="holes" type="number">
<prompt>Hole configuration. Please give number of holes.</prompt>

<help><reprompt/></help>
<catch event="noinput nomatch">

Sorry. I didn’t get that.<reprompt/>
</catch>
<catch event="noinput nomatch" count="2">

Sorry. I didn’t get that.
</catch>

</field>
<subdialog src="#confirmation" name="oHoles">
<prompt> You have chosen <value expr="holes"/> holes.

Is that correct?
</prompt>
<filled>
<if cond="oHoles.iconf">

<goto nextitem="pattern"/>
<else/>

<clear namelist="holes"/>
<clear namelist="oHoles"/>

</if>
</filled>
</subdialog>

<!-- pattern -->
<field name="pattern" type="number">
<prompt>Wich pattern should be used?</prompt>

<help><reprompt/></help>
<catch event="noinput nomatch">

Sorry. I didn’t get that.<reprompt/>
</catch>
<catch event="noinput nomatch" count="2">

Sorry. I didn’t get that.
</catch>

</field>

<subdialog src="#confirmation" name="oPattern">
<prompt> You have chosen pattern number <value expr="pattern"/>

Is that correct?
</prompt>
<filled>
<if cond="oPattern.iconf">

<goto nextitem="summary"/>
<else/>

<clear namelist="pattern"/>
<clear namelist="oPattern"/>

</if>
</filled>
</subdialog>

<!-- summary of given data
as boolean for validation
and transfering the data -->

<field name="summary" type="boolean">
<prompt> Data collected. Summarizing.
<if cond="’soft_corners’ == shape">

<prompt>
You have chosen <value expr="shape"/>
with a <value expr="corner"/> millimeter radius,
<value expr="holes"/> holes and
pattern number <value expr="pattern"/>.
</prompt>

<elseif cond="’cut_corners’ == shape"/>
<prompt>
You have chosen <value expr="shape"/>
with a <value expr="corner"/> millimeter height,
<value expr="holes"/> holes and
pattern number <value expr="pattern"/>
</prompt>

<else/>
<prompt>
You have chosen <value expr="shape"/>
with <value expr="holes"/> holes and
pattern number <value expr="pattern"/>
</prompt>

</if>
Is that correct?
</prompt>

<help>

<reprompt/>
</help>
<catch event="noinput nomatch">

Sorry. I didn’t get that.<reprompt/>
</catch>
<catch event="noinput nomatch" count="2">

Sorry. I didn’t get that.
Please say yes to continue or no to go back.

</catch>
<filled>
<if cond="summary">
<!-- transfering the data -->
<submit
next="http://alpha2k.ice-server.com/cgi-bin/project_output.cgi"
method="post" namelist="shape holes pattern"/>

<else/>
<clear namelist="shape"/>
<clear namelist="holes"/>
<clear namelist="pattern"/>
<clear namelist="oResult"/>
<clear namelist="oHoles"/>
<clear namelist="oPattern"/>

</if>
</filled>
</field>

<!--corners-->
<field name="corner" type="number">
<prompt>
Please give the corner diameter in millimeter
for the <value expr="shape"/></prompt>

<help>
<reprompt/>

</help>
<catch event="noinput nomatch">

Sorry. I didn’t get that.<reprompt/>
</catch>
<catch event="noinput nomatch" count="2">

Sorry. I didn’t get that.
</catch>

</field>
<subdialog src="#confirmation" name="oCorner">
<prompt>
You have chosen <value expr="corner"/> millimeter.

Is that correct?
</prompt>
<filled>
<if cond="oCorner.iconf">

<goto nextitem="holes"/>
<else/>

<clear namelist="corner"/>
<clear namelist="oCorner"/>

</if>
</filled>
</subdialog>
</form>

<!-- confirmation called by subdialog -->
<form id="confirmation">
<block>
<log>calling dialog is <value expr="calling_dialog"/></log>
</block>

<field name="iconf" type="boolean">
<catch event="noinput nomatch">

Sorry. I didn’t get that.
<reprompt/>

</catch>
<catch event="noinput nomatch" count="2">

Sorry. I didn’t get that.
Please say yes to continue or no to go back.

</catch>
<filled>
<log> Recognized <value expr="iconf"/> </log>
<return namelist="iconf"/>
</filled>
</field>
</form>

</vxml>

7.3 The CGI script

#!/usr/bin/perl

reading input
read(STDIN, $buffer, $ENV{’CONTENT_LENGTH’});
@pairs = split(/&/, $buffer);
foreach $pair (@pairs) {

($name, $value) = split(/=/, $pair);
$value =˜ tr/+/ /;
$value =˜ s/%([a-fA-F0-9][a-fA-F0-9])/pack("C", hex($1))/eg;
$value =˜ s/<!--(.|\n)*-->//g;
$in{$name} = $value;

}

opening file to write data into
open(INFO, ">>export.txt");
printing data in html format
to be inserted into a php page
print INFO "
Shape: $in{shape}

 Holes: $in{holes}

Pattern: $in{pattern}

";

close (INFO);

returning vxml output to client
print "Content-type: application/x-vxml\n\n";
print <<VXML;
<vxml version="2.1">

<form id="play_info">
<block name="block1">

<prompt>
Data has been written!
Disconnecting.

</prompt>
</block>

</form>
</vxml>
VXML

	DialogueSystemForRobots
	appendix

