
A Dependency Parser for Swedish

Jonas Pålsson
D98,

Lund Institute of Technology, Sweden
d98jpa@student.lth.se

Marcus Stamborg
D03,

Lund Institute of Technology, Sweden
d03mst@student.lth.se

Abstract

This paper describes an implementation of
a dependency parser for swedish using Jo-
akim Nivre’s algorithm and which features
to include in a feature set for a machine le-
arning algorithm to get the best possible
accuracy for the parser.

1 Introduction

This is our final project in the course Language
Processing and Computational Linguistics1 and
describes the work done to create a dependency
parser for swedish using the Java programming
language. The goal is to implement a working par-
ser but also to find a good feature set for the machi-
ne learning algorithm which is used.

Dependency Parsing is the act of parsing a sen-
tence in order to find the relations between the
words. Different algorithms exists for dependen-
cy parsing and we have chosen to implement Jo-
akim Nivre’s algorithm since it has reported the
best results for the swedish language. Instead of
using predefined rules we use the statistical clas-
sifier Weka2 to decide parse actions. In order to
find a good feature set for the machine learning al-
gorithm we ran simulations using several different
combinations of features which are all described
in the paper.

As test and train data we are using ”Talban-
ken05” which is a swedish corpus manually tag-
ged with part of speech, a Golden Standard corpus.
This specific version of ”Talbanken05” is the sa-
me used in CoNNL-X Shared Task: Multi-lingual
Dependency parsing (CoNLL-X, 2006). The train

1http://www.cs.lth.se/eda171
2Weka is a collection of machine learning algorithms used

for machine learning. http://www.cs.waikato.ac.nz/ml/weka

set contains approximately 11500 sentences and
the test set contains 300 sentences. In order to use
Nivre’s algorithm the corpus must be projective so
before the corpus is used it is projectivized using
nonproj2proj(nonProj2Proj, 2005). Note that no
support for projectivization or de-projectivization
is built into the program and this has to be done
manually if the corpus is non-projective.

2 Nivre’s Algorithm

Nivre’s algorithm extends the basic shift-reduce
algorithm by adding two parsing actions, ”Left
Arc” and ”Right Arc”. The algorithm uses an in-
put queue initialized with the current sentence and
a stack for temporary storing words to be proces-
sed. The following actions are used by the parser.

• Shift - shifts the first token on the input to the
top of the stack. Only performed if there are
more tokens on input and no other action is
currently possible.

• Reduce - removes the top token of the stack.
Only performed if the token has a head.

• Left Arc - creates an arc from the first token
on input to the first token on the stack and
performs a reduce. Only performed if the to-
ken on top of the stack does not yet have a
head.

• Right Arc - creates an arc from the first token
on the stack to the first token on input and
performs a shift. Only performed if the first
token on input does not yet have a head.

The dependency graph produced by the algo-
rithm is both projective and acyclic. For more in-
formation about the algorithm see (Nivre, 2003).



3 The Implementation

The main idea behind the implementation is to
train a Weka classifier using a Gold Standard cor-
pus. All machine learning algorithms need a fea-
ture set which is the facts the classifier needs to
make a decision. A feature can be for example the
part of speech or lexical value of tokens on the in-
put queue or stack.

The trained classifier is then used to decide
which action to use in Nivre’s algorithm. Our im-
plementation is divided into three steps.

3.1 Collect Data
Since we have a corpus which is hand annotated
(Gold Standard) it is possible to determine the ac-
tion sequence used to produce this corpus. This te-
chnique is called Gold Standard Parsing (Nugues,
2007) and the rules used are the following.

• If the first token on input has the token on top
of the stack as head, do Right Arc.

• else if the token on top of the stack has the
first token on input as head, do Left Arc.

• else if there exists an arc between the first to-
ken on input and any token in stack, do Re-
duce.

• else, do Shift.

The feature set for each step of the Gold Standard
Parsing is put in an arff-file which is a special for-
mat that Weka can read. Entries in this file descri-
bes the current state of the algorithm and which
action to choose in that state.

3.2 Train Classifier
Weka has a lot of different machine learning algo-
rithms and we chose to use the well known C4.5.
In weka this algorithm is called J48 and it was cho-
sen since it has a good time/performance ratio, ie
execution time is low enough for continuous tes-
ting. A better algorithm could be used but the long-
er execution time made that impossible.

The result of this step is a model (trained classi-
fier) that can be used in the main program.

3.3 Parse
In this step the previously trained classifier is used
to determine the head for each word in a sentence.
This is done with Nivre’s algorithm and the clas-
sifier decides which action to use in each step. To

be able to compare different feature sets, and to be
able to measure the results, a ”correctness”-score
is calculated by dividing the number of words that
were assigned a correct head with the total number
of words.

4 Feature Sets

In order to get a good result from the parser the-
re are two main components that can be chang-
ed, namely the classifying algorithm and the fea-
ture set. Since it is already decided that the C4.5
algorithm is to be used the only way we can af-
fect the result is by choosing different feature sets.
Without a solid background in computational lin-
guistict we found it difficult to determine which
features to use. Therefore we chose to implement
a program that tested several combinations of the
features we chose to use. The feature values used
are Part Of Speech (POS) and the lexical value of
a word (LEX). These values can be chosen from
words on the input queue and the stack. The no-
tation 1.input refers to the first token on the input
and 1.stack to the top token of the stack. The spe-
cial case 0.input refers to the word immediately
before 1.input in the original sentence. As a last
measure to try to increase performance the POS
of the leftmost and rightmost children (LMC and
RMC) of 1.stack and the POS of the leftmost child
of 1.input are also included. The children are deri-
ved from the dependency graph.

The feature set included in the simulations are
combinations of:

• 1 to 6 words from input, POS

• 1 to 6 words from stack, POS

• 1.input LEX and 1.stack LEX

• 1.input LMC and 1.stack LMC and RMC

• 0.input POS

Every feature set also contains constraints to mo-
del valid actions in the current state of the parser.

The results of the tests will be discussed in
chapter 5, Results and Discussion.

5 Results and Discussion

We have chosen not to include results where lexi-
cal values were used since this always resulted in
a lower score. This is the case both when using the
lexical value of all used words in input and stack



and when only using the lexical value of 1.input
and 1.stack. We belive this might be a limitation in
the classification algorithm used, C4.5, since using
lexical values possibly generates too many states
for each feature. Better results might be achieved
using a different algorithm such as State Vector
Machines. The complete results for the following
tests can be found in Appendix A.

5.1 Input and Stack
In this test every combination where the window
size of stack and input varies between 1 and 6
was evaluated. The best result was obtained when
using 6 tokens from the stack and 4 tokens from
the input which resulted in a ”correctness”-score
of 0.7986. This is a very basic feature set that ob-
viously can be improved.

5.2 Input, Stack and Children
When using children we obtained the best results
using 2 tokens from the stack and 5 from the input
which resulted in a ”correctness”-score of 0.8136.
Looking at the results one can see that overall
results are improved by approximately 1-2% and
that a large input window now is much more im-
portant than a large stack window.

5.3 Input, Stack and Previous Input
First of all, this is the single best additional feature
we have added to the basic feature set. The score
increased to 0.8186 and overall almost all combi-
nations of window sizes gave a good result when
using this feature. The importance of stack and in-
put is about the same in this case and the score
table is very balanced with few deviations.

5.4 Input, Stack, Children and Previous
Input

Last we tried all of the features together resulting
in a ”correctness”-score of 0.8142. Once again a
large input and small stack is the best combination
when using children. Using children by itself im-
proved the score a bit, using previous input by it-
self increased the score significantly but using the-
se two features together didn’t improve the score
even more, instead the score landed in between the
two previous ones.

6 Future Improvements

There is a lot that can be improved given enough
time to implement the changes and most of all time
to do more simulations and classifying.

First of all a better machine learning algorithm
can be used, such as SVM since it has proven to be
significantly more effective than C4.5 but with the
drawback that it takes a very long time to execute.

Another area of improvement is to try other fe-
atures in the feature sets. For example one could
use siblings in the graph, try to increase the win-
dow size and to try more combinations from the
original sentence. All of this will require a consi-
derable amount of computing power so access to
a scientific computer grid network would be a big
advantage.

References
CoNLL-X Shared Task: Multi-lingual Dependency

Parsing. 2006. http://nextens.uvt.nl/˜conll

nonProj2Proj. 2005.
http://w3.msi.vxu.se/˜nivre/research/proj/0.2/doc/
Proj.html

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. Växjö University, Väx-
jö, Sweden.

Pierre Nugues. 2007. Language Processing and Com-
putational Linguistics - Lecture 11 - Parsing Techni-
ques. Lund Institute of Technology, Lund, Sweden.



A Results




