
A Grammar Checker for English

Joakim Simonsson
Lund Institute of Technology, Sweden

joakim@joakims.com

Frode Thorsén
F02, Lund Institute of Technology, Sweden

f02ft@student.lth.se

Abstract

This project report is about how a simple but
scalable grammar checker for the English
language can be implemented. All steps
from the plain text to the input for the gram-
mar checker are briefly explained. The ideas
and implementation of the grammar checker
and its possibilities and limitations are de-
scribed in more detail. The performance and
results of the grammar checker are evaluated
and discussed.

1 Introduction

The idea to have a computer program check the
grammar of a text as you write is as old as the first
word processors themselves. The first attempts and
implementations trying to handle the problem used
large dictionaries of phrases and sentences with ex-
amples of grammatically incorrect text. The prob-
lem with this approach is that very large dictionaries
are needed - one entry is needed for each possible er-
ror. Grammatical rules operates on relation between
words - not on the word themselves. This means
that the number of possible errors increases expo-
nentially with each new word the system can han-
dle. To get better results, more complex rules than
just error matching must be used. Thus making an
analysis on a deeper level - checking relations be-
tween words. This is the way commercially avail-
able grammar checkers work.

The goal of this project has been to create a gram-
mar checker that produces results that can be tested
and compared with existing systems. A simple

grammar checker that uses manually written rules
acting on relation between words has been devel-
oped. In the development of the program, scalabil-
ity and the possibility to easily add more rules have
been important factors. The grammar checker han-
dles only two types of rules at the moment, but the
system is easily scalable.

The program takes a dependency parsed text as
input. To make the dependency parsing, the text first
needs to be processed. How this is done is explained
in section 2 below. Then a more detailed description
of the grammar checker follows in section 3.

2 Text Processing

The grammar checking process consists of several
steps. The purpose of these steps is to generate
a part of speech tagged text with dependency rela-
tions. The text that is going to be grammar checked,
hereafter referred as the user text, is tokenized, part
of speech tagged, and finally parsed for dependen-
cies.

A bash script that we have made automates these
steps. This script takes the user text as an argument.

2.1 Text Tokenization

The purpose of tokenizing a text is to split adjoin-
ing elements, such as punctuations and verb contrac-
tions. The result of this splitting is a text where each
element is more precise. For example, the verb con-
traction ”You’re” is split into ”You” and ”’re”, one
noun and one verb respectively.

We use a script made by Robert MacIntyre to do
the tokenization. The script produces Penn Treebank
tokenization.



2.2 Part of Speech Tagging

To give each word its correct part of speech tag, we
use MXPOST. This program takes a tokenized text
as input and outputs a part of speech tagged text1 .
MXPOST comes with a pre-trained model that we
use.

2.3 Dependency Parsing

To create dependency relations between words, we
use the MALT parser. We wrote a Perl script that
converts the output of MXPOST into a format that
is suitable for the MALT parser. We configured the
MALT parser so it outputs the dependency relations
in an XML format2.

As with MXPOST, MALT parser also comes with
a pre-trained model. We use this model in our tests.

3 Grammar Checker

The user text is now part of speech tagged and de-
pendency parsed. This is what is needed to com-
plete the analysis of the text. Now the relations of
the words in the text can be extracted and checked.

The part of this project that evaluates grammati-
cal relations is written in Java. It takes dependency
parsed text as input (section 3.2) and evaluates rules
written in XML (section 3.3). The XML rules gives
an opportunity to easily specify grammatical rules,
however there are errors that cannot be formulated in
such a way the XML rules are defined (section 4.3).
The following sections explains in detail how the
grammar checker works.

3.1 Basic Idea

The basic idea of the grammar checker is to analyse
the relation between two words. Every relation is
defined by four possible parameters for each word.
These parameters are extracted from the dependency
parsed text. The parameters areid, form,postag
anddeprel. Theid parameter specifies at which
position in the sentence the word occurs. Theform
parameter is the actual lexical word. Thepostag
parameter is the part of speech tag of the word, and
the deprel parameter is the dependency relation
of the current word to its head. A relation is thus

1See appendix A.1.2 for an example of a part of speech
tagged text.

2See appendix A.1.3 for an example of a dependency parsed
text.

Figure 1: An illustration of a sentence object used
by the grammar checker

defined by the four parameters of one word, and the
four parameters of the head of the first word - giv-
ing a total of eight variables for each relation. By
defining which relations that areillegal in the XML
rules (section 3.3), the program can search for such
relations and return an error in such case.

3.2 Program

First the XML rules are parsed by the program us-
ing a standard Java Open Source XML parser3 and
aRuleSet object is created that contains the set of
rules that should be used in the analysis. The depen-
dency parsed text is then read by the program with
the same XML parser andWord andSentence
objects are created (see figure 1). EachSentence
object consist of a number ofWord objects and each
Word has four variables specifying the four param-
eters of the actual word. TheWord object also has a
function returning the words head.

The rules are now applied to one sentence at a
time, extracting each word and its head and the rela-
tion defined by their parameter values. Each relation
is compared with all illegal relations, and if an illegal
relation is matched, the error message defined in the
rules is returned by the program, and the program
continues with the rest of the relations.

3SAX Parser, Xerxec Java Parser 1.4.4, Released under the
Apache Software License



3.3 XML Rules

The XML rules are defined by the syntax given in
appendix A.2.1. Each rule consists of arule tag
that has three identifiers:id, name andmessage
that specifies the id, name and error message of the
rule. Every rule consists of one ore manyillegal
tags, by which the illegal relations are defined. The
illegal tag has eight identifiers specifying the
four parameters of the first word and the four pa-
rameters of the first words head thus defining a rela-
tion. Two examples of rules are given in appendices
A.2.2 and A.2.3 defining one rule for subject verb
agreement and one rule for pronoun verb agreement
(in present tense).

4 Performance

In our system, the time to perform grammar check-
ing on a few sentences (10-20) takes between 5 and
10 minutes: The MALT parser takes between 5 and
10 minutes, other programs in total, takes less than
5 seconds. Clearly, MALT parser is the bottleneck
and disqualifies to be part of a real-time grammar
checker.

Since integrated grammar checkers in word pro-
cessors initialize only once, we could omit the time
it takes for each program to initialize, and only count
the actual execution time, to give a more fair com-
parison. In this case, the execution time for all pro-
grams except the MALT parser would decrease to
just a few seconds, but the MALT parser still would
take minutes to process its data.

4.1 Results

The texts that we used to test the correctness of our
grammar checker were both texts copied from the
web and texts that we wrote on our own. The texts
from the web were mainly copied from online news-
papers and Wikipedia. We assumed that these texts
were free from grammatical errors.

We injected grammatical errors in the texts and
used our system to find these. The idea of the in-
jected errors was to test the rules that we wrote for
our grammar checker - subject verb agreement and
pronoun verb agreement errors.

In total, we injected 60 errors in the different texts.
Our grammar checking system finds 29 of these er-
rors. It also reports one additional error incorrectly,

i.e. one grammatically correct sentence is reported
as an error. The correctness of our grammar checker
is slightly below 50%.

The reason why our grammar checking system
does not detect all of the injected errors is because
of that the text is incorrectly part of speeched tagged
and dependency parsed. An error in the part of
speech tagging often leads to an error in the depen-
dency parsing aswell. To improve the results, a more
accurate part of speech tagger (or a different training
set for the part of speech tagger) would increase the
over all correctness in our grammar checking sys-
tem.

4.2 Comparison with Microsoft Word

We found it interesting to compare our system with
the grammar checker in Microsoft Word. We gram-
mar checked the same error injected texts with
Word’s grammar checker and it found 33 of the 60
errors. This is slightly better. Word found errors that
we did not find. However, what we found notewor-
thy was that our system found errors that Word did
not find. See Table 1 for results.

4.3 Limitations

All steps in the analysis of the text are limited by
the performance of the specific program that handles
each step. The part of speech tagger is not perfect,
and the errors it makes are inherited by the depen-
dency parser. The dependency parser itself is not
perfect and makes additional errors. The XML rules
are limited to single relations between two words,
and does not handle multiple relations and coher-
ence. All these factors limits the ultimate perfor-
mance of the grammar checker.

The run time of the system is also unfeasible for a
real time application.

5 Conclusions and Future Work

In this project we have shown how a working gram-
mar checker can be constructed. Even though the
grammar checker only handles two types of errors,
the system is easily extendable by writing more rules
in the XML format defined in appendix A.2.1. We
have also automated the steps necessary from user
text to a dependency parsed text ready for analysis.
The main limitation in the working system is the ex-
ecution time for the dependency parsing. This could



Injected Errors Word Our Comment
2 1 2
5 1 1 Different errors
5 1 1 Same error found
12 5 5 Our incorrectly finds one error
23 17 15
13 8 6 Different errors

Table 1: Errors found in texts. Performance comparison withMicrosoft Word. The tests have been made on
texts with artificially inserted errors.

be improved and optimised by using another depen-
dency parser, but this is not within the scope of this
project. More rules can easily be added and eval-
uated, but our focus has been to create a working
system that could be evaluated and compared with
other systems on simple test cases.

The limitation of the XML rules could be im-
proved by defining more elaborate rules. However
we have shown that descent results can be acquired
by using only the limited, single relation rules. In
these cases, the system performs competitively com-
pared to Microsoft Word, on finding the errors de-
fined by the XML rules.

6 Acknowledgements

The authors wish to thank Pierre Nugues for super-
vision and support and Johan Hall for e-mail corre-
spondence.



A Appendix

A.1 Text Processing Examples

A.1.1 Original Text

The dogs are hungry.
The dog is hungry.
I am tired.
I is tired.

A.1.2 Tokenized and Part of Speech Tagged
Text

The_DT dogs_NNS are_VBP hungry_JJ ._.
The_DT dog_NN is_VBZ hungry_JJ ._.
I_PRP am_VBP tired_VBN ._.
I_PRP is_VBZ tired_VBN ._.

A.1.3 Dependency Parsed Text

<sentence id="1" user="MaltParser" date="2007-11-27">
<word id="1" form="The" postag="DT" head="2" deprel="NMOD"/>
<word id="2" form="dogs" postag="NNS" head="3" deprel="SUB"/>
<word id="3" form="are" postag="VBP" head="0" deprel="ROOT"/>
<word id="4" form="hungry" postag="JJ" head="3" deprel="PRD"/>
<word id="5" form="." postag="." head="3" deprel="VMOD"/>

</sentence>
<sentence id="2" user="MaltParser" date="2007-11-27">

<word id="1" form="The" postag="DT" head="2" deprel="NMOD"/>
<word id="2" form="dog" postag="NN" head="3" deprel="SUB"/>
<word id="3" form="is" postag="VBZ" head="0" deprel="ROOT"/>
<word id="4" form="hungry" postag="JJ" head="3" deprel="PRD"/>
<word id="5" form="." postag="." head="3" deprel="VMOD"/>

</sentence>
<sentence id="3" user="MaltParser" date="2007-11-27">

<word id="1" form="I" postag="PRP" head="2" deprel="SUB"/>
<word id="2" form="am" postag="VBP" head="0" deprel="ROOT"/>
<word id="3" form="tired" postag="VBN" head="2" deprel="PRD"/>
<word id="4" form="." postag="." head="2" deprel="VMOD"/>

</sentence>
<sentence id="4" user="MaltParser" date="2007-11-27">

<word id="1" form="I" postag="PRP" head="2" deprel="SUB"/>
<word id="2" form="is" postag="VBZ" head="0" deprel="ROOT"/>
<word id="3" form="tired" postag="VBN" head="2" deprel="PRD"/>
<word id="4" form="." postag="." head="2" deprel="VMOD"/>

</sentence>



A.2 XML Rules

A.2.1 Syntax

<rule id name message>
<illegal id word postag deprel headId headWord headPostag headDeprel></illegal>
<illegal id word postag deprel headId headWord headPostag headDeprel></illegal>
...

</rule>

A.2.2 Subect Verb Agreement Error

<rule id="SVA" name="Subject Verb Agreement"
message="Possible Subject Verb Agreement Error">

<illegal postag="NN" headpostag="VBP" deprel="SUB"></illegal>
<illegal postag="NNS" headpostag="VBZ" deprel="SUB"></illegal>

</rule>

A.2.3 Pronoun Verb Agreement Error

<rule id="PVA" name="Pronoun Verb Agreement"
message="Possible Pronoun Agreement Error">

<illegal word="I" postag="PRP" headpostag="VBZ" deprel="SUB"></illegal>
<illegal word="you" postag="PRP" headpostag="VBZ" deprel="SUB"></illegal>
<illegal word="he" postag="PRP" headpostag="VBP" deprel="SUB"></illegal>
<illegal word="she" postag="PRP" headpostag="VBP" deprel="SUB"></illegal>
<illegal word="it" postag="PRP" headpostag="VBP" deprel="SUB"></illegal>
<illegal word="we" postag="PRP" headpostag="VBZ" deprel="SUB"></illegal>
<illegal word="they" postag="PRP" headpostag="VBZ" deprel="SUB"></illegal>

</rule>



A.3 Example Text

In the following example, errors found by our
grammar checker are bold face.

It is hard to find good examples. So we decided
to construct some examples that shows the power
of our grammar checker. All students here at LTH
drinks lots of coffee.I alsowants to eat today, but
I has no food left. The tables fall down. Thetables
falls down. How come Word do not find an easy er-
ror like this? Our program find it easy! Problems
of this sort are hard to find. But a problem of this
sort is hard to find. How many sentencesdoes we
need?I does not know. But ask Joakim,he know for
sure!I supposes this are a good way to start. Some-
times there is more than one error in a sentence. Just
becauseit seem wrong, it’s not definitely wrong. I
can come up with many sentences that seems to be
wrong at first sight. This is the last sentence I can be
bothered to writes. Did you spot the errors?


