
Semantic role labeling using a neural network

Jens Hellström

January 14, 2008

Abstract

This paper presents a try at determining semantic roles with a neural network. The function

learnt is a mapping between words and semantic roles. This direct mapping means faster

execution speed and less data structures and stages involved than in conventional semantic role

labeling software.

1 Introduction

Semantic role labeling is needed for the success

of any application dealing with information ex-

traction and question answering. Depending

on the application there are constraints con-

cerning the time needed to determine roles and

the size of the textual domain the application

works in. A dialog system might for example

have a limited domain but need for fast an-

swers. Contrary to this are web crawlers that

deal with large amounts of data but where the

time constraint can be less stressed. There is

also the problem of extracting features from

the data to be used in the learning algorithm.

Semantic role labeling software does in general

divide the problem into several layers. Each

layer is a subproblem handled separately. An

example is a system that uses a syntactic parse

tree to extract features, and then gives these

features to a classi�er which does the actual

semantic labeling. Between the syntactic and

semantic layers there may be an arbitrary num-

ber of layers handling disambuiguation, coref-

erences and so on. These kind of systems will

typically be slow. To learn a function mapping

directly from words or syntactic labels onto se-

mantic roles without the need of a parse tree

would be much faster. This is what is tried

with the neural network approach. The neural

network can even be constructed to do feature

extraction and by that further simplifying the

problem. Advantageous with letting the neural

network do the feature extraction is that only

the features necessary for learning the function

will be needed. Which features to use is a com-

mon problem when dealing with sparse data

and machine learning.

The role labling presented in this paper

is a simpli�ed version of semantic role labling.

Roles are only determined for the �rst predi-

cate in sentences and the assumption have been

made that if these roles can be functionally de-

termined, all roles could be determined by fur-

ther improvements and extensions of the appli-

cation. There is no part of speech tagging of

the input so the input need already be tagged

correctly. The part of speech tag set is the penn

tree bank and the semantic roles are from prop-

bank. Because of the relaxation of the problem

the application is in no way ready to use for se-

mantic role labeling but the results give some

indication that extended it could be.

2 Implementation

2.1 Data

The example data �le goes through processing

before it can be used for training. The original

1



data is row based and divided into sentences

by blank lines. Each sentence is a sequence of

rows, where each row holds a word, that words

part of speech and its semantic roles in rela-

tion to the predicates in the sentences. Because

of limited hardware resources, the neural net-

works have only been trained with processed

portions of the original example data �le.

2.2 Architecture

Each word gets labeled separately. So there

need to be as many runs through the network

as there are words in the sentence to label each

word in a sentence. Since words are lexical

and neural networks deals with real numbers,

the words need to be represented with inte-

gers. Each numerical representation will be a

member of a subset of the natural numbers.

To make this subset controllable in size, words

with any of the verb part of speech tags will

get the same numerical representation. The

same goes for nouns, adverbs, adjectives and

numbers. Each word has a window around it-

self of changable size. If there aren't enough

words to the left or the right then there will

be out-of-sentence markers in these positions

of the window. As numbers lack dimension,

each word (actually its numerical representa-

tion) in the window will be translated into a

one-hot-binary vector of predetermined size be-

fore being fed to the neural network. So it is

a window with a one-hot-binary vector at each

position that is being fed to the �rst layer of

the network. See Figure 1 on the next page for

a picture of the architecture.

First layer

The �rst layer extracts feature vectors from

the window of one-hot-binary vectors. That

means that each one-hot-binary vector in the

�rst layer will be mapped onto one feature vec-

tor in the next layer. The second layer will be

a vector of feature vectors. One way to get

the projection of the �rst layer onto the second

layer to achieve this is to share the weights be-

tween each one-hot-binary vector in the �rst

layer. In a classic linear layer, each unit in the

preceeding layer is connected to each unit in

the next layer. In a weight sharing neural layer

the input gets divided into frames. Every one-

hot-binary vector in the input layer is a frame.

These frames gets projected onto frames in the

second layer. The projection is done pairwise

between a frame in the �rst layer and its cor-

responding frame in the second layer. There

will be as many frames in the second layer as

in the �rst layer.That the weights in the layer

are shared means that each frame mapping will

be done with the same weights. By using such

a layer feature vectors can be extracted. The

size of the feature vectors is a parameter deter-

mining the network's functionality.

Second layer

The second layer concatenates the vectors of

feature vectors into one vector. This concate-

nation gets fed to the third layer.

Third layer

The third layer is a classic linear layer, i.e each

unit in this layer is connected by weights to

each unit in the fourth layer. The number of

units in the fourth layer is the number of hid-

den units in the network and just like the size

of the feature vectors a parameter that can be

changed to in�uence the working of the net-

work. The third layer uses the tanh activation

function to project the data onto the fourth

layer.

Fourth layer

The number of units at the fourth layer is called

the number of hidden units. This layer does

like the third layer; a classical linear summa-

tion of its input onto the next layer. The next

layer is the �fth and last layer. This layer has

the same number of units as there are semantic

roles. Both the third and the fourth layer are

classic linear layers. The fourth layer uses the

softmax activation function when projecting its

output to the �fth layer.

2



Fifth layer

At this layer each unit (as many as there are

classes) will have an activation level that is a

numerical value. The unit with the greatest nu-

merical value will also be the correct semantic

role (as far as the network computes). Each

unit will actually have a value that is equal

to the likelihood of being the correct semantic

role.

Output

Since each unit at the last layer has its value

equal to the softmax at the corresponding unit

in the fourth layer the values at the last layer

will be like a ranking with the highest value be-

ing the most likely semantic role. It has been

noticed that in most cases when the neural net-

work computes the wrong semantic role, the

unit associated with the correct semantic role

will have a numerical value not far from the

value of the unit with the highest value(which

as said before is what the neural network thinks

is the correct semantic role). The unit associ-

ated with the correct semantic role is in this

way very often among the three or four highest

valued units (most probable roles).

Figure 1: The arrows represents projections be-

tween layers. Current word is marked in red

3 Results

Because of limited hardware resources the neu-

ral networks could only be trained with smaller

training sets. One megabyte and two megabyte

of raw example data was used, this data was

processed before training. Three megabyte �les

were tried but required too much memory re-

sources and too long time to train, there were

constant swapping between main memory and

disk. Di�erent window sizes were tried: a 7

word window, 9 word window and 11 word

window. The 11 word window gave best re-

sults. The value for feature vector dimension

and number of hidden units were chosen to 30

and 80 respectively. Since training a net with

a one and two megabyte �le takes consider-

able time (30 minutes to 2 hours) there wasn't

enough time to experiment with the number

of hidden units and feature vector size, but

80 and 30 respectively gave relatively good re-

sults. Having only the ability to train neural

networks with one and two megabyte �les re-

sulted in networks that learned a classifying

function for the set used during training with

good accuracy, but with considerable loss in ac-

curacy when tried on a test set disjunct from

the training set. If trained and tested on the

same set the accuracy was between 60-82 %,

lower accuracy for smaller word windows and

larger �les. A disjuct test set gave an accuracy

somewhere around the lower end of 40%. Even

though 40% is low, as said above the correct

role is often found among the top three or four

most likely semantic roles so some more infor-

mation than just the incorrect role exists.

The following table also gives the indica-

tion that the accuracy would be even lower

with bigger �les than 2 megabyte. This has

to do with the model being too simple to han-

dle sparse data from larger domains without

other information than the word windows.

1 megabyte 2 megabyte

7 word window 70% 42% 60% 41%

9 word window 78% 41% 60% 43%

11 word window 81% 41 % 66% 44%

Table 1: The element in the top row is the size

of the training �les before processing into the

format the neural network takes, the left most

3



column is the window size. The �rst percent-

age in each cell is the accuracy when tested on

the training set, the second the accuracy when

tested on a real test set disjunct from the train-

ing set

4 Conclusions

It seems possible to learn a function that deter-

mines semantic roles using a neural network.

The results for the test sets are low, but the

model is also very simple. There are many ex-

tensions to the model presented here. Bigger

�les could possibly mean a little better or more

stable results. But bigger �les would also mean

sparser data and that calls for some way to in-

corporate more information in the model than

just word windows. Since every words semantic

role is determined with respect to a predicate,

adding position information about just this re-

lationship would probably enhance the model.

4


