
Cluster keyboard optimisation through genetic programming

Tobias Hjelm

ss06th3@student.lth.se

14 January, 2007

Abstract

A cluster keyboard is a keyboard for
a computer or other electronic device
where the number of available charac-
ters (usually letters) is larger than the
number of keys. Each key therefore
must contain more than one charac-
ter (on average), and which character
has been entered must be determined
somehow. This can be done manually
or automatically. Word disambigua-
tion is very popular, where the user
does not need to specify each charac-
ter explicitly, but software determines
which word was intended. T9, devel-
opped by Tegic, is probably the most
widely used method for this purpose,
present in many mobile phones where
a small keyboard is desirable. By
November 2006, two billion devices had
been shipped with T9 software (T9 So-
lutions, 2006).

However, ever so often two or more
words \collide", i.e. they correspond
to the same key sequence, which makes
manual disambiguation (and hence
more key presses) necessary. The let-
ters are, generally, grouped alphabet-
ically. This project aims to challenge
this convention through re-grouping
letters in order to minimise the number
of erroneous word propositions, which
makes text entry quicker. The re-
grouping is made using a genetic al-
gorithm which can easily be run on
di�erent languages, di�erent alphabets
and di�erent corpora. All testing

and evaluation has been done using
Swedish corpora and the Swedish al-
phabet. The best result reduces incor-
rect word propositions by nearly 90%,
compared to alphabetical grouping of
the letters.

1 Introduction

One of the most common and most popular
mobile phone services of today is SMS, that
is, short text messages instantly sent from one
mobile phone to another. Due to the restricted
size of mobile phones, it is desirable that the
unit contains as few keys as possible, while
providing the possibility to enter any desired
word into these messages. Hence each number
key on a phone usually doubles as a letter key,
each number (except 1 and 0) containing three
or four characters from the English alphabet {
which has long been seen on regular telephone
keypads. In the USA and some other coun-
tries, it is common to display phone numbers
as words, where each letter maps to a digit,
thus making it easier to remember a number
(i.e. PHONE-ME is easier to remember than
74663-63).

1.1 Disambiguation

When it comes to entering text using this
grouping of letters, there is a need to distin-
guish which character was intended. For ex-
ample, the 2 key contains the three letters A,
B, and C. The �rst approach to the problem of
entering text into mobile phones was to simply
include a time delay, within which the same
key could be pressed again in order to cycle
through the possible letters. In this case, an
A would be generated through pressing 2, B

through pressing 2-2 and C through pressing
2-2-2. It is easily seen that entering regular
text will require more than one keypress per
character on average. This is especially inef-
�cient in e.g. the case of S, which is situated
fourth on the key 7 : PQRS, where S is more
than three times as frequent as P in English
text, not to mention the infrequent Q. (Letter
frequencies, 2006) In addition to this, there is
the time delay that has to be waited for each
time two consecutive characters in a word are
on the same key.
The e�ciency of text entry using a cluster

keyboard can be measured through the aver-
age number of keystrokes per character, the
KSPC (MacKenzie, 2002). On a keyboard
with only one character per key, such as a regu-
lar computer keyboard, the KSPC is exactly 1,
except for shifted, accented or otherwise com-
bined characters. Had each key on a mobile
phone contained exactly three characters, and
each character was equally frequent, it is eas-
ily veri�ed that the KSPC would be 2. This is
not the case, but it can be considered a rough
estimate for regular text.

1.2 Present methods

To get around the large number of keystrokes,
several methods have been developped to dis-
ambiguate which character has been intended.
One of the most common methods is T9, de-
velopped by Tegic, which captures a key se-
quence, where each key is pressed only once,
and instantly matches this sequence to a pre-
de�ned wordlist. In the best case, this can re-
duce the KSPC to 1. However, the standard of
grouping letters alphabetically gives rise to un-
necessarily many collisions, where two or more
words correspond to the same key sequence. In
this case, a certain key must be pressed to tog-
gle between the possible words. This of course
increases the KSPC.
An example: In Swedish, the key sequence

7-2 corresponds to the words \p�a", \s�a", \sa"
and \r�a" (as �A has been located on the same
key as A although it is not the same letter, but
the resemblance is obvious). Both \p�a" and
\s�a" are very common words. One of them will
always need 3 keystrokes, resulting in a KSPC
of 1.5. \R�a", in the same manner, yields a
KSPC of 2.5, but as it is a far more uncom-
mon word, the impact on text entry e�ciency

as a whole is not as large. An even worse ex-
ample is the key sequence 7-6-6, which cor-
responds to the words \som", \son", \rom",
\sn�o", \r�on", \ron", \sno", \s�on" (common
abbreviation for \s�ondag"), and \s�om". The
last of these words yields a terrible KSPC of
3.67, not to mention the frustration of having
to browse through all these words, resulting in
a considerable delay. Luckily, the words seem
to be ordered by decreasing frequency, which
reduces the overall KSPC considerably.

2 Project goal

The object of this project is to investigate
whether a di�erent grouping of the letters of
the alphabet can reduce the KSPC, and how
well. The above examples suggest that per-
haps if P and S were on di�erent keys, and/or
N, O and �O were separated, an overall KSPC
would be reduced. However, these moves will
most likely give rise to new collisions which
weren't there before. On a standard telephone
keypad, the digits 2-9 are used for letters, that
is, 8 keys. Keys 1, 0, *, and # are either used
for other functions such as punctuation and
other characters, case mode, browsing through
words, or play no role at all during text entry.

It is not reasonable to think that any group-
ing of the whole alphabet will be without colli-
sions at all on such a small keypad, but never-
theless the problem can be seen as the problem
of minimising the number of word collisions.
After all, using a system similar to T9 where
the possible words are presented in an order
corresponding to frequency, a KSPC of more
than 1 is only reached whenever an intended
word corresponds to the same key sequence as
another, more common, word.

2.1 Solution

Changing the placement of one character may
reduce an overall KSPC, but how is the abso-
lute minimum reached? The only way to know
for sure is to test all possible groupings of let-
ters on the number of keys, i.e. the problem
is in NP. In the case of the Swedish alphabet,
consisting of 29 letters, and 8 keys, the num-
ber of possible groupings is extremely large,
and thus it is not feasible to go through all
possibilities systematically. Therefore a solu-
tion using a genetic algorithm has been cho-

sen. Genetic algorithms are named thus due
to their resemblance to the theory of evolu-
tion through natural selection, as proposed by
Charles Darwin.

2.2 Limitations

This project has been limited to words only,
and hence only deals with alphabetical charac-
ters. Numbers, punctuation, other characters
and capitalisation are usually achieved di�er-
ently in di�erent phone models anyway.

Neither has any care been taken to predict
words with less keystrokes than the number of
letters in a word.

Words not present in the vocabulary have
not been considered, partially due to the way
the experiment was planned to be carried out,
but mainly because of the increased number
of assumptions that have to be made and the
extra parameters in statistical calculations it
would bring along. The di�erence in e�ciency
that a new key grouping would make in this
regard was also estimated to be negligible, as
word prediction is always based on a given vo-
cabulary and words not present in the same
will have to be entered in a di�erent way any-
way.

3 Genetic algorithms

A genetic algorithm, in general, �rst randomly
creates a large number of possible solutions to
a given problem, called individuals. The set
of individuals is called a population. Using a
well-de�ned so-called �tness function, the suit-
ability of each of the possible solutions is then
evaluated, resulting in a scalar number. Do-
ing this once is called a generation. The indi-
viduals yielding the best values of the �tness
function (\the �ttest") in the population are
then kept for the next generation Another set
of possible solutions is then generated using
the �rst set of solutions, which are modi�ed
somewhat as to resemble the �rst ones. The
modi�cation of individuals can be done in one
out of two ways:

� Cross-breeding, where two di�erent solu-
tions share parts, much in the same man-
ner as the genes of two specimens of any
sexually breeding species are combined in
their o�spring.

� Mutation, where an individual is slightly
modi�ed, regardless of the properties of
any other individual.

By modifying individuals, one hopes that
some of the new individuals will represent bet-
ter solutions to the problem than the individu-
als in the previous generation. The whole pro-
cedure is repeated until a su�ciently good so-
lution has been found. The analogy with Dar-
win's theory about natural selection should be
obvious. (Mitchell, 1997)

As the interruption criterion is usually not
a �xed number of generations, it is important
that each generation consists of exactly the
same number of individuals as the previous
one, as otherwise the population will grow or
shrink, losing control over memory usage and
running time.

It is common to reach a local minimum.
Therefore, measures are often taken to try to
escape from these local minima, at least with
some individuals in the population. Genetic
algorithms usually do not aim to reach the best
solution, but rather to reach a su�ciently good

solution, when the set of possible solutions is
so large that a trade-o� between solution opti-
mality and running time and/or memory usage
is necessary.

4 Dictionaries

One goal throughout this project has been to
develop an algorithm which can be used for
any corpus and any (latin-based) alphabet, as
well as for an arbitrary number of keys on
a keypad. However, as the whole idea arose
when examining the T9 function in a mobile
phone, the main part of the testing has been
done for 8 keys. Focus has also been on the
Swedish language and the Swedish alphabet.

4.1 Corpora

Three corpora have been used in order to ex-
tract dictionaries:

� The �rst was a readily available cor-
pus containing the entire bibliography of
Selma Lagerl�of, one of Sweden's best-
known book authors, who received the
Nobel Prize in literature in 1909. These
texts have been published between 1891

and 1933, and thus represent a some-
what outdated use of the Swedish lan-
guage with respect to word usage, spelling
etc. They also represent a certain kind of
printed language, which is grammatically
correct, and thoroughly corrected { thus
most probably correctly spelt throughout.
This corpus sports about 950,000 words.

� In order to better represent the kind of
language which is most probably used
in everyday (written) person-to-person
communication, such as SMS, text from
IRC (Internet Relay Chat) has been col-
lected. A computer was running an IRC
client, collecting logs from 20 IRC chan-
nels where Swedish was the main lan-
guage, during a 30-day period. In each
channel, a theoretically unlimited number
of people can have a conversation at the
same time. This text is in no sense cor-
rected or gramatically checked, but rather
represents the way that people actually
write to each other when they commu-
nicate instantly through text. Therefore
this corpus should most closely resemble
the ways of writing text messages using
mobile phones.

This corpus had to be altered somewhat,
as it is very easy for a participant to re-
peatedly enter the same line of text multi-
ple times. Such doubles were expected to
skew the statistics, and therefore doubles
have been removed. For the same reason,
no nicknames of the conversating people
(which are also stored in the logs) have
been kept. The size of this corpus is also
close to 950,000 words.

� The third corpus resembles the IRC cor-
pus somewhat, in that it contains logs
from real, instant internet chat conver-
sations, but this time through the pop-
ular internet chat clients ICQ and MSN
Messenger. The main di�erences between
this corpus and the former is that this
one consists of one-on-one conversations
only, and roughly half of the text has been
typed by the same person, namely the au-
thor of this article, who is somewhat picky
when it comes to using correct spelling
and grammar. Nicknames have been re-

moved in this corpus as well. This corpus
contains just over 1,100,000 words.

4.2 Pre-processing

All three corpora have been pre-processed
prior to further use as to contain only words,
i.e., all punctuation, numbers, hyphenation,
etc. has been removed before further use.
In order to evaluate �tnesses e�ciently, each

corpus was transformed into a wordlist, where
each word is listed along with its number of
occurrences.
It is important to note that all words oc-

curring less than three times each were re-
moved. Thus, some misspelt words (except for
frequently misspelt ones) and many uncom-
mon words were removed. Words occurring
less than three times in a million were con-
sidered statistically insigni�cant enough to be
able to be removed without a�ecting the over-
all suitability of the �tness function too much.
This modi�cation also resulted in roughly two-
thirds of unique words being removed in each
corpus, thus reducing the amount of work con-
siderably! It showed, which makes good sense,
that there are a large number of unique un-
common words, whereas the number of unique
common words is relatively small.

4.3 Statistics

Table 1 shows how many words each original
corpus consisted of, as well as the number of
unique words (i.e. dictionary size) and the av-
erage word length in each corpus.

Lagerl�of IRC ICQ/MSN

words 945,467 952,994 1,102,662
unique 14,763 15,321 13,169
chars/word 4.34 3.98 3.98

Table 1: Corpus statistics

4.4 Alphabet

The alphabet which is relevant is of course the
Swedish alphabet, i.e. the 26 letters from A to
Z, plus �A, �A, and �O. Four additional, accented
letters, have also been given status as separate
letters, although they are not usually treated
as such in Swedish: �A, �E, �E, and �U. Neither
is very common in Swedish, but they were all
used in the used corpora and were added in
order to avoid collisions such as \id�e" (\idea")

and \ide" (\den"), which would otherwise nec-
essarily have corresponded to the very same
key sequence. The total length of the alpha-
bet is thus 33. Words consisting of any alhpha-
betic characters not among these were simply
ignored.

Key Characters

2 A,B,C,�A,�A,�A

3 D,E,F,�E,�E
4 G,H,I
5 J,K,L

6 M,N,O,�O
7 P,Q,R,S

8 T,U,V,�U
9 W,X,Y,Z

Table 2: Swedish standard grouping of letters
on an 8-button keypad

5 Implementation

5.1 Fitness

The �tness function used to assess the possi-
ble solutions during the running of the genetic
algorithm takes into account the frequency of
di�erent words, as the frequency of occurrence
of di�erent words varies greatly. (Not surpris-
ingly, most of the most frequently occurring
words in the used corpora were short.)

As the aim of the whole project is to min-
imise an overall KSPC when typing some reg-
ular text, the �tness function gives a penalty
for each time two or more words \collide",
i.e. when they correspond to the same key se-
quence. For each key sequence, the list of pos-
sible words is ordered in descending order of
occurrence, i.e. the most common word needs
no toggling between words and is thus free of
penalty. The second most common word cor-
responding to the same key sequence yields a
penalty of 1, the third, a penalty of 2, and
so on. For each sequence sj , the contribution
to the overall �tness function f is calculated
thus:

f(sj) =
nX

i=1

occ(wi)(i� 1),

where wi is the ith most common word cor-
responding to the key sequence, and n is the
number of words corresponding to the key se-
quence.

X

sj2S

f(sj)

is then calculated, where S is the set of key
sequences generating at least one word each.

5.2 Data structures

The program which was developped for the
project was written in JavaTM. It takes a
wordlist, as described in section 4.2, as in-
put. Key sequences are represented using a
tree structure, where each node represents a
certain key sequence and can contain branches
to nodes representing longer key sequences, or
a list of words corresponding to that partic-
ular key sequence, or both. Each wordlist is
represented by a priority queue, sorted by fre-
quency.

5.3 The genetic algorithm

All individuals in the �rst generation are cre-
ated randomly by assigning a random key to
each character in the alphabet. The number
of keys, as well as the number of individuals in
each generation, can be chosen arbitrarily at
runtime. The value of the �tness function is
then calculated for all individuals in the pop-
ulation. Here a choice has had to be made, as
to how to generate future generations:

� The best 1/3 of the individuals are kept.

� The best 1/3 are each mutated by assign-
ing two characters to keys di�erent from
where they were before, making up 1/3 of
the new generation.

� The remaining 1/3 are completely ran-
dom.

� Measures are taken to avoid doubles.

Note that no cross-breeding occurs. As even
small changes in solutions were assumed to be
able make big di�erences in the outcome, there
was no need to come up with a way to cross-
breed individuals.
After a few generations, many of the �ttest

individuals in a population tend to resemble
each other, more or less closely. This is, in a
sense, the whole point: a �t individual which
is modi�ed just a little bit very often becomes
another, very well �t individual. Doubles must
necessarily be removed, as otherwise there is a
very large probability that the population will

be �lled with clones. This scenario is equal to
having reached a local minimum, which must
be escaped. It is best to modify the �tter in-
dividuals just enough, but not too much. By
modifying an individual more, a local mini-
mum can be escaped, but the result can just as
well be a much worse solution, which is quickly
thrown away. This is the hardest part of mak-
ing a good genetic algorithm. Creating com-
pletely random individuals always gives the
chance of getting an individual, not close to
the current local minimum, which is even �t-
ter, but as the generations evolve, most ran-
dom individuals naturally are less �t compared
to the rest. After much testing of di�erent pos-
sibilities, the above scheme proved good.

Another matter which must be taken care
of is when to interrupt the process of gener-
ating new generations. The current best re-
sult is taken to be the measure of how quickly
the �tness converges over time, and in general,
the results tend to improve rapidly at �rst,
and then converge asymptotically. Plotting
the best result over time, the graph usually

resembles an f(x) =
k

x
function (where k is

a constant). The interruption criterion in this
case was an integer parameter which could be
chosen at runtime, and which determines how
many consecutive generations must have the
same best �tness value before the algorithm is
interrupted.

Note: As a genetic algorithm usually pro-
duces di�erent results during di�erent runs,
regardless of whether the input has been the
same, the exact size of the population and the
interruption criterion are not crucial parame-
ters to which result is attained. Trial and error
is often an easy way to determine which val-
ues are good, and, in this case, a population
size of 150-200 with an interrupt criterion of
15-30 consecutive generations produced results
within a close range for each corpus.

Running time for these results have been 37-
65 minutes on a modern PC as of 2006, run-
ning JavaTM under Debian GNU/Linux.

5.4 Running

The algorithm has been run at least ten times
on each of the three di�erent wordlists, de-
scribed above. Thus the chance of being close
to a global minimum is good, as each time a

di�erent solution with a similar value of the
�tness function is found. At the same time as
the best character grouping is determined, it
is also tested on a certain wordlist. All serious
testing has been done on an 8-key keyboard,
but the program can handle any number of
keys. 8 keys was chosen just because that is
how many keys are used on a mobile phone,
and hence has some connection to reality.

5.5 GUI

A very slim GUI (graphical user interface) was
programmed to facilitate evaluation of the re-
sults. In this GUI, any grouping of charac-
ters can be entered, represented as a string
of characters with spaces. Any wordlist can
also be used to test the �tness of a certain
character grouping on the corpus correspond-
ing to that wordlist. Secondly, the GUI dis-
plays the custom keypad, allowing the user
to input words by pressing virtual keys us-
ing the mouse. Text can also be entered us-
ing the computer keyboard, which is necessary
for words not present in the dictionary. New
words are added to the dictionary.

6 Results

The most interesting comparison in this case
is to compare the evolved key groupings to the
alphabetical grouping, so that has been done.
Also, each of the three di�erent best solutions,
corresponding to the three di�erent corpora,
has been tested on both remaining corpora.

The resulting key groupings can be seen in
Appendix A.

6.1 Similarities

The proposed solutions vary much between
di�erent runs of the program, but looking at
the three di�erent solution tables, some ten-
dencies kan be discerned.

It is not surprising that the vowels are well-
spread, as it is much less likely that a vowel
and a consonant can replace each other in a
word, than two vowels or two consonants.

Another similarity is that common letters
also seem to spread among the di�erent keys.
This makes perfect sense, since common letters
cause more collisions than uncommon ones. It
seems as though the total frequency of each
key (i.e., the total number of occurrences of

the letters on the same key) may very well be
evenly distributed, although this has not been
con�rmed.

Although such general patterns can be seen,
no particular pairs of letters seem to group to-
gether more often than any other during dif-
ferent runs.

6.2 E�ciency measure

Evaluation of the e�ciency of the di�erent
groupings has been made the same way as the
�tness function is calculated (described in sec-
tion 5.1). Each time the word toggling key
has to be pressed in order to reach the desired
word, that gives a penalty of 1. As the e�-
ciency has been measured on certain wordlists
throughout the project, the case of a word not
present in the dictionary has been irrelevant,
and hence not included in any calculations. In
fact, the e�ciency measured is only the e�-
ciency of writing a particular text using a par-
ticular key grouping, given that all words are
in the dictionary.

The e�ciency measure presented below is
shown in �gures of percent, that is, how many
percent of entered words are not the intended
words, but require an extra key press. How-
ever, if one key press is not enough, this adds
up to the total.

error rate = # extra keypresses
words .

The resulting error rates can be seen in table
3.

Lagerl�of IRC ICQ/MSN

� 3.06% 9.73% 5.00%
Lagerl�of 0.352% 10.4% 3.28%

IRC 1.05% 6.48% 2.24%
ICQ/MSN 0.496% 8.40% 1.58%

Table 3: Error rates.

The �rst row represents the alphabetical
grouping of characters. Given a text such as
the one in IRC chats, 9.73%, or every 10th
word, on average, will require one extra key-
press. However, using a grouping optimised
for that kind of text, this �gure decreases to
6.48%, an improvement by a moderate 33%.

The keyboard which has been optimised for
the ICQ/MSN conversations reduces the error
rate from 5.00% to 1.58%, or one erroneous
word in 63, an improvement by a signi�cant

68%.

Nonetheless, the Selma Lagerl�of keyboard
must be considered the \winner" in its �eld,
where an optimised keyboard improves the er-
ror rate from 3.06% to 0.352%, a stunning 88%
improvement!

6.3 Error rate factors

A few properties of corpora, which can a�ect
the reult, are hereby proposed:

� Using a few words many times, as opposed
to using many words equally often, would
in general generate more collisions, even
if the total number of words was equal.

� A large number of di�erent words would
also increase the collision rate. However,
this makes no signi�cant di�erence among
the three corpora used, as this parameter
varies very little between them.

� Longer words, naturally, generate fewer
collisions on average. With n keys on a
keyboard, the number of possible key se-
quences of length l is ln. Hence the col-
lision rate should, at least theoretically,
decrease exponentially with the average
word length. As 4:348 � 126; 000 and
3:988 � 63; 000, this at least explains
where half of the collisions have gone.

The Selma Lagerl�of corpus gets rather
amazing results using all three evolved key
groupings, whereas the IRC corpus only in-
creases its results somewhat { and the Selma
Lagerl�of grouping actually decreases its error
rate!

6.4 Conclusions

A few conclusions can be drawn from table 3
above. It seems that optimising a cluster key-
board for a particular kind of text can dra-
matically improve the error rate given that
the text entered resembles the one it has been
trained on. For each of the three corpora used,
it can be seen that the cluster keyboard opti-
mised for that particular corpus gives the low-
est error rate.

It is also interesting that the alphabetical
grouping of characters is beaten by all three
evolved groupings on all corpora, the only ex-
ception being the evolved grouping from the

Selma Lagerl�of corpus used on an IRC text,
where the evolved key grouping is a mere 7%
worse { 10.4% as opposed to 9.73%. These
two texts are also the two that were expected
to be least like each other. The IRC evolved
key grouping is also the one out of the three
evolved ones which presented the smallest im-
provement over alphabetical order, run on the
Selma Lagerl�of corpus.

The improvements in error rate that the
three evolved key groupings achieve, run on
their respective corpora, vary largely. Al-
though none of the results is probably a global
minimum, they give a very good clue about
the lower theoretical limit of the error rate.
The error rate for typing the Selma Lagerl�of
corpus could be cut down by nearly 9/10 us-
ing an adopted key grouping on only 8 keys,
whereas the respective error rate reduction for
the IRC conversations is a modest 1/3. This
is not very surprising, as the published style
of writing, and moreover written by only one
author, very well could be more homogenous.

Last but not least, it is important to point
out that not too much attention should be
given to the actual evolved keyboard layouts,
but rather to the fact that an improvement
is possible to achieve through this method,
and di�erences in performance between di�er-
ent layouts should be mainly referred to the
properties of the respective corpora.

7 Suggestions for further study

This article has described a rather limited ex-
periment, carried out during a limited period
of time. No real-life testing has taken place,
but only theoretical results have been consid-
ered.

Further studies within the area could in-
clude the actual, experienced e�ectiveness of
switching layouts, as learning a new system
will most likely produce a slower result to be-
gin with. Also, an alphabetical layout is more
intuitive, which makes it easier to �nd charac-
ters when the user has no previous experience.
A study where time, instead of number of key-
presses, is considered, may prove interesting.

While re-arranging characters on the key-
pad, one could just as well arrange the char-
acters within each key according to frequency,
thus facilitating entry of words not yet in the

vocabulary.
Care could also be taken to investigate

the e�ectiveness of including other characters
than letters, such as apostrophe or hyphen, in
words, and placing them among the letters.
Finally, it may very well be a good idea to

combine an optimised key grouping with other
word prediction methods, such as word bigram
and/or grammatically based word prediction
methods, or a method where a word is pre-
dicted by its initial letters.

References

Letter frequencies.
http://en.wikipedia.org/wiki/Letter frequencies

I. Scott MacKenzie. 2002. KSPC
(keystrokes per character) as a char-
acteristic of text entry techniques.
http://www.yorku.ca/mack/hcimobile02.PDF

Tom M. Mitchell. 1997. Machine learning, in-
ternational edition. pp. 249-260. McGraw-Hill,
Singapore.

T9 Solutions.
http://www.tegic.com/

A Resulting key groupings

Below are tables of the best key groupings
found during the experiments.

A.1 Selma Lagerl�of

Key Characters

2 A,G,M

3 �A,�E,N,U

4 B,Q,T,�O

5 C,D,�E,O,W
6 E,F,K,W

7 H,I,L,�U,X,Z

8 J,P,R,�A
9 S,Y,�A

A.2 IRC

Key Characters

2 A,F,Q,X

3 �A, M, O, �U
4 B,D,T,Y

5 C,�E,N,U,�O
6 E,S

7 �E,K,P,R,V,�A
8 G,J,W,Z,�A
9 H,I,L

A.3 ICQ/MSN

Key Characters

2 A,M

3 �A,�E,F,T,�A
4 B,S,Z,�A
5 C,G,I,J,X
6 D,H,Q,U,Y
7 E,L,V,W

8 �E,O,R

9 K,N,P,�U,�O

