
Text and sentence generation using graph traversing techniques

Magnus Olsson
D03, Lund Institute of Technology, Sweden

d03mo@student.lth.se

Abstract

This paper describes a sentence generator
system. It is a self-learning system with
chat rooms as its primary source of input.
The system uses graphs to store words and
their relations, as well as some meta-data
(frequencies, word attributes etc), and has
a lot in common with a Markov chain. The
goal is to generate grammatically correct
Swedish sentences, based on the data col-
lected from the chat rooms. The generator
is completely stateless (sentences have no
contextual dependencies).

As a project part in the Language Proces-
sing and Computational Linguistics cour-
se given at Lund Institute of Technology,
I have implemented a number of possib-
le improvements to the this system. I have
also attempted to evaluate these changes,
comparing the old system with the new.

1 Introduction

For a long time, all kinds of bots and AI (or at least
what appears to be AI) has fascinated me. I started
this project years ago, and since then it has go-
ne through many development iterations. The goal
has always been to generate text, with focus on the
“correctness”. I haven’t bothered much with the
actual content of the generated text, since the pri-
mary purpose for the system has always been to
entertain and/or to serve as a “proof-of-concept”
for my word graph idea. It’s actually quite fun to
let the bot learn from a channel, and then have it
spew out a few sentences. The results can be very
convincing.

Since the beginning, many things have changed.
To my delight, most change seems to be to the bet-

ter. In this paper you will find both the core idea, as
well as some recently implemented improvements.

1.1 Theory

This section of the paper describes the core attri-
butes of the word graph. As the bot processes in-
coming text from the chat rooms, each sentence is
tokenized and each word is inserted into the graph.
Relations to neighboring words are saved by put-
ting edges between the word nodes. Each word is
only stored once in the graph, duplicates are mer-
ged into a single node.

Given a Swedish sentence, “Dettaär en me-
ning.” (This is a sentence), the system would de-
compose the text into the graph in figure 1.

Detta

är

en

mening

.

Figur 1: One sentence word graph

Adding another sentence, “Kattenäter en mus.”
(The cat eats a mouse) adds the words “Katten”,



“ äter” and “mus” to the graph. Since duplicates are
omitted, “̈ater” and “mus” is instead linked with
the previously inserted “en” node.

Detta

är

en

mening mus

.

Katten

äter

Figur 2: Two sentence word graph

Finally, if the sentence “Denna mening saknar
mening.” (This sentence lacks purpose) is inser-
ted, one may notice that a cyclic path is created
between the nodes “saknar” and “mening”. This
helps re-creating cyclic relations in generated text,
but also introduces a problem when the generator
spends too much time in the cycle.

Detta

är

en

meningmus

. saknar

Katten

äter

Denna

Figur 3: Three sentence word graph

Each graph node also contains some meta-data,
such as whether or not the word started (or ended)

a sentence. In figure below, red outline means a
start word while a blue outline means a stop word.

Detta

är

Katten

äter

Denna

mening

.

en

mus

saknar

Figur 4: Red and Blue outline represent start and
exit node respectively

This is used in the generation process, which
can described in a few simple steps.

1. Pick an arbitrary start node (red nodes)

2. Randomly pick an outgoing edge and follow
it. If there are none, go to last step.

3. Repeat from the second step until we encoun-
ter a stop node, then go to last step.

4. The sentence is created by adding all words
together along the chosen path.

All randomness in the generation is uniform, this
however changes with one of the improvements
described later in this document.

2 Improvements

2.1 Part-of-speech tagging

A serious problem with the approach given in
the theory section is that it does not respect the
fact that some words in Swedish have an ambigu-
ous part-of-speech tag. For example, consider the
following three sentences:

1. Var är Kalle? (Adverb)

2. Hurvar det med Kalle? (Verb)

3. Detär var i såret. (Noun)



If these three sentences were to be fed into the
graph, a single word node, “var”, would represent
an adverb, a verb and a noun. This causes unde-
sirable effects, since neighboring words in each
of the three sentences expects “var” to be of the
correct POS (part-of-speech) tag.

To solve this problem, a POS tag is inserted
along with each word. In other words, a node is on-
ly considered a duplicate if both word and its POS
tag matches. With the example sentences above,
this would yield three different “var” nodes, each
with a different POS tag (adverb, verb and noun).
All edges are connected to their respective node.

One might argue that this reduces the number of
possible new paths within the graph. This is true,
but while it tends to reduce the number of paths,
it also increases the quality of the generated sen-
tences. Since far from all words in Swedish (or
any language) is ambiguous, there are still a great
number of new paths for the generator to utilize.

The following figure is an illustration of how the
graph would look without POS tagging. Notice the
edges density at the “var” node.

Var

är det i

Kalle

?

Hur

med

Det

såret

.

Figur 5: Word graph without part-of-speech tags

Figure 6 shows the the same graph, with POS-
tags. The structure appears to be more organized,
and while this graph still contains invalid paths,
the trend is higher quality sentences using this im-
provement.

This technique creates dynamic part-of-speech
patterns. A naive way to generate sentences is to
hardcode the patterns into your software. For ex-
ample, you could easily program software which

Var
HA

är
VB

Kalle
PM

var
PN

?

Hur
HA

var
VB

det
PN

med
PP

Det
PN

i
PP

såret
NN

.

Figur 6: Word graph with part-of-speech tags

picks a sentence template from a list of predefined
templates and fills its slots with appropriate words.
A template could for example be “Pelle likes to
eat [noun]”. Any noun would fit into this templa-
te, inserting “meatballs” would be just as correct
as inserting “worms” or “trucks”. This approach
however lacks the ability to learn new templates,
it can at best only extend its list of words to insert
at slots (nouns in this case).

Using a word graph with part-of-speech tag-
ging, new templates (patterns) emerge naturally by
simply traversing the graph. With a statistical ap-
proach, you can filter away noise patterns.

2.2 Markov chain adaptation

As the graph grows, noise becomes a problem. Ve-
ry rare words have the same probability to occur in
a generated sentence as the most common word.
This happens because the original system uses a
uniform distribution function to determine the next
edge.



By adding weights to all edges, counting the
number of times they have occurred, you can crea-
te a custom distribution function. With this appro-
ach, rare words still occur in generated sentence,
but at a lower frequency. Just like it did in the trai-
ning data. This creates a kind of threshold for no-
ise, making the system favor words that are com-
mon.

X

Y

0.4 Z

0.6

E

1.0

0.5

0.5

Figur 7: Markov chain

This model has a lot in common with Markov
chains, where the model consists of a number of
states and a number of transition probabilities.

2.3 Exit probabilities

In general, in Internet chat rooms, the language is
quite relaxed. People do not always bother with
ending each sentence with a punctuation mark.
Compared to books, newspapers and other litera-
ture, the language differs a lot. This causes pro-
blems in the word graph, since it attempts to re-
member all words which can end a sentence. For
small graphs, it works well by simply traversing
the graph until we encounter an exit node. In lar-
ge graphs however, many more words are tagged
with the exit flag. The result is premature exits, we
may only visit one (the start node is also an exit
node) or two nodes before we exit.

To combat this issue, exit probabilities is added
to each node, much like edge probability was ad-
ded to rid the noise. With exit probabilities, com-
mon exit words (typically punctuation marks, . ? !
etc) have high exit probability. Other words, which
may be marked as exit node only because of relax-
ed language is not favored, but still possible.

This figure illustrates the exit probability of th-
ree sentences. A question mark is a more favorable
sentence terminator with a probability of approx-
imately 67 percent, while the dot has an exit pro-
bability of approximately 33 percent.

Var

är det i

.
1/3

?
2/3

Kalle

Hur

med

Det

såret

Figur 8: Exit probability

3 Accuracy of part-of-speech taggers

It is crucial to use an accurate tagger, or else words
may be incorrectly categorized and cause errors
to propagate throughout the graph. Erroneous pat-
hs have great effect on the end results, since even
slightly faulty segments of a sentence may have
vast influence in how it is interpreted by the rea-
der. Therefor, it is of utmost importance to have a
high accuracy tagger backbone.

For Swedish, there are quite a few taggers to
pick from. Most taggers are generic and can be
trained on any language. To find an appropriate
tagger, a number of taggers were trained using the
Swedish SUC corpus and the results were to be
compared. The candidates were,

• Granska, a hidden Markov model tagger.

• LingPipe POS Tagger, also a hidden Markov
model tagger.

• Stanford POS Tagger, a log-linear tagger.

Unfortunately, due to technical difficulties the
results of this comparison is inconclusive. Many
hours were spent on trying to train models, and
also to interface the taggers with the system. Ling-
Pipe was by far the easiest to use, and achieved a
94 percent accuracy in a 5 fold test on the test set.
Due to some bugs in the Stanford tagger, it was
unable to handle my training set. A fixed version
is to appear on their website “in the near future”.



There were also difficulties training Granska,
mostly because it lacks proper documentation and
the tools to recreate the lexicon. It does however
ship with a pre-compiled Swedish model, which
works very well, but would not serve as an appro-
priate value to compare with. It also does tokeni-
zation on its own, which causes problems when
you want to compare with other taggers. Granska
is written in C++, and in order to use it from Java,
one has to spawn an external process and capture
its output. Java has facilities to do this, but due to
some mysterious bugs (most likely connected to
the IO stream handling in either Java or Granska)
it would not work reliably. Despite all setbacks, a
new Granska lexicon was eventually created, with
the help and assistance from some of the Granska
developers. Usage of this model, however, caused
Granska to terminate with an segmentation fault.

4 Related work

Even though there are no real applications for this
kind of system (nonsense generation), there are
surprisingly many similar projects. Searching the
Internet gives hundreds of different applications
to generate papers and other texts. One project I
found particularly interesting was SCIgen. SCI-
gen is a program that generates random Computer
Science research papers, including graphs, figures,
and citations. One of their generated papers, titled
“Rooter: A Methodology for the Typical Unifica-
tion of Access Points and Redundancy” got accep-
ted to WMSCI 2005 (World Multi-Conference on
Systemics, Cybernetics and Informatics), which is
quite remarkable.

Eliza is a famous computer program, written by
Joseph Weizenbaum. It parodied a Rogerian the-
rapist, by rephrasing many of the patient’s state-
ments as questions and posing them to the pati-
ent. Just like the sentence generator, Eliza had no
practical application, but it still impacted a num-
ber of early computer games; it influenced people
write books; and it has received worldwide recog-
nition. If all other fails, you may use it as enter-
tainment!

5 Conclusions and future work

To determine whether the implemented changes in
fact are improvements, it would be desirable to ha-
ve a measurable quality value of each generated
sentence. It is problematic to automatically mea-
sure the quality of generated sentences. A compu-

ter is not easily able to determine if the grammar is
correct. In a large word graph, the number of pos-
sible paths (and sentences) are virtually unlimited.
This makes manual quality grading impossible.

Still, manual grading on a small number of sen-
tences is better than nothing. For this reason, a se-
ven people group were asked to participate in a
small survey. The test setup was 10 sentences from
the old system and 10 sentences from the new (im-
proved) system. These 20 sentences were mixed
randomly, and each participant were asked to gra-
de them (quality wise) on a scale 1 to 5. Average
score for the old and the new system was then cal-
culated. Here are the results,

Person Old score New score
1 3.2 3.9
2 2.9 3.2
3 3.0 3.0
4 2.2 2.1
5 1.7 2.4
6 3.3 3.0
7 3.0 3.4

A small test like this not enough to draw any
conclusions, but it does however hint that the new
system has at least equal (or slightly better) quality
on its generated sentences.

Looking ahead, there are a number of possib-
le interesting improvements to be implemented.
In particular, it would be interesting to make the
generator stateful, and to actually generate sen-
tences on a topic of discussion. This would pro-
bably increase the credibility of the system. One
possibility to achieve this is to implement a seman-
tic graph on top of the word graph, linking words
that are related to each other in a meaningful way.
The Infomap Project at Stanford has already de-
veloped working semantic graphs which seems to
work very well. It would allow the word graph to
know that if the chat room conversation revolves
around ammunition, a sentence containing a re-
lated word like “explosives” or “guns” would be
more appropriate than a sentence about “breasts”.
This will most likely be implemented in the next
generation of this system.

6 Acknowledgements

I would like to thank Pierre Nugues at LTH CS for
his invaluable support and comments on my work
throughout this project. I would also like to thank
Viggo Kann and Jonas Sjöbergh at KTH NADA



for their efforts to help me getting the Granska tag-
ger to run. Credits also goes to to William Morgan
at Stanford NLP (POS tagger developer) for assis-
ting with bug tracing using my Swedish model to
find out what was wrong.

Finally, thanks to all who participated in the sur-
vey.

References

“Implementing an efficient part-of-speech tagger,”
Johan Carlberger and Viggo Kann, 2003Numerical
Analysis and Computing Science, Royal Institute of
Technology.

“Granska tagger,”
http://www.csc.kth.se/tcs/humanlang/tools.html,
Human Language Technology Group at KTH CSC.

“Stanford Log-linear Part-Of-Speech Tagger,”
http://nlp.stanford.edu/software/tagger.shtml,”The
Stanford Natural Language Processing Group.

“Markov models,”
http://en.wikipedia.org/w/index.php?title=Markovchain,
Wikipedia, The Free Encyclopedia.

“An Introduction to Language Processing with Perl and
Prolog,”
Pierre Nugues, 2004Springer.

“Semantic graphs (Infomap project),”
http://infomap.stanford.edu/,Computational Se-
mantics Laboratory, Stanford university.

“The Stockholm Ume̊a Corpus SUC,”
http://www.ling.su.se/staff/sofia/suc/suc.html,Com-
putational Linguistics at Stockholm University.

“LingPipe”
http://www.alias-i.com/lingpipe/,Alias-i.

“SCIgen - An Automatic CS Paper Generator”
http://pdos.csail.mit.edu/scigen/,PDOS research
group at MIT CSAIL.

“ELIZA,”
http://en.wikipedia.org/w/index.php?title=ELIZA,
Wikipedia, The Free Encyclopedia.

“Wabby - Create semi-random sentences based upon a
body of text,”
http://search.cpan.org/˜ poznick/Acme-Wabby-
0.13/Wabby.pm,Nathan Poznick.

“Col’s Random Sentence Generator,”
http://www.ast.cam.ac.uk/˜ cmf/generate/, Colin
Frayn.

“Random sentence generation with n-grams,”
http://piece.stanford.edu/˜ brendano/rsg/, Brendan
O’Connor and Michael Bieniosek.


