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Abstract

This paper presents a learning-based
approach to coreference resolution of
noun phrases. The system learns
from a small, annotated corpus to
solve coreference between general noun
phrases by extracting feature vectors
that are used by Weka to build a clas-
sifier.

1 Introduction

Coreference resolution is the process of de-
termining whether two expressions in natu-
ral language refer to the same entity in the
world. A coreference relation denotes an iden-
tity of reference and holds between two tex-
tual elements known as markables, which can
be definite noun phrases, demonstrative noun
phrases, proper names, appositives, sub-noun
phrases that act as modifiers, pronouns, and
so on. Determining coreference relations is
an important subtask in natural language pro-
cessing systems, especially in information ex-
traction systems. This paper describes a way
to solve the task of determining coreference re-
lations between general noun phrases.

2 Determination of feature vectors

To build a learning-based coreference engine,
a set of features that is useful in determin-
ing whether two markables corefer or not is
needed. The features are extracted from an
annotated corpus.
The feature vector consists of a total of six
features described below. The features are de-
rived based on two extracted markables, i and
j, where i is the potential antecedent and j the
anaphor.

String match (STR MATCH): Articles
(a, an, the) and demonstrative pronouns

(this, these, that, those) are removed
from the strings before performing the
comparison. If the string of i matches
the string of j, 1 is returned, else 0 is
returned. E.g. the document matches
this document.

Distance (DIST): This feature is the dis-
tance between i and j counted in sen-
tences. If i and j are in the same sen-
tence, 0 is returned, if they are one sen-
tence apart, 1 is returned, and so on.

i-pronoun (I PROUNOUN): If i is a pro-
noun, 1 is returned, else 0 is returned.
Pronouns include reflexive (himself, her-
self), personal (he, him, you) and posses-
sive pronouns (hers, her).

j-pronoun (J PRONOUN): If j is a pro-
noun (as described above), 1 is returned,
else 0 is returned.

Definite noun phrase (DEF NP): A defi-
nite noun phrase is a noun phrase that
starts with the word the. Eg. the docu-

ment is a definite noun phrase. If j is a
definite noun phrase, 1 is returned, else 0
is returned.

Demonstrative noun phrase (DEM NP):
A demonstrative noun phrase is a noun
phrase that starts with one of the words
this, that, these or those. If j is a demon-
strative noun phrase, 1 is returned, else
0 is returned.

As an example 2 shows the feature vector for
the antecedant i, Linux and the anaphor j, it,
in the following sentence:

The Linux Access HOWTO covers the
use of adaptive technology with Linux, in



particular, using adaptive technology to make
Linux accessible to those who could not use it

otherwise.

Feature Value Comment

STR MATCH 0 i and j do not
match

DIST 0 i and j are in the
same sentence

I PRONOUN 0 i is not a pronoun

J PRONOUN 1 j is a pronoun

DEF NP 0 j is not a definite
noun phrase

DEM NP 0 j is not a demon-
strative noun
phrase

3 Building a classifier

Training examples are extracted from an
annotated training document. In the training
document there are coreference chains e.g.
A1 - A2 - A3 - A4. The noun phrases in
the chain that are immediately adjacent are
used in pairs to generate the positive training
examples (i.e. A1 - A2, A2 - A3, A3 - A4).
The first noun phrase in a pair is always
considered the antecedent, while the second
is the anaphor. Between the two members of
each antecedent-anaphor pair, there are other
noun phrases that either are not found in any
coreference chain or appear in other chains.
Each of them is then paired with the anaphor
to form a negative example. For example, if
markables a, b, and B1 appear between A1
and A2, then the negative examples are a -
A2, b - A2, and B1 - A2.
An example of how training examples are
extracted:

(The Linux Access HOWTO)a1 covers
(the use of (adaptive technology)b1)c1 with
(Linux)a2, in particular, using (adaptive
technology)b2 to make (Linux)a3 accessible
to (those who could not use (it)a4)d1 otherwise.

Looking at the chain a, which is about
Linux. There are four noun phrases that core-
fer: (The Linux Access HOWTO)a1 matches
with (Linux)a2, (Linux)a2 with (Linux)a3 and
(Linux)a3 with (it)a4. The positive training
examples that are extracted are: ((The Linux

Access HOWTO)a1, (Linux)a2), ((Linux)a2,
(Linux)a3) and ((Linux)a3, (it)a4).
The noun phrases that are between (The
Linux Access HOWTO)a1 and (Linux)a2 are
used to generate the negative training exam-
ples. The negative examples are: ((adaptive
technology)b1, (Linux)a2) and (((the use of
adaptive technology)c1), (Linux)a2). Negative
Examples can be found in the same way be-
tween ((Linux)a2, (Linux)a3) and ((Linux)a3,
(it)a4).
The training examples are used with Weka to
build a classifier. Weka was set to use the j48
decision tree classifier.

4 Conclusions

Given the time allocated for the project there
was no time to implement a evaluation for the
decision tree. Because of that the only results
that can be presented are the statistics from
weka. The classifier achieved a recall of 30.2%
and a precision of 78%, giving a F-measure of
43.5%. Soon et al achieves a recall of 58.6%
and a precision of 67.3%, giving a F-measure
of 62.6% (using MUC-6 evaluation).

The generated decision tree classifier for
the Linux Access HOWTO:

STR MATCH = 0 : 0
STR MATCH = 1 : 1

Only the string matching gave any infor-
mation that could be used. One reason for
this could be that the annotated corpus that
was used is a technical document, in which
very few pronouns occur and words are often
repeated. It would be interesting to see how it
would have performed on a corpus consisting
of dialogues instead.

Other features that would have been in-
teresting to look at are:

• Gender, decide how the gender of i and j

match.

• Alias, if i is an alias to j or vice versa,
i.e. if i and j are named entities (person,
date, organization, etc.) that refer to the
same entity.

• Appositive, if j is in apposition to i, e.g.



the markable the chairman of Microsoft

Corp is in apposition to Bill Gates in the
sentence Bill Gates, the chairman of Mi-

crosoft Corp . . . .

• Number Agreement, if i and j agree in
number, i.e. they are both singular or
both plural.

• Both Proper Name, if i and j are both
proper names.

Most of these features require more informa-
tion than was available in the used corpus and
was therefor not implemented. Further work
on this classifier would be to decide if any of
these or other features should be added, a pro-
gram that can give more correct evaluation
would also be needed.
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