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Abstract 

This paper describes the work done in my 
project in ASR and the theory behind it, 
including signal processing, probability 
theory, and Hidden Markov Models in 
speech recognition. 

1 Introduction 

Speech recognition involves the conversion of a 
speech signal into a sequence of words in textual 
format. In practice this process will involve 
signal processing and decoding as well as the use 
of a viable language model. The aim of this 
paper, and the project preceding it, has been to 
study the mechanisms involved and in a simple 
and understandable fashion describe the lessons 
learned.   

This project has been limited to a small 
portion of what needs to be done for isolated 
word recognition with a small and limited 
vocabulary. The work that has been done in 
includes the implementation of the signal 
processing part, and the decoding, both of which 
will be explained in more detail in the sections to 
come.  

2 Speech recognition 

The different components that make up a speech 
recognition system will usually include: signal 
processing, acoustic models, classifier and 
pattern decoder. In some cases language 
modeling will also be included, which of course 
won’t be necessary for isolated word recognition.  

 

2.1 Signal processing 
The signal processing part of the ASR-system 
will be responsible for not only the sampling the 
speech waveform, but also feature extraction, 

thereby reducing the resources necessary to store 
and manipulate the representation of the data.  

What was studied in the project was the use of 
cepstral coefficients. Cepstral coefficients can be 
regarded as features extracted from the signal.  

The cepstral coefficients can be found by 
essentially taking the Fourier analyses of the 
decibel spectrum which in turn can be computed 
by taking the log of the FT of the windowed 
signal. The windowing function is in most cases 
a Hamming or Hanning window, which will 
reduce spectral leakage and assure that the signal 
can be viewed as short-time stationary. 

FT(log(abs(FT(sig[0:n] * hamming[m])))) 

In practice this means that each frame, 
consisting of n samples of data are multiplied by 
the windowing function sampled at m points and 
zeroed outside of this interval. This part of the 
process is illustrated by Figure 2, to be compared 
with the original data which can be found in 
Figure 1.  

 
Figure 1: The data signal 
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Figure 2: The signal is Hamming windowed to minimize 
leakage and  

Since multiplication in time domain 
corresponds to convolution in frequency domain, 
once the Fourier analysis of the signal is carried 
out we will have the convolution of the signals in 
frequency domain, as shown in Figure 3.  

 
Figure 3: Fourier of the windowed signal, representing the 
amplitude spectrum. 

Taking the log of this signal’s absolute value 
will give us the power spectrum, and a 
subsequent Fourier analysis will discover the 
harmonics in the signal, as represented by the 
cepstral coefficients to be seen in Figure 4.  

 

Figure 4: Fourier of the log of the absolute on the signal in 
Figure 3. This represents the full real cepstrum. 
These coefficients can be used to represent the 
signal in a more compact way, and as input to the 
next portion of the system. 
2.2 Acoustic model 
An acoustic model for single word recognition 
will be based on the recognition of phonemes 
where each phoneme is characterized by its 
feature vector. The probability will need to be 
estimated using some form of training algorithm 
in combination with relevant training data. 

In most speech recognition systems nowadays 
the acoustic model utilized is the Hidden Markov 
Model.  

The Hidden Markov Model (HMM) is a 
generalization of the Markov chain. The ordinary 
Markov chain is a time discrete stochastic 
process in which the state at time ti + 1 depends 
only at the state at time ti, and the states at all 
times are observable, as shown in Figure 5. Each 
transition occurs with a certain probability.  

 
Figure 5: Sequence of states in Markov model 

In most applications this will be a 
simplification, but one necessary to make in 
order to be able to model the system, and 
hypothesize about its behavior. In some cases 
though, as with ASR-systems this won’t be 
enough, and thus a more general model is needed.  

The HMM is a system where we have similar 
conditions as in the Markov chain, but the state it 
self is not observable. What in stead is 
observable is the output generated by the state. 
This output will be dependant on the current state 
and some output probability for that 
unobservable state, see Figure 6.  

 
Figure 6: Sequence of states with the associated outputs for 
a HMM 

Any HMM is fully described by the following 
parameters: 

 
∏ = the vector of initial distributions 
A = the transition probabilities 
B = the observation probabilities 

 The parameters are learned using a sequence 
of observations for which the hidden states are 
known, and determine the HMM that most likely 



generated the sequence. For this purpose the 
forward-backward algorithm is used. Once the 
parameters are learned any sequence of 
observations may be decoded into the sequence 
of states that most likely generated it using the 
Viterbi algorithm. An algorithm related to the 
Viterbi algorithm is the Forward algorithm which 
determines, given a HMM, the probability of the 
sequence observed. The forward algorithm is 
defined as follows: 
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For each possible state sequence of length T, 
the same as the number of observations, we  sum 
all probabilities given by the product between the 
total probability of reaching state i at time tt-1 
multiplied bi the transition probability from state 
i to j multiplied by the probability of when in 
state j observing the output Y(t).  

As mentioned earlier, a related algorithm is 
the Viterbi algorithm, which finds the most 
probable path given a set of observations. The 
definition of the Viterbi algorithm is as follows, 
where the best sequence is given by *S :  
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Both of the discussed algorithms naturally 
require a trained HMM, which brings us to the 
hardest of problems in the domain of HMM: the 
forward-backward algorithm. It is more complex 
in composition than the previously mentioned 
ones, but in theory what is done is the 
computation of forward αt(i) as well as backward 
βt(i) probabilities as defined below.  
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Along with these, the probability of at time t 
transitioning from state i to state j, γt(i,j).  
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Following this the parameters are reestimated. 
These new values are ijâ  and )(ˆ kb j  as given by  
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These steps are then repeated until the values 
converge.  

3 Work done and future development 

The system described above has in only been 
implemented in part: signal processing and 
decoding. What is left to be done is mainly the 
implementation of the forward-backward 
algorithm.  
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