
Comparing classification algorithms for chunking

Efraim Laksman
efraim.laksman.884@student.lu.se

Abstract

We will consider an algorithm for chunk-
ing text, classifying tags for words as a
way of specifying the chunks by using
a decision tree (trained by the algorithm
known as J48). We will estimate the
chunks going from the beginning of the
text to the end of the text (forward) mean-
ing that previously estimated tags can be
used as attributes for estimation of other
tags. We will analyse the effects of us-
ing different attributes as parameters for
the estimation.

1 Credits

This article, and the project on which it is based
were made as examination for the course DAT171
at Lunds university, Lund. I have throughout the
project received valuable help and comments from
Richard Johansson, PhD student at LTH, Lund.

2 Introduction

What is chunking?

Computational linguistic chunking (there are other
meanings of the term chunking) is a way to anal-
yse a sentence by dividing it into as few parts pos-
sible such that all the words in any of the parts are
consecutive and refer to the same entity (object,
event, relation, etc. . . ).

We will take an example from the corpus that
I’ve used:

[The investmentNP] [is VP] [worth ADJP]

[about $ 130NP] [today NP].

While the chunks are uniquely determined by
the sentence, the data structure by which we store

them is not. In the example above, we have tagged
the spaces between words. Each space has been
tagged with either a right bracket and some let-
ters identifying the type of chunk (stating the end
of a chunk), no tag at all (stating that the current
chunk stretches over the next word as well) or a
left bracket (stating the beginning of the sentence).
Observe that before storing the tags, all left brack-
ets except for the first one in the sentence would
be removed, as they are redundant (and they are
therefore not mentioned in the description above).

What data structure to use?

What data structure one ought to choose depends
on how one’s classifier (the program that gives an
estimate of the chunk tags for a text) works. Natu-
rally, one can choose any structure and alter it ap-
propriately before and after chunking, but we save
work by choosing an appropriate structure from
the start.

I will tag words, rather than spaces (as was done
in the example above). All words already carry
tags (their POS), so this is a natural way to do
it, but as there is (almost) one–to–one correspon-
dence between words and spaces, this is of little
importance, except for our interpretation of the
tags.

When attempting to classify the chunk for a
given word, wi, my chunker (the most pow-
erful of the chunkers I’ll use, that is) will
consider words in the proximity ofwi, i. e.
wi−2, wi−1, wi, wi+1, wi+2, where wk+1 is the
word directly followingwk. It will also use any
other information attached to these words, i. e.
POS tags and chunk tags (in the cases where they
have been assigned). Whether we will be able to
read the chunk tags of the present words prede-
cessors or successors will depend on whether we



work forward (from left to right, giving us access
to our estimates of chunk tags of predecessors) or
backward (from right to left, giving us access to
our estimates of chunk tags of successors).

In the example above, information that one
chunk ended and another chunk begun was stored
between the chunks. As we tag words, instead of
spaces, this information will be “pushed” either to
the first word of a chunk or to the last word of a
chunk. (NB! We don’t want to push this informa-
tion in both directions as this would result in more
types of tags than otherwise needed, and as ma-
chine learning techniques will be used, this would
result in the need of a larger training set.) Which
of these is the best depends on whether we chunk
forward or backward. As I’ll chunk forward, I’ll
push the information of where a chunk ends and a
new chunk begins to the first word of a chunk.

We consider the example above once more and
observe that information about the type of a chunk
was stored only at one place (end of the chunk,
could easily have been placed at beginning of
chunk instead). This has a downside. Should we
have a large chunk, looking only two words back
(as I’ll do when I chunk forward), I may be able
to determine that the three previous words are part
of one chunk whithout knowing the type of this
chunk. In order not to lose information in this
manner, every word will be tagged with informa-
tion of what type of chunk it belongs to.

Thus, a chunk tag will state whether the word
is inside or at the beginning of a chunk, as well as
what type of chunk it is. We repeat the example
we had above:

The DT B-NP

investment NN I-NP

is VBZ B-VP

worth JJ B-ADJP

about RB B-NP

$ $ I-NP

130 CD I-NP

today NN B-NP

. . O

(The last tag stands for “outside”, not part of any
chunk.)

3 Technicalities

The corpus

The corpus we will use will be the same as was
used in CoNLL–2000, the Wall Street Journal cor-
pus, section15–18 for training purposes and sec-
tion 20 for testing purposes.

The algorithm

In order to classify the chunk tag for one word,
we consider the word itself and it’s POS, the
two following words and their POS and the two
previous words, their POS and our classification
of their chunk tags. We denote these attributes
wi−2, . . . , wi+2, ti−2, . . . , ti+2 andci−2 andci−1

wherewk denotes thek:th word, tk denotes the
POS tag of thek:th word andck denotes the chunk
tag of thek:th word. Observe that words that
are unusual (I’ve decided to call words that ap-
pear less than 100 times unusual, though there are
other, more reasonable ways to set a limit) are ex-
changed to some tag, in order to reduce time re-
quired to train the decision tree. We then train a
decision tree by feeding it a trainingset consisting
of a subset (not neccessarily proper) of the given
attributes along with correct classification. As a
training algorithm for the decision tree, we will
use J48 which works roughly as ID3, i. e. max-
imises entropy gain when choosing what attribute
to branch on next. By using different subsets of
the given attributes, and using the resulting deci-
sion tree on a testset, we will be able to analyse
the effect of different attributes.

Comparison

We need to decide what measure we will use when
stating that one decision tree is better than another
one. We will use theF–measure, defined as

F =
2PR

P + R

whereP stands for precision andR stands for re-
call. For any given chunkC, the precision is

P =
number of words we correctly tagged asC

number of words we tagged asC

and the recall is

P =
number of words we correctly tagged asC

number of words that should be tagged asC
.

Observe that the measure of a correctly tagged text
is 1 and that the measure of a text with only flawed



tags is0. We are thus interested in models (sets of
attributes) resulting in highF -measures.

When comparing two models, the difference in
F–measure does not reveal the full story. For
example, a model withF–measure0.51 is only
slightly better than one with theF–measure0.50,
while a model withF–measure0.99 is a great im-
provement over a model withF–measure0.98.
Therefore, when comparing two models with ea-
chother, we will be interested in the error reduc-
tion we get when exchanging the poorer model,
m1, for the better one,m2. We define error reduc-
tion as:

e(m1,m2) =
F (m2) − F (m1)

1 − F (m1)
.

4 Results

Limitations

We start by finding some limits for our results
by testing the smallest reasonable model (lower
limit) and the largest model we intend to use (up-
per limit).

The smallest model will only use the attribute
t0, i. e. the POS of the word for which we attempt
to estimate the chunk. This is often referred to
as the baseline, the simplest model anyone would
ever use. TheF–measure turns out to be0.7707.

The largest model we will use will contain all
12 previously mentioned attributes, and since no
model will use any attribute not used in this model,
we may well expect that this model will have the
highestF–measure, which is0.9055. As we will
see, this can be surpassed slightly.

Windows

By a window, we mean a distance (not necces-
sarily the same distance forward as backward)
from the word we’re attempting to classify be-
yond which we do not venture when choosing at-
tributes to use for the classification. We have al-
ready specified that we will stay within the win-
dow ranging from−2 to 2 (we will denote this
model W[−2,2]). We will compare this with the
modelsW[−1,1], W[−2,0], W[−1,0] and W[0,0] (in
all these cases we will use as many attributes as
possible, staying within the given window). We
getF (W[−2,2]) = 0.9055, F (W[−1,1]) = 0.9032,
F (W[−2,0]) = 0.8672, F (W[−1,0]) = 0.8665
and F (W[0,0]) = 0.7901. We immediately ob-
serve that there is at least one attribute indexed
−1 and at least one attribute indexed1 that are

of great importance for correct classification. The
question remains as to whether or not there is
some important attribute indexed−2 or 2 or not.
e(W[−2,2],W[−1,1]) = 0.0237, and2% error re-
duction is not insignificant. To use5 additional
attributes to get this error reduction does how-
ever seem somewhat expensive. We’ll look into
whether the information needed to get the error re-
duction is spread evenly among these5 attributes,
or if at least some of them may be omitted.

We let W[−2,2]−w
−2

denote the model us-
ing all attributes in the window ranging
from −2 to 2 except for w

−2 (and similarly
when w

−2 is exchanged for some other at-
tribute), and getF (W[−2,2]−w

−2
) = 0.9043,

F (W[−2,2]−w2
) = 0.9054, F (W[−2,2]−t

−2
) =

0.9057, F (W[−2,2]−t2) = 0.9039 and
F (W[−2,2]−c

−2
) = 0.9048. What strikes us

first is that we in one of these cases actually
surpassed theF–measure which we set as an
upper limit. This is the result of overtraining the
tree when using the “full” model. As it turns
out, F (W[−2,2]−w2−t

−2
) = 0.9059, a better result

still. In theory, by letting the size of our training
corpus approach infinity, this would not occur, as
insignificant attributes would simply not be used.
With our limited corpus however, it is possible
that insignificant attributes can have a negative
effect (using a better tree training algorithm would
usually solve this problem, but require more time).
Either way, what we see is that the attributesw2

andt
−2 probably do more harm than good.

We will attempt a similar analysis of the model
W[−1,1]. We already know that the attributes
w
−2, t2 and c

−2 aid the process of classifica-
tion, so based on the assumption that the covari-
ance between words decrease as the distance be-
tween them increase, we may draw the conclusion
that the attributesw

−1, t1 andc
−1 are beneficial.

We compute theF–measuresF (W[−1,1]−w1
) =

0.9049 andF (W[−1,1]−t
−1

) = 0.8939. While t
−1

is clearly an important attribute (error reduction of
using this attribute rather than not using it is al-
most10%, our model improves by removal of the
attributew1.

There is yet (at least) one more model worth-
while trying, namelyW[−2,2]−w1−w2−t

−2
. We find

that F (W[−2,2]−w1−w2−t
−2

) = 0.9053, i. e. not
an improvement over the modelW[−2,2]−w2−t

−2
.

However the error reduction for using the best
model we have had so far rather than this



model,e(W[−2,2]−w1−w2−t
−2

,W[−2,2]−w2−t
−2

) =
0.0063, is really small, almost insignificant.

We conclude this section about windows by
stating that while exact choices of which attributes
to use are dependent on problem specifications
(such as limits on model size), sticking to “full”
windows models is probably a sub–optimal ap-
proach, even if it may appear to be a “natural”
choice.

Illiterate models vs. literate models

While we have in the section about windows prob-
ably built as good models as is possible within the
bounds of construction we have set for ourselves,
we are not quite done with our analysis of the im-
portance of the different attributes.

Inspite of that we throw all unusual words (in
our case meaning words that appear less than 100
times in the training corpus) in one big heap, the
number of distinct words is large, larger than the
number of POS or chunk tags. Indeed, the attribute
would be almost useless if it did not allow for
many distinct words. While taking the attributes
wi (for suitable values ofi) into account (giving
us a literate model) may improve on the results of
classification, it is costly both in terms of the size
of the model and in terms of time required to train
it. Illiterate models (not using the attributeswi at
all) may therefore be of some interest.

When we looked at the “full” windows mod-
els, the models that appeared to be most useful
wereW[−2,2] andW[−1,1], which is why we will
compare these models with their illiterate “coun-
terparts”,W[−2,2]−L andW[−1,1]−L, to get an idea
of the effects of literacy.

For the larger model we getF (W[−2,2]−L) =
0.8867 and e(W[−2,2]−L,W[−2,2]) = 0.166 and
for the smaller model we findF (W[−1,1]−L) =
0.8836 and e(W[−1,1]−L,W[−1,1]) = 0.168. As
we can see, the actual words have large impact on
the results, and should probably not be discarded.
How to set the limit for which words that are to
be discarded (or thrown into the heap of unusual
words) may still be of interest, but it isn’t anything
that I will deal with here.

Static models vs. dynamic models

Finally, we will consider how well static models
(models that don’t make use of previous estimates,
i. e. the attributesc

−2 andc
−1) hold up against dy-

namic models (models that make use of previous

estimates). After all, using dynamic models cre-
ates risk of error propagation (one erroneus clas-
sification causing errors several steps ahead), even
if this propagation would be limited to stay within
a sentence.

We compareW[−2,2] to it’s static counter-
part. This yieldsF (W[−2,2]−D) = 0.9025 and
e(W[−2,2]−D,W[−2,2]) = 0.031 ,where−D in the
index indicates that the model is static. While a
dynamic model certainly is an improvement over
a static model, it is nowhere near the importance of
having a literate model rather than an illiterate one.
If demands on the models correctness are some-
what lax, while demands on speed and model size
are strict, using static models may be a reasonable
choice.

References

No reference literature was used.


