
Extracting Logical Forms and Recognising Textual Entailment

2007-01-05

Cenny Wenner
Lund University, Sweden

cwenner@gmail.com, cennywenner.com
Ulrikedalsvägen 2U Lg. 216, Lund

Abstract

We present concise high-accuracy rules for
Dependency-based Logical Forms1 extraction
and utilization for Recognising Textual Entail-
ment. We will enumerate the most essential rules
and supply a comparison of their respective im-
pacts on the 2004 Senseval 32 Identifying Log-
ical Forms task. We will also present the rudi-
mentary of a system for Recognising Textual En-
tailment benchmarked on the data of the first
PASCAL3 Recognising Textual Entailment chal-
lenge4.

1 Introduction
Recognising Textual Entailment is believed to be a cen-
tral subproblem of many NLP tasks involving under-
standing such as Question Answering, Machine Trans-
lation, Paraphrasing and Information Extraction. Nei-
ther Dependency-Graph based Logical Forms Extraction
or a Logical Inference approach to Recognising Tex-
tual Entailment is avant-garde. (Ahn et al., 2004) and
(Anthony and Patrick, 2004) employed the Dependency-
Graph technique at Senseval 3 and Logical Inference has
been used by for instance (Ferrandez et al., 2006), (Bos
and Markert, 2006) and (Tatu et al., 2006). We present a
more thorough exposition of the systems and an integra-
tion that covers all parts from plain text to inference on
it’s meaning. We list the few simple rules we have used
to achieve good results. In section 3, we will present the
Logical Forms aspect of the system and in section 4 the
Textual Entailment aspect. This will be followed by con-
clusions and a discussion in sections 5 and 6. Section 3.1
introduces the Logical Forms aspect, section 3.2 presents
the processing done by external modules to produce De-
pendency Graphs from English text and section 3.3 our
implementation for further processing and the associated

1The Logical Forms here referred are advocated by Vasile
Rus (Rus, 2002) and the Senseval 3 task.

2http://www.senseval.org/senseval3.
3Pattern Analysis, Statistical Modelling and Computational

Learning, http://www.pascal-network.org .
4http://www.pascal-network.org/Challenges/RTE .

rules. In section 3.4, we will present the importance of
most of these rules.

2 Previous Work

Previous work advocated up to a hundred rules and only
achieved only slightly better than our system (see for in-
stance (Bayer et al., 2004) and (Ahn et al., 2004)). Un-
fortunately, little is said about the actual rules those sys-
tems employed and which ones are the most essential. We
here aim to give a concise overview that will allow the
readers to swiftly implement their own systems. As men-
tioned in the introduction, (Ahn et al., 2004) and (An-
thony and Patrick, 2004) have employed Dependency-
Based logical forms identification. Aside from the Log-
ical Inference approach to Textual Entailment, there are
many other, most which rely on statistical models or
sentence/parse-tree similarity. See (Dagan et al., 2005a)
or (Bar-Haim et al., 2006) for an thorough overview.

3 Extracting logical forms

3.1 System overview

Our system features five modules for extracting logical
forms: Sentence splitter, Tokenizer, PoS-Tagger, Depen-
dency Graph Parser and Morphological Parser. For these
challenges, the first module isn’t necessary and the second
may be handled by the Dependency Graph Parser alone.
Our system use naive hard-coded rules for the first two
modules. The Morphological Parser is required to iden-
tify base forms as required by the Rus’ Logical Forms.

3.2 PoS-tagging and Dependency Graph Parsing

The first step in the Logical Forms Identification is to
tag each token in each sentence with a Part-of-Speech.
To do this, you may need to split a text into sentences
and tokenize each. To tokenize, one does well only by
identifying each sequence of word-characters with the ex-
ception of those with an “n’t” or “’*” suffix. As PoS-
tagger we have tried the Stanford Log-linear PoS tag-
ger5 (Toutanova and Manning, 2000) (Toutanova et al.,

5http://nlp.stanford.edu/software/tagger.shtml



3 EXTRACTING LOGICAL FORMS 2

2003), MXPOST6 (Ratnaparkhi, 1996) and TreeTagger7,
in order of decreasing accuracy and delay. For our pur-
poses, MXPOST yielded the best trade-off between accu-
racy and speed during the development phase.

The second step is to build a Dependency Graph. Some
Dependency Graph Parsers don’t require the first step and
the PoS-tagging may be omitted. We have used Malt-
Parser 0.4 EngSVM8.

Processing beyond Dependency Graphs is the focus of
this essay and described in the next section.

3.3 Predicate-Argument Extraction
3.3.1 Predicate introduction

The Logical Forms are extracted through three passes
over the Dependency Graph. The first pass instantiates
predicates and arguments for appropriate PoS-tags. For
noun groups, NN-nodes are also created with an arity
of three. PoS-tags are reduced from the Penn-Treebank
tags (Santorini, 1991) to the following categories:

Nouns (arity 1) Nouns, singular, mass (NN), plural
(NNS), proper singular (NP), plural (NPS) and Noun
Groups (here introduced as NN) (arity 3).

Verbs (arity 3) All V*-tags. There may be optional
arguments to verbs besides the mandatory 3, see (Rus,
2002).

Conjunctions (arity 3) Coordinating Conjunctions
(CC) and Interjections (UH)

Adjectives (arity 1) Adjectives (JJ), Comparative Ad-
jectives (JJR) and Superlative Adjectives (JJS)

Adverbs (arity 1) Adverbs (RB), Comparative Adverbs
(RBR) and Superlative Adverbs (RBS)

Determiners (ignored) Determiners (DT)

Auxiliary verbs (ignored) Modals (MD)

Unary modifiers (arity 1) Possessive Pronoun (PP$)

Binary modifiers (arity 2) To (TO), Prepositions and
Subordinating Conjunctions (IN)

Ignored Punctuation (SENT), Wh-pronouns (WH),
various symbols including coma.

3.3.2 Argument Identification
The remaining passes are used to identify equalities be-

tween arguments and determine whether arguments are
events or entities. If not proved otherwise arguments are
considered to be unequal entities. If an acceptable node
is found, an equality is introduced between the original
node’s argument that was being processed and the first
argument of the found node. The first argument is con-
sidered to be an identifier of the event or entity. For
noun groups, conjunctions and verbs, a search is done for

6ftp://ftp.cis.upenn.edu/pub/adwait/jmx/jmx.tar.gz
7http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger
8http://w3.msi.vxu.se/ nivre/research/MaltParser.html

the second and third argument. For verbs, for instance,
nearby nodes are searched to find suitable nodes to use as
subject and object. If a noun-group node would be found,
the first argument, the argument that identifies the entity,
is used. Modifiers, adjectives and adverbs also search for
their first argument.

Conjunctions, adjectives and adverbs restrict their at-
tention to either events or entities:

Conjunctions Second and third argument both events
or both entities

Adjectives First argument entity

Adverbs First argument event
For this reason, nodes that do not rely on whether argu-

ments are events or not are processed in the second pass
and those that do in the third.

During these two passes, every node’s arguments may
be processed to find up to one other argument of a nearby
node to introduce an equality with. The search for argu-
ments that fulfill certain requirements is done in a certain
order which is given by the PoS of the node itself, it’s
parent and, in the case when more than one argument is
necessary, the PoS-tag of the first argument. There are
four groups of nodes that are searched:

Parent Parent of the node in the Dependency Graph.

Pre-sibblings Sibblings in the Dependency Graph that
appear before the node itself in the original text. These
are processed in reverse order of appearance.

Post-sibblings Sibblings in the Dependency Graph that
appear after the node itself in the original text. These are
processed in order of appearance.

Children Children of the node in the Dependency
Graph, in order of appearance.

The standard order of processing is Pre, Child, Post
where the parent is inserted after Pre if it isn’t a noun and
after Post otherwise. If the first argument belongs to the
pre-sibblings, the second argument is instead searched for
in the order Child, Post, Pre, with the parent inserted as
usual. We will call this rotated order here. Certain nodes
has special rules as listed below.

PoS-tags Constraint
NN Only nouns

Verbs, 2nd arg. SUB function preferred∗

Verbs, 3rd arg. OBJ/VC function preferred∗

Conjunctions Both events or both entities∗∗

Adjectives Only entities
Adverbs Only events
Unary Mod. Rotated order∗∗∗

Binary Mod. Rotated order for both∗∗∗
∗ if an acceptable function of the kind exists, that node

is used. If none exist however, ordinary search is done.
∗∗ this ended up having no effect on the test set.
∗∗∗ these rules gave a higher score on the development set
but not on the test set.



5 CONCLUSIONS 3

3.4 Rule impacts
The impact on the argument F-Score for alterations to the
described system. The changes are absolute, not relative.

No verb functions -6.5%
No conj. constraint +-0.0%
No mods. rotation +0.1%
No rotations -3.4%
No pre first case -0.2%
Always pre first case -0.1%
No noun parents -1.1%

3.5 Results
Accuracy at the Logical Form Identification of Senseval 3
is primarily measured by the F-Score on Predicate Level
and F-Score on Argument Level. The systems at Sense-
val 3 achieved an Argument F-Score between 0.694 and
0.776 and a Predicate F-Score between 0.801 and 0.892.
We report an Argument F-Score of 0.642 and a Predicate
F-Score of 0.841 on the genuine test set. We therefor did
slightly worse than the systems at Senseval 3 on the Ar-
gument level but score high on the Predicate Level.

4 Recognising Textual Entailment

4.1 Overview
A common strategy for RTE, especially in the original
PASCAL’s RTE 1 challenge is Logical Inference. Either
a proof of the hypothesis should be found given the text or
alternatively the absence of a proof of the negation of the
hypothesis. Our logical inference system takes the previ-
ously described Logical Forms as input and attempts to
prove the hypothesis given the text using optional minor
linguistic rules and background knowledge. The proofs
are found through First Order Logic Backward Chaining
(see (Russell and Norvig, 2003) p. 287-295).

To handle ambiguity, each predicate is assumed to be
either of the senses (synsets) listed in WordNet9 (Fell-
baum, 1998). For tokens without WordNet entries, a new
predicate unique to the token text is created. In practice,
this means assuming that all senses of every predicate in
the antecedent is true and the goal is to prove that there
is an assignment of senses to the hypothesis predicates so
that it is inferable.

4.1.1 A simple proof knowledgebase
Foundational linguistic rules

∀p,a,v,stext(p, a, v) ∧ s ∈ senses(p) ⇒ kb(s, a, v) (1)

∀p,a,v,skb(s, a, v) ∧ s ∈ senses(p) ⇒ hypo(p, a, v)
(2)

WordNet senses and hypernym relations

senses(cat) = {n3414, n10085, . . .} (3)
senses(animal) = {n5934, n6136, . . .} (4)

∀a1,a2kb(n3414, a1, T ) ⇒ kb(n5934, a2, T ) (5)

9http://wordnet.princeton.edu/

Antecedent and Hypothesis

text(cat, [x1], T ) (6)
hypo(animal, [x1], T ) (7)

4.2 Knowledgebase
Besides WordNet relations, so called semantic relation-
ships, Linguistic/NLP rules and other Real-World Back-
ground Knowledge may be necessary to find more com-
plicated proofs. Linguistic rules are used to intepret the
structure of the Logical Forms. “Dogs and cats fight”
would for instance yield the conjunction of the two nouns
as the subject of the event and linguistic rules would be
needed to draw the separate conclusion that “dogs fight”.
Background Knowledge would include information about
how the world is. Something that includes the so called
common sense. An example would be that when a man
buys a boat, the man gets in his possession the very same
boat.

4.3 Results
We only achieved an accuracy of 52.0% on the RTE 1
development set. This is very poor in comparison with
the high-end full-coverage systems which achieved up to
58.6% (Bayer, MITRE and Glickman, Bar Ilan) (Dagan
et al., 2005b). The precision of this accuracy was 85.7%
while the recall was 4.2%.

5 Conclusions
It appears as though we can conclude that transforming
Dependency Graphs to Rus’ Logical Forms with high ac-
curacy is possible through a few simple rules. Previous
work in the area (Ahn et al., 2004) confirms these results,
claiming the transformation to be ”straight-forward”. We
would like to complement that implementing such a sys-
tem is anything but complex or time-consuming, given
modules mentioned above. On Recognising Logicsal In-
ference we find the problem more complex. The initial in-
ference engines were too slow to discover any but the sim-
plest proofs. With an optimized low-complexity engine,
considerably better results are achieved but they are still
not comparable to the high-end systems of RTE 1 which
achieve up to four times as good improvements compared
to us, on top of the Majority Model accuracy (Dagan et
al., 2005a).

The strength of Logical Inference is it’s high precision
but the mean accuracy remains low, something that could
also be observed in RTE 2 (Bar-Haim et al., 2006). Some
of the best systems sacrifice some of the precision to im-
prove the recall, performing various approximations.

6 Discussion
Although the logical forms accuracy is rather high, much
improvement is necessary for higher modules due to the
propagating errors. The greatest problem for us for the
Recognising Textual Entailment problem, that we are
aware of, is the exponential growth of possible proofs



References 4

in the depth of the proof (whether forward-chaining,
backward-chaining or resolution is applied). Due to the
high branching factor produced by possible senses or lin-
guistic rules, no greater than intermediate length hypothe-
ses can be solved by our engine. We early noticed how
the highest accuracy was achieved with the simplest set
of inference rules. This is explained by how, even with
a heuristically guided search, not even the simple proofs
might be found with a too great branching factor and that
the set of newly solvable pairs small in comparison.

7 Future Work

We have noticed the impact of the accuracy of low-level
modules, such as PoS-tagging. Enhancement of these
modules should and probably essential for accuracies be-
yond 97% on the Logical Forms Extraction. It appears
fruitful for the Textual Entailment task as well as we fre-
quently notice that proofs are disrupted by single errors.
Collocations aren’t handled and would probably yield an-
other % both on predicates and arguments. Determiners
and auxiliary verbs are ignored by both the logical forms
and the logical inference. Natural Language appears es-
pecially ambiguous at this point but linguistic rules for
handling these cases should bring up the logical inference
accuracy slightly. A sense disambiguation system could
be included to reduce the search space significantly and
thereby lend more resources to feasible domains. Ma-
chine Learning techniques appears to work well for both
tasks and should complement the high-precision, low-
recall logical inference well (although previous work (Bos
and Markert, 2006) have so far achieved opposite results
where for logical inference, machine learning techniques
outperform logical inference rather than complementing
it). A more bold idea would be approximative inference
for merging similar proof branches. This might be able to
reduce the branching factor significantly.

References
David Ahn, Sisay Fissaha, Valentin Jijkoun, and Maarten

De Rijke. 2004. The university of amsterdam
at senseval-3: Semantic roles and logic forms. In
Rada Mihalcea and Phil Edmonds, editors, Senseval-
3: Third International Workshop on the Evaluation of
Systems for the Semantic Analysis of Text, pages 49–53,
Barcelona, Spain, July. Association for Computational
Linguistics.

Stephen Anthony and Jon Patrick. 2004. Dependency
based logical form transformations. In Rada Mihal-
cea and Phil Edmonds, editors, Senseval-3: Third In-
ternational Workshop on the Evaluation of Systems for
the Semantic Analysis of Text, pages 54–57, Barcelona,
Spain, July. Association for Computational Linguistics.

Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo
Giampiccolo, Bernardo Magnini, and Idan Szpektor.
2006. Proceedings of the Second PASCAL Challenges
Workshop on Recognising Textual Entailment.

Samuel Bayer, John Burger, John Greiff, and Ben Well-
ner. 2004. The mitre logical form generation system.
In Rada Mihalcea and Phil Edmonds, editors, Senseval-
3: Third International Workshop on the Evaluation of
Systems for the Semantic Analysis of Text, pages 69–72,
Barcelona, Spain, July. Association for Computational
Linguistics.

Johan Bos and Katja Markert. 2006. When logical infer-
ence helps determining textual entailment (and when it
doesn’t). In Proceedings of the Second PASCAL Chal-
lenges Workshop on Recognising Textual Entailment.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005a. Proceedings of the PASCAL Challenges Work-
shop on Recognising Textual Entailment.

Ido Dagan, Bernardo Magnini, and Oren Glickman.
2005b. The pascal recognising textual entailment chal-
lenge. In Proceedings of Pascal Challenge Workshop
on Recognizing Textual Entailment.

Christiane Fellbaum, editor. 1998. WordNet: An Elec-
tronic Lexical Database. pub-MIT.

O. Ferrandez, R.M. Terol, R. Munoz, P. Martinez-Barco,
and M. Palomar. 2006. An approach based on logic
forms and wordnet relationships to textual entailment
performance. In Proceedings of the Second PASCAL
Challenges Workshop on Recognising Textual Entail-
ment, Venice, Italy, April.

Adwait Ratnaparkhi. 1996. A maximum entropy model
for part-of-speech tagging. In Eric Brill and Ken-
neth Church, editors, Proceedings of the Conference on
Empirical Methods in Natural Language Processing,
pages 133–142. Association for Computational Lin-
guistics, Somerset, New Jersey.

Vasile Rus. 2002. Logic forms for wordnet glosses.

St. Russell and P. Norvig. 2003. Artificial Intelligence: A
Modern Approach, Second Edition, International Edi-
tion. Prentice Hall International Series in Artificial In-
telligence. Prentice Hall, Upper Saddle River, NJ. RUS
st 03:1 1.Ex.

Beatrice Santorini. 1991. Part-of-speech tagging guide-
lines for the penn treebank project.

Marta Tatu, Brandon Iles, John Slavick, Adrian Novischi,
and Dan Moldovan. 2006. Cogex at the second recog-
nizing textual entailment challenge. In Proceedings of
the Second PASCAL Challenges Workshop on Recog-
nising Textual Entailment.

Kristina Toutanova and Christopher D. Manning. 2000.
Enriching the knowledge sources used in a maximum
entropy part-of-speech tagger. In Joint SIGDAT Con-
ference on Empirical Methods in Natural Language
Processing and Very Large Corpora (EMNLP/VLC-
2000), Hong Kong.

Kristina Toutanova, Dan Klein, and Christopher D. Man-
ning. 2003. Feature-rich part-of-speech tagging with
a cyclic dependency network. In Proceedings of HLT-
NAACL 03.


