
Collocation statistics to check verb-preposition usage in Swedish

Brice Jaglin
Lund University / Sweden

ex05bj8@student.lth.se

Felix Nairz
Lund University / Sweden

nairz@sbox.tugraz.at

Abstract

Non-native speaker have always difficul-
ties to know which prepositions to use
with common verbs. This can be predicted
by considering verb-preposition frequen-
cies in a corpus. Our goal was to de-
velop a small Java application that tell the
user which pairs are frequent and which
pairs are not, to signal where there may
be a mistake. Our software uses an ex-
ternal tagger to identify relevant pairs of
words, and rate them according to likeli-
hood algorithms relying on statistics from
the biggest corpus on earth, the Web.

1 Introduction

Verb-Preposition pairs like ”going to”, ”meeting
at” are one of the hardest things to learn in a
new language. They normally do not follow any
rules and even if there exists some rules, there are
many exceptions. When we both started to learn
Swedish we realized those difficulties again. It
was therefore a pleasant opportunity to develop
a Verb-Preposition checker for the Swedish lan-
guage during our ”Language Processing and Com-
putational Linguistics” course.

The aim of our project was to help beginners
in Swedish to check their texts in order to correct
Verb-Preposition pairs. But the approach is not
limited to the Swedish language and can therefore
be extended to other languages with very little ef-
fort. During the implementation of a prototype our
focus was on a good design of the software with
easy changeability of all components.

The result of our programming is a fully work-
ing prototype with a graphical user interface.
The user can type some Swedish text and query

the web to evaluate the likelihood of a Verb-
Preposition pair. Depending on the computed like-
lihood are the pairs displayed in different sizes
to distinguish between common and uncommon
pairs. Some more advanced options are also avail-
able but will be described later.

In the following section we will give you a brief
overview of our system-design followed by a sec-
tion describing the external tools we used for our
project. After this we will get more into detail in
the implementation section followed by a descrip-
tion of the algorithms used to evaluate the likeli-
hood. At this point the reader has enough knowl-
edge to comprehend the discussions section where
we talk about various problems we faced and how
our prototype could be further improved. Finally
we close with our conclusions.

2 System Overview

The main steps to get from a raw text to a high-
lighted text that takes probability into account are
as follows:

• Identify verb-preposition pairs in the text us-
ing a tagger

• Get statistics for verb, preposition and bi-
gram1

• Compute the likelihood of those pairs

• Normalize the likelihood in order to display
them graphically

Having those steps in mind makes it easy to under-
stand the system design. We start with a overview

1A bigram is a pair of two words. It is a special case of
N-grams, with N=2. In the report, it is a synonym of verb-
preposition pair, but can be extended to any pair of words.



of the project in this section and get into more de-
tail about the external tools and the implementa-
tion in section 3 and 4. The whole system can
roughly be separated into four parts: our project,
the external tools, the external database and the in-
ternal database. This separation can better be seen
in figure 1.

Starting from the graphical user interface that
you can see in figure 2, the user types the text
to check into a text box and presses the check-
button. This leads to the first step in the processing
chain described before - the tagging. The tagging
is done using an external tagger, that will be de-
scribed in more detail in the next section. For now
is it enough to know that the tagger returns the a
text where each word is tagged. It is our task to
create a list of bigrams out of this text that will be
further processed. For each bigram in the list is it
our goal to compute a likelihood. This is done by
querying the web using the Google-API. The API
returns among other things the number of Google-
hits for the search term. The final likelihood for
the bigram is then computed using different algo-
rithms on the number of hits for the verb, prepo-
sition and the bigram. In the last step this likeli-
hood is shown graphically in the user interface so
that the user can distinguish between frequent and
non-frequent bigrams. For performance reasons
a cache is implemented that stores the number of
hits. Whenever new words are in the user-text the
size of the cache increases making the application
faster the more often it is used.

3 External tools

In this section we will give a introduction to the
external tools we used.

3.1 Granska

Granska2 is a part-of-speech tagger developed at
KTH, in the department of Numerical Analysis
and Computer Science (NADA). We used the old
version of Granska, written in C++3. It takes a text
file as an input and returns on the standard out-
put the list of words associated tags, what makes
it easy to interface it with any programming lan-
guage, such as Java in our example. It is fast and
efficient (97% of correct tags).

Granska uses a probabilistic model, combined

2http://skrutten.nada.kth.se/
3Note that the code compiles well with g++3.4, but does

not seem to compile with g++4.x.

to an external POS lexicon generated thanks to the
Stockholm Umea Corpus4.

3.2 Google SOAP-API

Google SOAP-API5 is an API developed by
Google that allows search-queries from inside a
program without having to start a browser. You
get the results for your query as you get them when
using a browser. We do not make use of any other
feature than the number of hits for each query. It
is further important to let the API only list results
in the Swedish language, otherwise the results will
be wrong.

To be able to use the service, one has to get
a free license-key6. Each key is limited to 1000
queries a day, but we could have asked for several
keys to increase the number of allowed queries up
to several thousands. This remains a static limita-
tion though, whose probability to occur has been
decreased by implementing a cache (see section
4.3).

We have experienced strange problems when
querying the API. It is sometimes necessary to
loop and send again the query until we finally get
an answer. This issue does not slow down the
whole process really much, since the number of
tries has never been greater than 4.

4 Implementation

In this section we describe the processing chain
from a raw text to version with highlighted Verb-
Preposition pairs in a bit more detail than in sec-
tion. A class diagram describing only the objects
directly related to the language aspect of our soft-
ware is presented in figure 3.

4.1 User Interface

The user-interface already presented in figure 2
was developed using the Java Swing Gui. We did
not put extensive value on the user interface. It just
fulfills its basic requirements.

The progress-bar is not really accurate because
the time required for processing each bigram is
considered as equal, whereas it is not: depending
on whether the bigram statistics have been cached,
time for processing one bigram can vary from sev-
eral milliseconds to seconds.

4www.ling.su.se/staff/sofia/suc/suc.html
5http://code.google.com/apis/soapsearch/
6Since December 2006, it is no longer possible to get new

license keys



Figure 1: System design. The whole system can be separated into: our project, external tools, external
database and internal database.

Figure 2: User Interface. Prepositions are highlighted in red. A large font size means that the bigram is
quite common according to the chosen algorithm.



Figure 3: Class diagram for language-related objects.



4.2 Tagging

Tagging each word is the first task to do for our
software when processing a text. From a list of
pairs word/POS, our software identifies the pairs
verb/preposition using the following rules7:

• A word identified as a verb,

• One or several words tagged as adverbs,

• A word identified as a preposition, a particle,
a subjunction, or a infinitive mark.

The adverbs are not saved, but must be present
in the pattern to identify for example negation
forms of prepositional verbs (tycker inte om).

4.3 The cache

Even for smaller texts the number of queries to
the Google-API can be very high. For every
verb-preposition pair in the text we have to query
Google three times (once for the verb, the preposi-
tion and the bigram). Since one query took ap-
proximately three seconds it was therefore very
important to implement a cache. The cache stores
the word and the number of hits returned by
Google API. The more often you use the applica-
tion and the more different Verb-Preposition pairs
are included in the text, the better the cache per-
formance.

As you can see in figure 3, the
StatisticCache consists in a hashmap
of AbstractStatistic objects. Verbs,
preposition and bigram statistics are thus cached
indifferently. As Java comes with already im-
plemented functions to save/restore an object
on/from disk, our cache is saved from one start to
another.

4.4 Algorithms

To compute the likelihood of verb-preposition
pairs, three algorithms were implemented, from
the most simple to the most advanced: Mutual In-
formation, T-scores, and Log likelihood ratio, as
shown in figure 3. We won’t go into detail about
the formulas of those algorithms in this paper and
therefore refer to (Nugues, 2006) for more infor-
mation.

The problem is that all these algorithms com-
pute the probability based on occurrences statis-
tics, while we only get hits statistics using a

7Part-of speech-codes can be found in the SUC manual

search engine such as Google. However, accord-
ing to (Lapata and keller, ), it is reasonable to
approximate occurrences with hits. An under-
lying issue was to determinate the size of the
corpus, i.e. in our Web case the total number
of pages indexed. Extrapolating results returned
when searching common words such as the, sev-
eral studies have shown that this number was
around 8.1 ∗ 109. This may be not really accurate
and up-to-date, but it is sufficient for our prototype
where we only need an order of magnitude.

It is difficult to estimate which algorithm is the
best, but it seems that the more complex the al-
gorithm is, the better it is. Independently of the
log effect, the Log likelihood ratio maps its values
on the whole interval, and is more robust to large
statistic variation within the same bigram.

4.5 Display of Results

The score returned by the algorithms is just a ab-
solute number. To be able to display the likelihood
graphically it is necessary to transform those abso-
lute score into a relative one. In our first version
of the project we have chosen to take the smallest
absolute number as the relative minimum and the
biggest absolute number as the relative maximum
and linearly interpolate all values between. In the
next project iteration we added the option to inter-
polate not only linearly but also logarithmic which
lead to better results in some cases.

The final likelihood is displayed through varia-
tions of the font-size. The smallest relative num-
ber is set as the minimum font-size we defined and
the biggest relative number is set as the maximum
font-size. All values in between are interpolated
either linearly or logarithmic and then rounded to
an even number.

5 Discussions

The Google-API is a nice and powerful tool but
has some limitations as well. Every user has to
register for this service through the Google web-
side to get a unique key. This key has to be added
to every search query, so that only registered users
are allowed to use this service. But the probably
biggest limitation is the maximum of 1000 queries
within 24 hours per key. There is no way to in-
crease this number, not even if you pay for it. An-
other drawback is that the reaction time seems to
be throttled down and you sometimes get no an-
swer. But since we do not know another compara-



ble service we decided to still use it. In addition
the whole software is designed flexible enough
and with clear interfaces, so that every single part
can be replaced by another one very easily.

In our basic version of the cache we did not
care about entries getting out of date. It could
for example happen that the number of Google-
hits for a word has changed since it is placed in
the cache. For such cases a ”refreshment” after a
certain amount of time would be good.

The normalization before displaying the results
works only well for larger texts. If you have only
one Verb-Preposition pair then it is the minimum
and the maximum at the same time. One possibil-
ity would be to safe the likelihood for all bigrams
and compare the current bigram likelihood to the
”global” likelihood and chose the font-size corre-
sponding to this likelihood.

It could be possible to improve accuracy of like-
lihood values by querying not only the given form
of the verb, but also other tenses. For example, if
a verb is used in perfect in the checked text, statis-
tics about present and past tenses should also be
collected. This would however result in slowing
down the process because of the increased num-
ber of queries.

6 Conclusion

We have shown with this project that is was possi-
ble to use statistics generated from a search en-
gine in order to highlight possible mistakes in
verb-preposition usage. As any frequency-based
heuristic analysis, this method suffers from false
positives and false negatives issues: rare verb-
preposition pairs do exist, and the most common
pairs are not always the correct ones. The proto-
type is however a good start for a beginner willing
to get rid of the most frequent mistakes.

Java classes were designed in a flexible way, so
it should be easy to use a different parser or a dif-
ferent corpus by adding some classes implement-
ing existing interfaces. A possible extension to our
prototype would be a module of suggestion. A
preposition in a pair with a low likelihood value
may thus be replaced by another one, more com-
mon.

References
Pierre Nugues. An Introduction to Language Process-

ing with Perl and Prolog. 2006. Springer.

Mirella Lapata and Frank Keller. Web-based Models
for Natural Language Processing.


