
Protein Name Extraction

Xavier Adam
adamxavi@utt.fr

Olle Rundgren
Department of Computer Science

Lund University
olle.rundgren.913@student.lu.se

Abstract

This article describes a simple information ex-
traction system using pattern recognition. The
intended use of the program is to extract protein
names from research articles. The article gives
a short introduction to the background of our
project and then goes on describing the imple-
mentation and structure of our system. Finally
we evaluate our system and discuss what con-
clusions can be made from our work.

1 Introduction

Within the area of biotechnology and the life
sciences there are vast amounts of information
generated every day. The need for organizing
this information is therefore of biggest concern
and any method of automating this task is a
welcome one. The FetchProt1 and the Yapex2

projects of the Swedish Institute of Computer
Science (SICS3) adresses this need of automa-
tion and they were the starting point of our
project. The FetchProt project is an ongoing
project building a complete system. It will be
able to extract proteins and their functions and
inserting these into a database for wider use,
both academic as well as industrial use. The
Yapex project is the protein name tagger that
FetchProt uses for the extraction of the protein
names. We were interested in the information
extraction part of the project and therefore de-
cided to build a small system similar to the
Yapex project. Our aim was to build a sys-
tem that matched the results of the Yapex sys-
tem using a pretty simple approach of pattern
recognition.

1http://www.sics.se/humle/projects/fetchprot/
2http://www.sics.se/humle/projects/prothalt/
3http://www.sics.se/

2 Implementation and Structure

2.1 Language
We used Java for our implementation partly
because of personal preferences but mostly be-
cause of its wide use and possibilty to find free
modules to use from within our program. As
it turned out we only used standard Java but
found resources that would have been interest-
ing to incorporate into our program. A specif-
ically useful package was the standard package
for regular expressions.

2.2 Corpus
The Corpus we used was downloaded from the
Yapex site and was relatively small. Since it
was already tagged we had to clean it from all
tags before we could use it. The Corpus was
originally collected from research articles from
the MEDLINE resource and consists of the ab-
stracts of randomly chosen articles. The train-
ing collection contains 1745 protein names and
the test collection contains 1966 protein names.
All of the abstracts were originally annotated by
domain experts connected to the Yapex project.

2.3 System
Our system has a direct and simple structure.
When given an input text we create a new ob-
ject that we chose to call a BioText which holds
a dictionary that can store protein names and
a buffer to store the text. On this object we
can call all methods associated with the dif-
ferent tasks. If the text needs to be cleaned
from tags we call the cleaning method and store
the new clean text in the buffer instead. For
the task at hand (tagging of Protein names)
we have two different methods that both takes
regular expressions written as strings as para-
meters and which both fills the dictionary with
protein names. The two methods differ in that
one of them is for applying more specialized pat-
terns catching few protein names with a high
precision while the other method is for applying

a broad pattern cathing lots of protein names.
Because of this implementation choice we could
experiment with the patterns to make them bet-
ter in a fast and easy way. We also have some
methods to help us in analyzing the effectiveness
of the patterns we write. For example we have
a contextwriter that writes the context of each
of the tagged protein names so that we can ana-
lyze what needs to be done. For the evaluation
we had methods that could be applied directly
to our BioText objects to compute recall and
precision.

2.3.1 Different types of patterns

The most important part of our program is the
patterns which detects the protein names to be
tagged. They are all applied using the Java
standard package for regular expressions though
we wrote convenient methods to be able to just
write the patterns as strings. At first we tried
to apply all-catching patterns that catches a lot
of protein names and we got a lot mismatches
and didn’t get all the names either. Therefore
we realized that we had to build different kinds
of patterns to get better results. The method
we settled for was to have one broad pattern
whith a filter to get rid of mismatches and sev-
eral high precision patterns that catches pretty
few names but with a higher precision (fewer
mismatches). This choice resulted in two dif-
ferent methods which made it easy to experi-
ment with different patterns. The first method
is used for the high precision patterns and is typ-
ically used to detect multiword protein names.
The second method is used to apply the broad
pattern and also includes a filter to avoid com-
mon mismatches of names that look like protein
names but in fact are not proteins for example
DNA, RNA, UV and PH. This way to imple-
ment the pattern recognition was pretty fruitful
since it was easy to write new patterns and to
test and analyze these new patterns. The abil-
ity to test new patterns fast was very important
to us since we are no experts on proteins and
the structure of the names are not completely
standardized. There were also the occurence of
similar names that had to be taken into account
like DNA and the introduction of the filter was
a very important improvement and could eas-
ily be extended if other recurring mismatches
were found. This iterative process was typical
for our workflow. Both of the methods also had
functionality to avoid tagging the same proteins
more than once.

2.3.2 Main Parts of the Biotext class -
The dictionary and the Buffer

As mentioned shortly in an earlier section each
Biotext object holds a dictionary to store each
occurence of protein names and a buffer to store
the text to be tagged and later the tagged text.
The dictionary was implemented with a map
and has the protein names as keys and the num-
ber of occurences as values. When a pattern is
applied with the appropriate method each pro-
tein that the pattern catches is stored in the
dictionary. The Biotext objects also incorpo-
rates a buffer to store the text to be tagged.
After each pattern applied the buffer changes
accordingly with the proteins that the pattern
has caught tagged in the buffer. When all pat-
terns are applied the dictionary contains all the
protein names that has been tagged and the
buffer contains all the tagging of these protein
names. Then different methods can be called
to compute recall, precision and the result file
can be written to a file. This makes the system
easy to extend, improve and test and was also
done several times before we reached the final
results. The actual running of the program was
as implied done from a seperate testclass.

3 Evaluation

For the evaluation we used methods for com-
puting of recall, precision and using those two
it was easy to make a printout for the harmonic
mean (which is a combination of the two). We
first built a baseline case which only tagged pro-
teins in the test corpus which had been stored
in the dictionary after applying patterns on the
training corpus. That is we didn’t apply any
patterns at all on the test corpus. This gave us
pretty poor results which was as expected. Af-
ter that we applied patterns to the testcorpus
as well and the results got better so we knew
we were on the right track. We then wrote
better patterns for the training corpus . The
more patterns added the better it got and we
used the evaluation methods to see how effec-
tive new patterns were. The wide pattern was
the one with the biggest increase of recall and
writing of the specialized patterns only made
smaller increases but still good increase. It
was also during early evaluation that we be-
came really aware of deficiencies in our patterns
that tagged names that shouldn‘t be tagged and
therefore the evaluation process became an iter-
ative process done several times before accept-
able results were reached. Finally we settled for

a couple of high precision patterns and the fil-
tered broad pattern and ran them on both the
training corpus and the test corpus. The re-
sults including the original baseline case can be
viewed in the table below.

recall precision
base 10.04% 45.08%
train 56.19% 52.24%
test 55.5% 52.6%

Table 1: Results

For further evaluation it would have been in-
teresting to run some arbitrary but relevant ar-
ticles through the system as well but due to time
restrictions that was never done.

4 Conclusions

As with any project you are left with lots of
thoughts about things that could have been
done better and things that you are pretty
happy about afterwards. With the methods we
used we don’t think we could do much better.
Yes, we could write more of the specialized pat-
terns but there wouldn‘t be any bigger point
since the system isn‘t going to be used and in-
creases after a while becomes very small. If the
system were to be used for a ”real” project we
realize that we would have to do better than we
have done so far but in that case we would need
other methods to combine with the ones we have
used. We looked into adding some kind of part-
of-speech tagger and had actually started writ-
ing some methods for that as well. After a while
though we felt that it was better to concentrate
completely on one method since we didn’t think
we would make it in time otherwise. That was
probably a wise choice. We experienced some
trouble with the reading and understanding of
the texts that we were working on. It was not
an easy task to read and analyze text so out
of context and so highly specialized. Finding
effective patterns therefore became more diffi-
cault than we first thought. All in all it was
very good training with the whole project since
we got to adress problems that is probably very
common in natural language processing and to
work freely with something always inspire. It
was also interesting to see that we could reach
fairly good results with rather simple means.

5 Acknowledgements

We would like to thank both Pierre Nugues and
Richard Johansson for the help we received dur-
ing the project.

6 References

• http://www.sics.se/humle/projects/prothalt/

• http://www.sics.se/humle/projects/fetchprot/

• An Introduction to Language Processing
with Perl and Prolog, Pierre Nugues

