
Building a Swedish rhyme dictionary

Rasmus Arnling Bååth
Department of Computer Science

Faculty of Science, Lund University
rasmus.baath@gmail.com

Staffan Åberg
Department of Computer Science

Institute of Technology, Lund University
carnevorum@gmail.com

January 17, 2006

1. Abstract

This report describes an attempt to build a
Swedish rhyme dictionary. The project is
part of the course Language Processing
and Computational Linguistics given at
Lund university the spring term 2005. To be
able to rhyme with a word you have to
know the pronunciation and so the authors
conclude that a phonetic lexicon is needed.
Since no comprehensive phonetic lexicon
is readily available the first step is to build
one out of LEXIN, a small but free
lexicon. The second step is to implement a
search engine and the requirements of such
an engine are discussed.

2. Introduction

A rhyme is when two or more words partially
sounds the same. There are many categories of
rhymes, and what category a rhyme belongs to
depends on what part of the words are similar.
When there's a similarity in the beginning one
speaks of alliteration. Alliteration is common in
old Norse writings and here is a famous stanza
from the poetic Edda:

“Vred var Ving-Tor,
när han vaknade,
och sin hammare,
han saknade.“

When there's similarity in the middle one speaks
of assonance, e.g. gåta-måla. The most common
type of rhyme is when there's a similarity in the
end. This is called a tail rhyme and it's the type of
rhyme this report deals with. For the rest of this
report a rhyme is always a tail rhyme. Rhymes can
be both monosyllabic and polysyllabic, gris-paris
being the former and ö sterrikare –trösterikare
being the latter. Rhyming serves two purposes. It
gives a text rhythm and flow, hence pop lyrics
nearly always rhyme, and it makes a text easier to
remember, the fact that nursery rhymes often are
very old is proof of this. Rhyming is an old
practice and there are examples of rhymed
Christian hymns dating back to 300 ad.

Rhyming is not always easy and sometimes you

would want a rhyme dictionary. This report
describes an attempt to build one, supposed to be
comprehensive, easy to use and accessible over
the web. There already exists a number of rhyme
dictionaries on the web, but they are all flawed in
the same way. They only consider the spelling of a
word when searching for rhymes. This is an
understandable design choice. It's easy to
implement, you just write an algorithm that picks
out words from a word list that matches the end of
a given word. It's easy to extend, you just add new
words to your word list. Though good in many
ways it also gives rise to some problems. Even
though Swedish spelling is relatively consistent, at
least compared to English, there are many
exceptions. A rhyme dictionary that only considers
spelling would miss perfectly good rhymes such as
fleece-gris and include dam-skam, which doesn't
rhyme. When rhyming it is also important consider
stress, something that's hard to deduce from the
spelling of a word. To cope with such problems
one has to consider the pronunciation of the
words, not only the spelling. The easiest way to do
this is by using a phonetic lexicon when searching
for rhymes. One could also attempt to devise rules
to derive the pronunciations from the spelling, but
this is difficult and a perfect solution is probably
AI-complete.

Since no free and comprehensive phonetic
lexicon for Swedish is readily available, the task to
build a rhyme dictionary is twofold. First one has
to get hold of a phonetic lexicon then one has to
build a search engine to search it for rhymes. The
rest of this document is organized in the following
way: Section 3, describes how we take LEXIN, a
lexicon aimed at emigrants learning Swedish, and
by means of several Perl scripts make it into a
phonetic lexicon implemented as a MySQL
database. Section 4 discusses the requirements and
the implementation of the search engine. Section 5
shortly discusses the interface of the rhyme
dictionary. Then follows an evaluation and some
concluding comments. Finally there's an appendix
consisting of a short explanation of the phonetic
alphabet used, an excerpt from LEXIN and a
picture of the web interface of the lexicon.

3. The Phonetic Lexicon

 3.1 . Lexin

Swedish is a small language and it's not strange
that Swedish linguistic resources aren't as great as
for larger languages, such as English. If you're
looking for an English phonetic lexicon you would
find Moby Pronunciator1, a large and free lexicon
consisting of 175,000 words with corresponding
pronunciation. A similar lexicon for Swedish
doesn't exist. What does exist is LEXIN. LEXIN is
a lexicon built by the Institution of Swedish
language at the university of Gothenburg and it's
free to download from Språkbanken2, an online
collection of linguistic resources. LEXIN is
intended as an aid for emigrants learning Swedish
and consists of roughly 20,000 entries. Every entry
consists of a lemma, a pronunciation, a part-of-
speech tag, a list of inflections, a list of compound
words and possibly a description of the usage of
the word. LEXIN is stored in the form of an XML
document, see appendix A for a short excerpt and
appendix B for a description of the phonetic
alphabet used.

Before we can use LEXIN as a phonetic lexicon
some changes has to be made. First of all LEXIN
has to be made into a MySQL database. XML is a
good format for structured data, but by using a
MySQL database you gain access to powerful
tools such as fast search mechanisms and
consistency checks. Secondly LEXIN has to be
cleaned up. The way the spelling and the
pronunciation is notated is inconsistent and the
XML document is not valid nor well-formed.
There's also a lot of information in LEXIN that we
don't need. We don't need to know what part-of-
speech a word belongs to or the usage of a word.
The phonetic notation is also unnecessarily
complicated. Thirdly LEXIN has to be extended.
LEXIN's mere 20,000 entries are not enough, for
instance the dictionary compiled by the Swedish
Academy contains over 120,000 entries.

 3.2 . Making LEXIN into a MySQL
database

To make LEXIN into a MySQL database we use
Perl since it has a good database interface and
good tools for working with text. First we
transform LEXIN into a flat file, this being easier
and faster to work with than a XML file.
Unnecessary information such as information
about what part-of-speech a word belongs to is not
included. The flat file is then made into a MySQL
database and at the same time parentheses in the
spelling and pronunciation of a word, notating
alternate spelling or pronunciation, are removed.

1 http://www.dcs.shef.ac.uk/research/ilash/Moby/
2 http://spraakbanken.gu.se/

The LEXIN database, hereafter only called the
database, now consists of four tables. One table
consisting of lemma's with corresponding
pronunciation, two tables with inflections and
compounds, respectively, without corresponding
pronunciation and one empty table to hold
inflections of compounds.

The database now has to be cleaned up and
made more consistent. The notation of words and
pronunciations contains elements that we don't
need. Eg. “~” that separates parts of multiwords is
removed and in the pronunciation “:” after
consonants is removed. “:” after a consonant
means that the consonant is long and this is not
important to consider when rhyming.
Monosyllabic words, that for some reason aren't
stressed, are made stressed. Inflections can both be
complete words, as in [bagare :: bagaren], or
partially spelled out, as in [bagare :: -n]. We want
all inflections to be complete words and we
therefore complete partially spelled out
inflections.

 3.3 . Extending the Database

The database now is in the form we want it to be
in but it's still not very comprehensive and we
would want to extend it. To add completely new
words is out of the question since this can't easily
be automated. What can be automated is adding
pronunciation to the roughly 37,000 inflections.
The information we have at our disposal is this:
the spelling of the lemma, it's pronunciation and
the spelling of it's inflections. We first produces a
list of all the differences, hereafter called suffixes,
between an inflection and it's lemma. E.g.
[bagare :: bagaren] would produce “n” and
[fadern :: fäderna] would produce “äderna”. It
turns out that this list consists of under 200
different suffixes and so it's possible to enter their
pronunciation by hand. The script for producing
the inflections' pronunciations then works in the
following way. For each inflection pick out the
suffix, the spelling in common with the lemma and
the rest of the lemma, e.g. [driva :: drivor] would
produce (“or”, “driv”, “a”). Then extract the
common pronunciation by removing the
pronunciation corresponding to the rest of the
lemma from the lemma's pronunciation, in this
case “drI:va” would become “drI:v”. Then the
pronunciation corresponding to the suffix is
concatenated with the common pronunciation, and
so “drI:v” + “or” becomes “drI:vor”. This
simple method works, but some extra rules are
needed. In for example [dö :: dött] the ö is long in
dö but short in dött, so it's not enough just to add
the pronunciation of the suffix “tt”. This problem
can be solved by checking if adding the suffix to
the common spelling leads to new double

consonants, if this is the case make the preceding
vowel short. Other tricky inflections that has to be
dealt with are the ones ending with “orer”. E.g.
[dator :: datorer] are pronounced respectively
“2dA:tor” and ”2da:tO:rer”. Not only is the “o”
made long, it is also made stressed.

The method works incredibly well and produces
36,000 new inflection-inflection pronunciation
pairs. When checking 100 randomly picked
inflection-inflection pronunciation pairs only one
was not correct.

Each lemma also has a number of compound
words associated with it. The compound words
can be divided into two categories, those that ends
with it's lemma and those that starts with it's
lemma. We can't produce the full pronunciation of
the compound words but we can produce a partial
by using the lemma's pronunciation. Since our
database is going to be used as a rhyme lexicon we
are mostly interested in the pronunciation of the
end of the words. We therefore only produces
partial pronunciation for the compound words that
ends with it's lemma. We introduce “§” as a wild
card sign indicating where we don't know the
pronunciation. A compounds pronunciation is then
simply it's lemmas pronunciation with a “§” added
in front, e.g. [väggalmanacka :: §almanaka] and
[överansträngning :: §anstre@ni@]. This
produces 3,500 new word-pronunciation pairs. We
make the uppercase letter, indicating stress, into
lowercase in all the partial pronunciations since
the stress most often lies in the first word of the
compound words. We also generate the inflected
forms of all the compounds with partial
pronunciation producing another 8,000 word-
pronunciation pairs. We now have a phonetic
database consisting of 63,000 word-pronunciation
pairs.

4. Searching for rhymes

 4.1 . Requirements of a search engine.

The strict definition of a rhyme is a word
that corresponds with another one from and
including the last stressed syllable. A search
engine using this definition could work as follows:
Accept a word as input, get that word's
pronunciation in the database, remove everything
from the pronunciation up to the last uppercase
vowel and return a list of words which
pronunciation ends in the same way as whats left
of the search word's pronunciation. But this engine
is naïve in many ways and wouldn't suffice. Here's
a list of features a search engine should have.
1. You should be able to change the strictness of

the search. The strict definition of a rhyme is in
many cases to strict. Sometimes, especially

when writing lyrics for a song, the stress
doesn't matter that much.

2. The search engine should be able to handle the
fact that many words are spelled the same but
pronounced differently. E.g. [banan ::
2bA:nan], the one you can safely walk on and
[banan :: banA:n], which you wouldn't want
step on.

3. You should be able to search for rhymes for a
word not currently in the database. This could
be solved by making the search engine accept a
phonetic transcription as input, but this
approach would make the search engine less
user friendly.

4. The search result should be presented in a
perspicuous way. Often you now how many
syllables the rhyme your looking for should
have. A search engine returning a randomly
ordered list or a list sorted in lexical order
would make it hard to find rhymes with a
certain number of syllables.

5. The search engine should be able to handle an
incomplete database. Searching for rhymes
with a word the database only has partial
pronunciation for should still produce a
passable result.

 4.2 .Implementation of the search engine

Our search engine will be implemented in
Perl and will use the MySQL database as it's
source of information. The search engine is not
intended to be used by end users, and will later
be made easier to use by means of a web
interface. To understand the choices of design
we have made one must first know in what
way the output is sorted. First of all the output is
sorted by how good it matches the search word,
that is how many syllables matches the search
word's. E.g. if the search word was analogi,
astrologi would be before byråkrati. Then the
output is sorted by number of syllables and finally
in lexical order.

Our search engine will take a word as input and
have four customizable options:
strict_rhyming_matters, stress_matters,
vowel_length_matters and table_to_use. If the
first, strict_rhyming_matters, is on, the search
engine will produce rhymes according to the strict
definition of a rhyme. If it's off, any word that has
any syllables up to the end of the word pronounced
the same way as the search word will be
considered to rhyme. If this option is on it would
mean that ananas-kalebass would be considered a
rhyme, even though it is the first syllable of
ananas that is stressed. The words still has to be
stressed the same way, thus ananas-hölass
wouldn't rhyme. If the second option,

stress_matters, is off, the search engine won't
consider stress. Ananas-hölass would be
considered a rhyme and so would makaker-
grönsaker. The third option,
vowel_length_matters, decides whether the vowel
length should matter when rhyming. If
vowel_length_matters is of, word pairs than
normally aren't considered rhymes,because of
differences in vowel length, are. For example
kanel-pensel would be considered a rhyme. The
last option, table_to_use, governs which parts of
the database to use when searching for rhymes. By
changing this you can for example make the search
engine search only for lemmas or inflections.

The search consists of two steps. First a
phonetic transcription corresponding to the search
word is extracted from the database. Then the
phonetic transcription is used to search the
database for words that rhyme.

 4.2.1 .Getting the phonetic transcription
When trying to extract the phonetic transcription

there are two scenarios. First, if the search word is
already in the database, the corresponding
pronunciations are returned. Secondly, if
there's no perfect match, the search engine will
try to match with any word that ends with the
search word. If there's still no match, the
search engine will successively shave away
letters from the beginning of the search word
and search after words ending with the now
shortened search word until there is a match. If
the match returns many words the word with
the length most similar to the search word is
chosen. That word's pronunciation is then
shortened to have as many syllables as the now
shortened search word. That pronunciation is then
returned. An example: The word mandelmassa
doesn't match anything in the database and so
letters are shaved away from the beginning until a
match is made. When mandelmassa has become
massa it matches three words in the database. The
word with the most similar length is
[pappersmassa ::2pAper+smasa]. Syllables are
removed from it's pronunciation to match the
number of syllables in massa and thus masa is
returned. Instead of doing this second scenario
search one could devise rules that derives the
pronunciation from the search word. But since it's
the pronunciation of the end of the words that
matters when rhyming and we already have a large
database containing information about how words
sound in the end, this would be a bad approach.
Words spelled the same in the end nearly always
sound the same in the end.

 4.2.2 .Getting the rhymes
Now when we have the pronunciations of the

search word we're going to use them to search the
database for rhymes. For each of the
pronunciations the following is done. If the
pronunciation wasn't the result of a perfect match,
strict_rhyming_matters and stress_matters are
switched off. That's because the stress of the
partial pronunciation probably isn't correct. We
then search for words with pronunciations that
ends like the search word's pronunciation from the
first vowel. The search result is then sorted in
lexical order and by number of syllables in
ascending order.

If the search word's pronunciation is partial we
will probably have unwanted rhymes in the search
result. E.g. when searching with [mandelmassa ::
masa] we will get everything rhyming with assa
when we really would like to get everything
rhyming with andelmassa. Our solution to this
problem is to remove every word from the search
result that doesn't match, from the first vowel,
what's left of the search word when we remove
from it, from the end, as many syllables as there is
in it's pronunciation. In the case of
[mandelmassa :: masa] mandelmassa is shortened
to mandelm and every word that doesn't match,
from it's first vowel, with andlem is removed. This
approach is a return to the method to use a words
spelling to search for rhymes, but since we only
have a partial pronunciation this is the best we can
do.

We then remove the first syllable from the
search word and remove syllables from the
beginning of it's pronunciation until it has equal or
less syllables. We then search once more. If
strict_rhyming_matters is on the search stops
when there's no stressed syllable left in the search
words pronunciation. Else we continue searching
until there's no syllables left in the search word.
The result of the searches are consecutively added
to a list. When the search is finished we have a list
of rhymes sorted by number of matching syllables
in descending order, number of syllables in
ascending order and lexical order. Finally the
search word and duplicate words are removed
from the list .

This method of search seems to work pretty
well, though a problem is that it's not very fast.
When searching with a search word that already is
in the database, the database is accessed about 3-6
times. When searching with a search word that's
not in the database, the database could be accessed
as many times as the number of letters in the
search word. Accessing the database is slow and
therefor the search method is slow.

The strategy to use the spelling to weed out
rhymes when the search word only has a partial

pronunciation can be discussed. There are many
cases when a word isn't pronounced as it's spelled
but in contrast to only using the spelling to search
for rhymes we here don't use it to match the end of
the word. There we use the partial pronunciation.
This approach will never remove a correct rhyme,
the rhyme will only occur in the wrong place in the
search result.

5. The Interface

We now has a working rhyme dictionary but it's
not accessible nor very user friendly. To use it one
would have to set up ones own MySQL database
spending a long time building it by running
various perl scripts. Then one have to learn
rudimentary perl syntax to use it, something
nobody should be forced to learn. Therefore we
made a web interface (see appendix C). The
interface is a HTML form with an underlying cgi
script that handle the search queries. The form
consists of a field for entering text and two
options. The text field is of course used for
entering the word to rhyme with. The first option
governs the strictness of the search, that is it
governs which of the three options
strict_rhyming_matters, stress_matters and
vowel_length_matters that should be switched on.
Here follows the different setups of the four levels
of strictness :

strikt = (true, true, true)
normal = (false, true, true)
utan betoning = (false, false, true)
nödrim = (false, false, false)

We could of course have allowed the three
options to be changed directly, but we feel that our
approach is more intuitive. The other option
governs what database to use when searching for
rhymes. The user can choose between standard
and utökad. Standard contains all the words which
pronunciations are complete, that is all the original
lemmas and their inflections. Utökad is like
standard plus all the words with partial
pronunciation, that is the compound words and
their inflections. The Utökad database also
contains words submitted through the homepage.

The search result is presented in columns, one
for every number of syllables that was matched. If
a search is made with the strictness level normal it
turns out that the column containing words that
only matched one syllable contains far to many
words to be easily browsed. The use of columns
allows the user to first check the column with the
“best” rhymes and then, if necessary dive into the
other “worser” columns.

The homepage also contains a form that allows

the user to add new words to the database. At the
moment users can't change words already in the
database. This functionality should be added in the
future so that users could fully participate in
extending and correcting the lexicon.

6. Evaluation

We started this report by complaining about that
existing on-line lexicons uses spelling and not
pronunciation to search for rhymes. We argued
that the former approach misses many rhymes and
includes words that doesn't rhyme. The question
one ask oneself now is; how good does our rhyme
dictionary perform in comparison other
dictionaries. Though it's hard to find anything to
measure some things could be pointed out.

The fact that our database only consists of
63,000 entries cripples our dictionary. 63,000 may
sound a lot but one should remember that most of
these are inflected forms of the 20,000 lemmas.
Other on line rhyme dictionaries, e.g. DbLex3,
have databases with over 400 000 words. Our
dictionary also suffers from some blind spots, e.g.
our database contains no names of geographical
locations. Where our lexicon excel is when the
strikt search mode is used. A strikt search
produces only rhymes according to the strict
definition of a rhyme, that is rhymes that rhyme
perfectly. No other rhyme dictionary on the web is
able to do something similar.

7. Conclusion

This project has led to the creation of a working
rhyme dictionary that uses the pronunciation of a
word when searching for rhymes. This makes our
dictionary unique(we believe) since all other
Swedish rhyme dictionaries uses the spelling of a
word when searching for rhymes. The dictionary's
phonetic database was created out of Lexin, a
small but free Swedish dictionary. Considerable
amounts of time have been spent transforming
Lexin into a usable database. This was not
anticipated when the project started. Even though
Lexin isn't very comprehensive we feel that our
dictionary is usable and that it perform well in
comparison to other existing dictionaries.

One thing that could be done to improve our
dictionary further is to make it into a proper wiki.
This could help solving the problem with our
insufficient database. At the moment it's just
possible to enter new words, not alter old ones.

Our dictionary is currently not accessible over
the Internet since we haven't found anywhere to
put it. The license of Lexin may also prohibit us
from making our dictionary accessible over the

3 http://www.dblex.com/

Internet. If our dictionary finds somewhere to live
a link will probably be found on the projects
course homepage, http://www.cs.lth.se/DAT171/.
The source code of the project and directions on
how to set up your own rhyme dictionary should
also be available from there.

8. Acknowledgments

We wish to thank Pierre Nugues for his
support during this project.

9. References

Svenska ord/LEXIN vid Språkbanken, Göteborgs
universitet. http://spraakbanken.gu.se/

Fredrik Hansson and Lennart Nilsson. 1996.
Rimlexikon. ICA Bokförlag.

Bengt Sigurd. 1991. Språk och språkforskning.
Studentlitteratur.

Staffan Bergsten. 2002. Rim & reson.
Nationalencyklopedin. www.ne.se.

Appendix A

Lexin's DTD:
<?xml version="1.0" encoding="ISO-8859-1" ?>
<!-- -->
<!-- LEXIN -->
<!-- Svenska ord, 2:a uppl. -->
<!-- Copyright Språkdata, Göteborgs universitet -->
<!-- XML Markup: Yvonne Cederholm, Susanne Mankner -->
<!DOCTYPE lexin [
<!ELEMENT lexin (lemma-entry+)>
<!ELEMENT lemma-entry (form, pronunciation, inflection, pos, lexeme*)>
<!ELEMENT form (#PCDATA)>
<!ELEMENT pronunciation (#PCDATA)>
<!ELEMENT inflection (#PCDATA)>
<!ELEMENT pos (#PCDATA)>
<!ELEMENT lexeme (lexnr?, definition?, usage?, comment?,

valency?, grammat_comm?, definition_comm?,
example*, idiom*, compound*)>

<!ELEMENT lexnr (#PCDATA)>
<!ELEMENT definition (#PCDATA)>
<!ELEMENT usage (#PCDATA)>
<!ELEMENT comment (#PCDATA)>
<!ELEMENT valency (#PCDATA)>
<!ELEMENT grammat_comm (#PCDATA)>
<!ELEMENT definition_comm (#PCDATA)>
<!ELEMENT example (#PCDATA)>
<!ELEMENT idiom (#PCDATA)>
<!ELEMENT compound (#PCDATA)>

A sample of Lexin:
<lemma-entry>

<form>geometri</form>
<pronunciation>jeometrI:</pronunciation>
<inflection>geometri(e)n</inflection>
<pos>subst.</pos>
<lexeme>
<definition>vetenskapen om de matematiska rumsstorheterna</definition>
</lexeme>

</lemma-entry>
<lemma-entry>

<form>ger med sig</form>
<pronunciation>je:rmE:(d)sej</pronunciation>
<inflection>gav gett (el. givit) ge(!)</inflection>
<pos>verb</pos>
<lexeme>
<definition>acceptera något (efter påtryckning), foga sig</definition>
<valency>A &</valency>
</lexeme>

</lemma-entry>
<lemma-entry>

<form>gerilla</form>
<pronunciation>2gerIl:a</pronunciation>
<inflection>gerillan gerillor</inflection>
<pos>subst.</pos>
<lexeme>
<definition>motståndsrörelse, icke reguljära trupper</definition>
<compound>gerilla~soldat -en</compound>
<compound>gerilla~verksamhet -en</compound>
</lexeme>

</lemma-entry>
<lemma-entry>

<form>gest</form>
<pronunciation>$es:t</pronunciation>
<inflection>gesten gester</inflection>
<pos>subst.</pos>
<lexeme>
<definition>(hand)rörelse, åtbörd</definition>
<usage>bildligt "handling avsedd att visa en persons känslor etc"</usage>
<example>livliga gester</example>
<example>en tom gest</example>
<compound>försoningsgest</compound>
</lexeme>

</lemma-entry>

Appendix B

Here follows a brief description of the phonetics used in our dictionary.
The following consonants have the pronunciation usually associated with them:

[b, d, f, g, h, j, k, l, m, n, p, r, s, t, v]
Consonants missing are: [c, q, w, x, z]
The pronunciation of these consonants can be expressed using the consonants above.
E.g. [cirkus :: sIrkus], [yxa :: Yksa] and [zoo :: sO:].
The following vowels have the pronunciation usually associated with them:
[a, o, u, å, e, i, y, ä, ö]
A vowel can be long or short. A [:] after a vowel indicates the former, a vowel without [:] indicates the
latter. E.g. [ful :: fU:l] and [full :: fUl].
There are three symbols that represent pronunciation not usually associated with them: [c, $, @].
[c] represent the way the k sounds in kär. [$] represent the way the stj sounds in stjärna. [@] represent the
way the ng sounds in springer.
[2] in the beginning of a word indicates grave accent.
[+] between two symbols indicates that the two symbols pronunciation is melted together. E.g. between two
vowel this would indicate a diphthong.
What syllable in a word that is stressed is indicated by a capital vowel.

These phonetics are nearly identical to the phonetics used by Lexin, with one major exception. In Lexin [:]
could also be used after consonants to indicate long pronunciation.

Appendix C

The result of a search using our rhyme dictionary.

