Sprakbehandling och datalingvistik

Projektarbeten 2005

Handledare: Pierre Nugues och Richard Johansson

[LUNDS UNIVERSITET

Institutionen for Datavetenskap

http://www.cs.Ith.se

Printed in Sweden
Lund 2006

Innehall

Xavier Adam and Olle Rundgren, Protein Name Extraction

Rasmus Arnling Baith and Staffan Aberg, Building a Swedish rhyme dictionary

Axel Bengtsson and Ola Olsson, Detection of similarity between documents

Ianick Boudreault, Automatic Article Generator from Extracted Databases

Jakob Carlsson and Bobo Wieland, Automatic Identification of Participants in Discussion Groups
Johan Eriksson, Information extraction for classified advertisements

David Faure and Claire Morlon, Information extraction for classified advertisements

Hugo Forss and Henning Norén, Informationsextraherare — Olrecensioner

Johan Hellstrom and Ian Kumlien, Dependency Parsing

Jonas Henriksson, Comparing methods for Coreference solving

Hans Jansson, A compiler for phonological rules

Boel Mattsson, Lemmatiserare for okinda ord

Mats Mattsson and Jonas Astrom, Evaluation of the Tanaka-Iwasaki algorithm for word clustering
Henrik Palmér, RoboLinguistics, Ett textforstaelseprogram

Jacob Persson and Magnus Skog, A quick approach to Summarizing

Cyril Perrig, Identification of time expressions, signal, events and temporal relations in texts

LUNDS UNIVERSITET

Institutionen fér Datavetenskap

http://www.cs.Ith.se

19

23

29

35

41

47

53

59

67

71

75

79

87

95

Protein Name Extraction

Xavier Adam
adamxavi@utt.fr

Abstract

This article describes a simple information ex-
traction system using pattern recognition. The
intended use of the program is to extract protein
names from research articles. The article gives
a short introduction to the background of our
project and then goes on describing the imple-
mentation and structure of our system. Finally
we evaluate our system and discuss what con-
clusions can be made from our work.

1 Introduction

Within the area of biotechnology and the life
sciences there are vast amounts of information
generated every day. The need for organizing
this information is therefore of biggest concern
and any method of automating this task is a
welcome one. The FetchProt! and the Yapex?
projects of the Swedish Institute of Computer
Science (SICS?®) adresses this need of automa-
tion and they were the starting point of our
project. The FetchProt project is an ongoing
project building a complete system. It will be
able to extract proteins and their functions and
inserting these into a database for wider use,
both academic as well as industrial use. The
Yapex project is the protein name tagger that
FetchProt uses for the extraction of the protein
names. We were interested in the information
extraction part of the project and therefore de-
cided to build a small system similar to the
Yapex project. Our aim was to build a sys-
tem that matched the results of the Yapex sys-
tem using a pretty simple approach of pattern
recognition.

"http:/ /www.sics.se/humle/projects/fetchprot/
*http://www.sics.se/humle/projects/prothalt/
3http://www.sics.se/

Olle Rundgren
Department of Computer Science
Lund University
olle.rundgren.913@student.lu.se

2 Implementation and Structure
2.1 Language

We used Java for our implementation partly
because of personal preferences but mostly be-
cause of its wide use and possibilty to find free
modules to use from within our program. As
it turned out we only used standard Java but
found resources that would have been interest-
ing to incorporate into our program. A specif-
ically useful package was the standard package
for regular expressions.

2.2 Corpus

The Corpus we used was downloaded from the
Yapex site and was relatively small. Since it
was already tagged we had to clean it from all
tags before we could use it. The Corpus was
originally collected from research articles from
the MEDLINE resource and consists of the ab-
stracts of randomly chosen articles. The train-
ing collection contains 1745 protein names and
the test collection contains 1966 protein names.
All of the abstracts were originally annotated by
domain experts connected to the Yapex project.

2.3 System

Our system has a direct and simple structure.
When given an input text we create a new ob-
ject that we chose to call a BioText which holds
a dictionary that can store protein names and
a buffer to store the text. On this object we
can call all methods associated with the dif-
ferent tasks. If the text needs to be cleaned
from tags we call the cleaning method and store
the new clean text in the buffer instead. For
the task at hand (tagging of Protein names)
we have two different methods that both takes
regular expressions written as strings as para-
meters and which both fills the dictionary with
protein names. The two methods differ in that
one of them is for applying more specialized pat-
terns catching few protein names with a high
precision while the other method is for applying

a broad pattern cathing lots of protein names.
Because of this implementation choice we could
experiment with the patterns to make them bet-
ter in a fast and easy way. We also have some
methods to help us in analyzing the effectiveness
of the patterns we write. For example we have
a contextwriter that writes the context of each
of the tagged protein names so that we can ana-
lyze what needs to be done. For the evaluation
we had methods that could be applied directly
to our BioText objects to compute recall and
precision.

2.3.1 Different types of patterns

The most important part of our program is the
patterns which detects the protein names to be
tagged. They are all applied using the Java
standard package for regular expressions though
we wrote convenient methods to be able to just
write the patterns as strings. At first we tried
to apply all-catching patterns that catches a lot
of protein names and we got a lot mismatches
and didn’t get all the names either. Therefore
we realized that we had to build different kinds
of patterns to get better results. The method
we settled for was to have one broad pattern
whith a filter to get rid of mismatches and sev-
eral high precision patterns that catches pretty
few names but with a higher precision (fewer
mismatches). This choice resulted in two dif-
ferent methods which made it easy to experi-
ment with different patterns. The first method
is used for the high precision patterns and is typ-
ically used to detect multiword protein names.
The second method is used to apply the broad
pattern and also includes a filter to avoid com-
mon mismatches of names that look like protein
names but in fact are not proteins for example
DNA, RNA, UV and PH. This way to imple-
ment the pattern recognition was pretty fruitful
since it was easy to write new patterns and to
test and analyze these new patterns. The abil-
ity to test new patterns fast was very important
to us since we are no experts on proteins and
the structure of the names are not completely
standardized. There were also the occurence of
similar names that had to be taken into account
like DNA and the introduction of the filter was
a very important improvement and could eas-
ily be extended if other recurring mismatches
were found. This iterative process was typical
for our workflow. Both of the methods also had
functionality to avoid tagging the same proteins
more than once.

2.3.2 Main Parts of the Biotext class -
The dictionary and the Buffer

As mentioned shortly in an earlier section each
Biotext object holds a dictionary to store each
occurence of protein names and a buffer to store
the text to be tagged and later the tagged text.
The dictionary was implemented with a map
and has the protein names as keys and the num-
ber of occurences as values. When a pattern is
applied with the appropriate method each pro-
tein that the pattern catches is stored in the
dictionary. The Biotext objects also incorpo-
rates a buffer to store the text to be tagged.
After each pattern applied the buffer changes
accordingly with the proteins that the pattern
has caught tagged in the buffer. When all pat-
terns are applied the dictionary contains all the
protein names that has been tagged and the
buffer contains all the tagging of these protein
names. Then different methods can be called
to compute recall, precision and the result file
can be written to a file. This makes the system
easy to extend, improve and test and was also
done several times before we reached the final
results. The actual running of the program was
as implied done from a seperate testclass.

3 Evaluation

For the evaluation we used methods for com-
puting of recall, precision and using those two
it was easy to make a printout for the harmonic
mean (which is a combination of the two). We
first built a baseline case which only tagged pro-
teins in the test corpus which had been stored
in the dictionary after applying patterns on the
training corpus. That is we didn’t apply any
patterns at all on the test corpus. This gave us
pretty poor results which was as expected. Af-
ter that we applied patterns to the testcorpus
as well and the results got better so we knew
we were on the right track. We then wrote
better patterns for the training corpus . The
more patterns added the better it got and we
used the evaluation methods to see how effec-
tive new patterns were. The wide pattern was
the one with the biggest increase of recall and
writing of the specialized patterns only made
smaller increases but still good increase. It
was also during early evaluation that we be-
came really aware of deficiencies in our patterns
that tagged names that shouldn‘t be tagged and
therefore the evaluation process became an iter-
ative process done several times before accept-
able results were reached. Finally we settled for

a couple of high precision patterns and the fil-
tered broad pattern and ran them on both the
training corpus and the test corpus. The re-
sults including the original baseline case can be
viewed in the table below.

] | recall [precision |

base | 10.04% | 45.08%
train | 56.19% | 52.24%
test | 55.5% | 52.6%

Table 1: Results

For further evaluation it would have been in-
teresting to run some arbitrary but relevant ar-
ticles through the system as well but due to time
restrictions that was never done.

4 Conclusions

As with any project you are left with lots of
thoughts about things that could have been
done better and things that you are pretty
happy about afterwards. With the methods we
used we don’t think we could do much better.
Yes, we could write more of the specialized pat-
terns but there wouldn‘t be any bigger point
since the system isn‘t going to be used and in-
creases after a while becomes very small. If the
system were to be used for a ”real” project we
realize that we would have to do better than we
have done so far but in that case we would need
other methods to combine with the ones we have
used. We looked into adding some kind of part-
of-speech tagger and had actually started writ-
ing some methods for that as well. After a while
though we felt that it was better to concentrate
completely on one method since we didn’t think
we would make it in time otherwise. That was
probably a wise choice. We experienced some
trouble with the reading and understanding of
the texts that we were working on. It was not
an easy task to read and analyze text so out
of context and so highly specialized. Finding
effective patterns therefore became more diffi-
cault than we first thought. All in all it was
very good training with the whole project since
we got to adress problems that is probably very
common in natural language processing and to
work freely with something always inspire. It
was also interesting to see that we could reach
fairly good results with rather simple means.

5 Acknowledgements
We would like to thank both Pierre Nugues and
Richard Johansson for the help we received dur-
ing the project.
6 References
e http://www.sics.se/humle/projects/prothalt/
e http://www.sics.se/humle/projects/fetchprot/

e An Introduction to Language Processing
with Perl and Prolog, Pierre Nugues

Building a Swedish rhyme dictionary

Rasmus Arnling Baath
Department of Computer Science
Faculty of Science, Lund University
rasmus.baath@gmail.com

Staffan Aberg
Department of Computer Science
Institute of Technology, Lund University
carnevorum@gmail.com

January 17, 2006

1. Abstract

This report describes an attempt to build a
Swedish rhyme dictionary. The project is
part of the course Language Processing
and Computational Linguistics given at
Lund university the spring term 2005. To be
able to thyme with a word you have to
know the pronunciation and so the authors
conclude that a phonetic lexicon is needed.
Since no comprehensive phonetic lexicon
is readily available the first step is to build
one out of LEXIN, a small but free
lexicon. The second step is to implement a
search engine and the requirements of such
an engine are discussed.

2. Introduction

A rhyme is when two or more words partially
sounds the same. There are many categories of
rhymes, and what category a rhyme belongs to
depends on what part of the words are similar.
When there's a similarity in the beginning one
speaks of alliteration. Alliteration is common in
old Norse writings and here is a famous stanza
from the poetic Edda:

“Vred var Ving-Tor,
néir han vaknade,
och sin hammare,
han saknade.*

When there's similarity in the middle one speaks
of assonance, e.g. gdta-mdla. The most common
type of rhyme is when there's a similarity in the
end. This is called a tail rhyme and it's the type of
rhyme this report deals with. For the rest of this
report a thyme is always a tail rhyme. Rhymes can
be both monosyllabic and polysyllabic, gris-paris
being the former and dsterrikare—tristerikare
being the latter. Rhyming serves two purposes. It
gives a text rhythm and flow, hence pop lyrics
nearly always rhyme, and it makes a text easier to
remember, the fact that nursery rhymes often are
very old is proof of this. Rhyming is an old
practice and there are examples of rhymed
Christian hymns dating back to 300 ad.

Rhyming is not always easy and sometimes you

would want a rhyme dictionary. This report
describes an attempt to build one, supposed to be
comprehensive, easy to use and accessible over
the web. There already exists a number of rhyme
dictionaries on the web, but they are all flawed in
the same way. They only consider the spelling of a
word when searching for rhymes. This is an
understandable design choice. It's easy to
implement, you just write an algorithm that picks
out words from a word list that matches the end of
a given word. It's easy to extend, you just add new
words to your word list. Though good in many
ways it also gives rise to some problems. Even
though Swedish spelling is relatively consistent, at
least compared to English, there are many
exceptions. A rhyme dictionary that only considers
spelling would miss perfectly good rhymes such as
fleece-gris and include dam-skam, which doesn't
rhyme. When rhyming it is also important consider
stress, something that's hard to deduce from the
spelling of a word. To cope with such problems
one has to consider the pronunciation of the
words, not only the spelling. The easiest way to do
this is by using a phonetic lexicon when searching
for rhymes. One could also attempt to devise rules
to derive the pronunciations from the spelling, but
this is difficult and a perfect solution is probably
Al-complete.

Since no free and comprehensive phonetic
lexicon for Swedish is readily available, the task to
build a rhyme dictionary is twofold. First one has
to get hold of a phonetic lexicon then one has to
build a search engine to search it for rhymes. The
rest of this document is organized in the following
way: Section 3, describes how we take LEXIN, a
lexicon aimed at emigrants learning Swedish, and
by means of several Perl scripts make it into a
phonetic lexicon implemented as a MySQL
database. Section 4 discusses the requirements and
the implementation of the search engine. Section 5
shortly discusses the interface of the rhyme
dictionary. Then follows an evaluation and some
concluding comments. Finally there's an appendix
consisting of a short explanation of the phonetic
alphabet used, an excerpt from LEXIN and a
picture of the web interface of the lexicon.

3. ThePhonetic Lexicon
3.1.Lexin

Swedish is a small language and it's not strange
that Swedish linguistic resources aren't as great as
for larger languages, such as English. If you're
looking for an English phonetic lexicon you would
find Moby Pronunciator', a large and free lexicon
consisting of 175,000 words with corresponding
pronunciation. A similar lexicon for Swedish
doesn't exist. What does exist is LEXIN. LEXIN is
a lexicon built by the Institution of Swedish
language at the university of Gothenburg and it's
free to download from Sprikbanken® an online
collection of linguistic resources. LEXIN is
intended as an aid for emigrants learning Swedish
and consists of roughly 20,000 entries. Every entry
consists of a lemma, a pronunciation, a part-of-
speech tag, a list of inflections, a list of compound
words and possibly a description of the usage of
the word. LEXIN is stored in the form of an XML
document, see appendix A for a short excerpt and
appendix B for a description of the phonetic
alphabet used.

Before we can use LEXIN as a phonetic lexicon
some changes has to be made. First of all LEXIN
has to be made into a MySQL database. XML is a
good format for structured data, but by using a
MySQL database you gain access to powerful
tools such as fast search mechanisms and
consistency checks. Secondly LEXIN has to be
cleaned up. The way the spelling and the
pronunciation is notated is inconsistent and the
XML document is not valid nor well-formed.
There's also a lot of information in LEXIN that we
don't need. We don't need to know what part-of-
speech a word belongs to or the usage of a word.
The phonetic notation is also unnecessarily
complicated. Thirdly LEXIN has to be extended.
LEXIN's mere 20,000 entries are not enough, for
instance the dictionary compiled by the Swedish
Academy contains over 120,000 entries.

32. Making LEXIN into a MySQL
database

To make LEXIN into a MySQL database we use
Perl since it has a good database interface and
good tools for working with text. First we
transform LEXIN into a flat file, this being easier
and faster to work with than a XML file.
Unnecessary information such as information
about what part-of-speech a word belongs to is not
included. The flat file is then made into a MySQL
database and at the same time parentheses in the
spelling and pronunciation of a word, notating
alternate spelling or pronunciation, are removed.

1 http://www.dcs.shef.ac.uk/research/ilash/Moby/
2 http://spraakbanken.gu.se/

10

The LEXIN database, hereafter only called the
database, now consists of four tables. One table
consisting of lemma's with corresponding
pronunciation, two tables with inflections and
compounds, respectively, without corresponding
pronunciation and one empty table to hold
inflections of compounds.

The database now has to be cleaned up and
made more consistent. The notation of words and
pronunciations contains elements that we don't
need. Eg. “~” that separates parts of multiwords is
removed and in the pronunciation *“:” after
consonants is removed. “:” after a consonant
means that the consonant is long and this is not
important to consider = when rhyming.
Monosyllabic words, that for some reason aren't
stressed, are made stressed. Inflections can both be
complete words, as in [bagare :: bagaren], or
partially spelled out, as in [bagare :: -n]. We want
all inflections to be complete words and we
therefore complete partially spelled out
inflections.

3.3 . Extending the Database

The database now is in the form we want it to be
in but it's still not very comprehensive and we
would want to extend it. To add completely new
words is out of the question since this can't easily
be automated. What can be automated is adding
pronunciation to the roughly 37,000 inflections.
The information we have at our disposal is this:
the spelling of the lemma, it's pronunciation and
the spelling of it's inflections. We first produces a
list of all the differences, hereafter called suffixes,

between an inflection and it's lemma. E.g.
[bagare :: bagaren] would produce “n” and
[fadern :: fdderna] would produce “dderna”. It

turns out that this list consists of under 200
different suffixes and so it's possible to enter their
pronunciation by hand. The script for producing
the inflections' pronunciations then works in the
following way. For each inflection pick out the
suffix, the spelling in common with the lemma and
the rest of the lemma, e.g. [driva :: drivor] would
produce (“or”, “driv”, “a”). Then extract the
common pronunciation by removing the
pronunciation corresponding to the rest of the
lemma from the lemma's pronunciation, in this
case “drl:va” would become “dri:v”. Then the
pronunciation corresponding to the suffix is
concatenated with the common pronunciation, and
so “drl-v’ + “or” becomes “dri:vor”. This
simple method works, but some extra rules are
needed. In for example [d6 :: dott] the 6 is long in
do but short in dott, so it's not enough just to add
the pronunciation of the suffix “##”. This problem
can be solved by checking if adding the suffix to
the common spelling leads to new double

consonants, if this is the case make the preceding
vowel short. Other tricky inflections that has to be
dealt with are the ones ending with “orer”. E.g.
[dator :: datorer] are pronounced respectively
“2dA:tor” and “2da:tO:rer”. Not only is the “0”
made long, it is also made stressed.

The method works incredibly well and produces
36,000 new inflection-inflection pronunciation
pairs. When checking 100 randomly picked
inflection-inflection pronunciation pairs only one
was not correct.

Each lemma also has a number of compound
words associated with it. The compound words
can be divided into two categories, those that ends
with it's lemma and those that starts with it's
lemma. We can't produce the full pronunciation of
the compound words but we can produce a partial
by using the lemma's pronunciation. Since our
database is going to be used as a thyme lexicon we
are mostly interested in the pronunciation of the
end of the words. We therefore only produces
partial pronunciation for the compound words that
ends with it's lemma. We introduce “§” as a wild
card sign indicating where we don't know the
pronunciation. A compounds pronunciation is then
simply it's lemmas pronunciation with a “§” added
in front, e.g. [vdggalmanacka :: §almanaka] and
[6veranstringning Sanstre@ni@]. This
produces 3,500 new word-pronunciation pairs. We
make the uppercase letter, indicating stress, into
lowercase in all the partial pronunciations since
the stress most often lies in the first word of the
compound words. We also generate the inflected
forms of all the compounds with partial
pronunciation producing another 8,000 word-
pronunciation pairs. We now have a phonetic
database consisting of 63,000 word-pronunciation
pairs.

4. Sear ching for rhymes
4.1 . Requirements of a search engine.

The strict definition of a rhyme is a word
that corresponds with another one from and
including the last stressed syllable. A search
engine using this definition could work as follows:
Accept a word as input, get that word's
pronunciation in the database, remove everything
from the pronunciation up to the last uppercase
vowel and return a list of words which
pronunciation ends in the same way as whats left
of the search word's pronunciation. But this engine
is naive in many ways and wouldn't suffice. Here's
a list of features a search engine should have.

1. You should be able to change the strictness of
the search. The strict definition of a rhyme is in
many cases to strict. Sometimes, especially

11

when writing lyrics for a song, the stress
doesn't matter that much.

2. The search engine should be able to handle the
fact that many words are spelled the same but
pronounced differently. E.g. [banan
2bA:nan], the one you can safely walk on and
[banan :: banA:n], which you wouldn't want
step on.

3. You should be able to search for rhymes for a
word not currently in the database. This could
be solved by making the search engine accept a
phonetic transcription as input, but this
approach would make the search engine less
user friendly.

4. The search result should be presented in a
perspicuous way. Often you now how many
syllables the rhyme your looking for should
have. A search engine returning a randomly
ordered list or a list sorted in lexical order
would make it hard to find rhymes with a
certain number of syllables.

5. The search engine should be able to handle an
incomplete database. Searching for rhymes
with a word the database only has partial
pronunciation for should still produce a
passable result.

4.2 .Implementation of the search engine

Our search engine will be implemented in
Perl and will use the MySQL database as it's
source of information. The search engine is not
intended to be used by end users, and will later
be made easier to use by means of a web
interface. To understand the choices of design
we have made one must first know in what
way the output is sorted. First of all the output is
sorted by how good it matches the search word,
that is how many syllables matches the search
word's. E.g. if the search word was analogi,
astrologi would be before byrdkrati. Then the
output is sorted by number of syllables and finally
in lexical order.

Our search engine will take a word as input and
have four customizable options:
strict_rhyming matters, stress_matters,
vowel length matters and table to use. If the
first, strict thyming matters, is on, the search
engine will produce rhymes according to the strict
definition of a rthyme. If it's off, any word that has
any syllables up to the end of the word pronounced
the same way as the search word will be
considered to rhyme. If this option is on it would
mean that ananas-kalebass would be considered a
rhyme, even though it is the first syllable of
ananas that is stressed. The words still has to be
stressed the same way, thus ananas-hélass
wouldn't rhyme. If the second option,

stress_matters, is off, the search engine won't
consider stress. Ananas-holass would be
considered a rhyme and so would makaker-
gronsaker. The third option,
vowel length matters, decides whether the vowel
length should matter when rhyming. If
vowel length matters is of, word pairs than
normally aren't considered rhymes,because of
differences in vowel length, are. For example
kanel-pensel would be considered a rhyme. The
last option, table to use, governs which parts of
the database to use when searching for rhymes. By
changing this you can for example make the search
engine search only for lemmas or inflections.

The search consists of two steps. First a
phonetic transcription corresponding to the search
word is extracted from the database. Then the
phonetic transcription is used to search the
database for words that rhyme.

4.2.1 .Getting the phonetic transcription

When trying to extract the phonetic transcription
there are two scenarios. First, if the search word is
already in the database, the corresponding
pronunciations are returned. Secondly, if
there's no perfect match, the search engine will
try to match with any word that ends with the
search word. If there's still no match, the
search engine will successively shave away
letters from the beginning of the search word
and search after words ending with the now
shortened search word until there is a match. If
the match returns many words the word with
the length most similar to the search word is
chosen. That word's pronunciation is then
shortened to have as many syllables as the now
shortened search word. That pronunciation is then
returned. An example: The word mandelmassa
doesn't match anything in the database and so
letters are shaved away from the beginning until a
match is made. When mandelmassa has become
massa it matches three words in the database. The
word with the most similar length is
[pappersmassa ::2pAper+smasa]. Syllables are
removed from it's pronunciation to match the
number of syllables in massa and thus masa is
returned. Instead of doing this second scenario
search one could devise rules that derives the
pronunciation from the search word. But since it's
the pronunciation of the end of the words that
matters when rhyming and we already have a large
database containing information about how words
sound in the end, this would be a bad approach.
Words spelled the same in the end nearly always
sound the same in the end.

12

4.2.2 .Getting therhymes

Now when we have the pronunciations of the
search word we're going to use them to search the
database for rhymes. For each of the
pronunciations the following is done. If the
pronunciation wasn't the result of a perfect match,
strict rhyming matters and stress matters are
switched off. That's because the stress of the
partial pronunciation probably isn't correct. We
then search for words with pronunciations that
ends like the search word's pronunciation from the
first vowel. The search result is then sorted in
lexical order and by number of syllables in
ascending order.

If the search word's pronunciation is partial we
will probably have unwanted rhymes in the search
result. E.g. when searching with [mandelmassa ::
masa] we will get everything rhyming with assa
when we really would like to get everything
rhyming with andelmassa. Our solution to this
problem is to remove every word from the search
result that doesn't match, from the first vowel,
what's left of the search word when we remove
from it, from the end, as many syllables as there is
in it's pronunciation. In the case of
[mandelmassa :: masa] mandelmassa is shortened
to mandelm and every word that doesn't match,
from it's first vowel, with andlem is removed. This
approach is a return to the method to use a words
spelling to search for rhymes, but since we only
have a partial pronunciation this is the best we can
do.

We then remove the first syllable from the
search word and remove syllables from the
beginning of it's pronunciation until it has equal or
less syllables. We then search once more. If
strict_ thyming matters is on the search stops
when there's no stressed syllable left in the search
words pronunciation. Else we continue searching
until there's no syllables left in the search word.
The result of the searches are consecutively added
to a list. When the search is finished we have a list
of rhymes sorted by number of matching syllables
in descending order, number of syllables in
ascending order and lexical order. Finally the
search word and duplicate words are removed
from the list .

This method of search seems to work pretty
well, though a problem is that it's not very fast.
When searching with a search word that already is
in the database, the database is accessed about 3-6
times. When searching with a search word that's
not in the database, the database could be accessed
as many times as the number of letters in the
search word. Accessing the database is slow and
therefor the search method is slow.

The strategy to use the spelling to weed out
rhymes when the search word only has a partial

pronunciation can be discussed. There are many
cases when a word isn't pronounced as it's spelled
but in contrast to only using the spelling to search
for rhymes we here don't use it to match the end of
the word. There we use the partial pronunciation.
This approach will never remove a correct rhyme,
the rhyme will only occur in the wrong place in the
search result.

5. Thelnterface

We now has a working rhyme dictionary but it's
not accessible nor very user friendly. To use it one
would have to set up ones own MySQL database
spending a long time building it by running
various perl scripts. Then one have to learn
rudimentary perl syntax to use it, something
nobody should be forced to learn. Therefore we
made a web interface (see appendix C). The
interface is a HTML form with an underlying cgi
script that handle the search queries. The form
consists of a field for entering text and two
options. The text field is of course used for
entering the word to thyme with. The first option
governs the strictness of the search, that is it
governs which of the three options
strict_rhyming matters, stress_matters and
vowel length matters that should be switched on.
Here follows the different setups of the four levels
of strictness :

strikt = (true, true, true)

normal = (false, true, true)

utan betoning = (false, false, true)
nédrim = (false, false, false)

We could of course have allowed the three
options to be changed directly, but we feel that our
approach is more intuitive. The other option
governs what database to use when searching for
rhymes. The user can choose between standard
and utokad. Standard contains all the words which
pronunciations are complete, that is all the original
lemmas and their inflections. Utékad is like
standard plus all the words with partial
pronunciation, that is the compound words and
their inflections. The Utdkad database also
contains words submitted through the homepage.

The search result is presented in columns, one
for every number of syllables that was matched. If
a search is made with the strictness level normal it
turns out that the column containing words that
only matched one syllable contains far to many
words to be easily browsed. The use of columns
allows the user to first check the column with the
“best” rhymes and then, if necessary dive into the
other “worser” columns.

The homepage also contains a form that allows

13

the user to add new words to the database. At the
moment users can't change words already in the
database. This functionality should be added in the
future so that users could fully participate in
extending and correcting the lexicon.

6. Evaluation

We started this report by complaining about that
existing on-line lexicons uses spelling and not
pronunciation to search for rhymes. We argued
that the former approach misses many rhymes and
includes words that doesn't thyme. The question
one ask oneself now is; how good does our rhyme
dictionary perform in comparison other
dictionaries. Though it's hard to find anything to
measure some things could be pointed out.

The fact that our database only consists of
63,000 entries cripples our dictionary. 63,000 may
sound a lot but one should remember that most of
these are inflected forms of the 20,000 lemmas.
Other on line rhyme dictionaries, e.g. DbLex?,
have databases with over 400 000 words. Our
dictionary also suffers from some blind spots, e.g.
our database contains no names of geographical
locations. Where our lexicon excel is when the
strikt search mode is used. A strikt search
produces only rhymes according to the strict
definition of a rhyme, that is rhymes that rhyme
perfectly. No other rhyme dictionary on the web is
able to do something similar.

7. Conclusion

This project has led to the creation of a working
rhyme dictionary that uses the pronunciation of a
word when searching for rhymes. This makes our
dictionary unique(we believe) since all other
Swedish rhyme dictionaries uses the spelling of a
word when searching for rhymes. The dictionary's
phonetic database was created out of Lexin, a
small but free Swedish dictionary. Considerable
amounts of time have been spent transforming
Lexin into a usable database. This was not
anticipated when the project started. Even though
Lexin isn't very comprehensive we feel that our
dictionary is usable and that it perform well in
comparison to other existing dictionaries.

One thing that could be done to improve our
dictionary further is to make it into a proper wiki.
This could help solving the problem with our
insufficient database. At the moment it's just
possible to enter new words, not alter old ones.

Our dictionary is currently not accessible over
the Internet since we haven't found anywhere to
put it. The license of Lexin may also prohibit us
from making our dictionary accessible over the

3 http://www.dblex.com/

Internet. If our dictionary finds somewhere to live
a link will probably be found on the projects
course homepage, http://www.cs.lth.se/DAT171/.
The source code of the project and directions on
how to set up your own rhyme dictionary should
also be available from there.

8. Acknowledgments
We wish to thank Pierre Nugues for his
support during this project.

9. References

Svenska ord/LEXIN vid Sprakbanken, Géteborgs
universitet. http://spraakbanken.gu.se/

Fredrik Hansson and Lennart Nilsson. 1996.
Rimlexikon. ICA Bokforlag.

Bengt Sigurd. 1991. Sprak och sprakforskning.
Studentlitteratur.

Staffan Bergsten. 2002. Rim & reson.
Nationalencyklopedin. www.ne.se.

14

Appendix A
Lexin's DTD:

<?xml version="1.0" encoding="IS0-8859-1" 2>

<!-- -=>
<l-- LEXIN -=>
<!-- Svenska ord, 2:a uppl. -—=>
<!-- Copyright Sprakdata, Goteborgs universitet -—>
<!-- XML Markup: Yvonne Cederholm, Susanne Mankner -—>

<!DOCTYPE lexin [
<!ELEMENT lexin (lemma-entry+)>

<!ELEMENT lemma-entry (form, pronunciation, inflection, pos, lexeme*)>
<!ELEMENT form (#PCDATA) >

<!ELEMENT pronunciation (#PCDATA) >

<!ELEMENT inflection (#PCDATA) >

<!ELEMENT pos (#PCDATA) >

<!ELEMENT lexeme (lexnr?, definition?, usage?, comment?,

valency?, grammat comm?, definition comm?,
example*, idiom*, compound*)>

<!ELEMENT lexnr (#PCDATA) >
<!ELEMENT definition (#PCDATA) >
<!ELEMENT usage (#PCDATA) >
<!ELEMENT comment (#PCDATA) >
<!ELEMENT valency (#PCDATA) >
<!ELEMENT grammat_ comm (#PCDATA) >
<!ELEMENT definition comm (#PCDATA) >
<!ELEMENT example (#PCDATA) >
<!ELEMENT idiom (#PCDATA) >
<!ELEMENT compound (#PCDATA) >

A sample of Lexin:

<lemma-entry>
<form>geometri</form>
<pronunciation>jeometrI:</pronunciation>
<inflection>geometri (e)n</inflection>
<pos>subst.</pos>
<lexeme>
<definition>vetenskapen om de matematiska rumsstorheterna</definition>
</lexeme>

</lemma-entry>

<lemma-entry>
<form>ger med sig</form>
<pronunciation>je:rmE: (d)sej</pronunciation>
<inflection>gav gett (el. givit) ge(!)</inflection>
<pos>verb</pos>
<lexeme>
<definition>acceptera nagot (efter patryckning), foga sig</definition>
<valency>A &</valency>
</lexeme>

</lemma-entry>

<lemma-entry>
<form>gerilla</form>
<pronunciation>2gerIl:a</pronunciation>
<inflection>gerillan gerillor</inflection>
<pos>subst.</pos>
<lexeme>
<definition>motstandsrérelse, icke reguljara trupper</definition>
<compound>gerilla~soldat -en</compound>
<compound>gerilla~verksamhet -en</compound>
</lexeme>

</lemma-entry>

<lemma-entry>
<form>gest</form>
<pronunciation>$es:t</pronunciation>
<inflection>gesten gester</inflection>
<pos>subst.</pos>
<lexeme>
<definition> (hand)rdérelse, atbdérd</definition>
<usage>bildligt "handling avsedd att visa en persons kdnslor etc"</usage>
<example>livliga gester</example>
<example>en tom gest</example>
<compound>fdrsoningsgest</compound>
</lexeme>

</lemma-entry>

15

Appendix B

Here follows a brief description of the phonetics used in our dictionary.
The following consonants have the pronunciation usually associated with them:
[b,d f g hjklmnprstvV]
Consonants missing are: [c, g, W, X, z]
The pronunciation of these consonants can be expressed using the consonants above.
E.g. [cirkus :: slrkus), [yxa :: Yksa] and [zoo :: sO:].
The following vowels have the pronunciation usually associated with them:
[a, 0,u d, e iy, d o]
A vowel can be long or short. A [:] after a vowel indicates the former, a vowel without [:] indicates the
latter. E.g. [ful :: fU:[] and [full :: fUI].
There are three symbols that represent pronunciation not usually associated with them: [c, 3, @].
[c] represent the way the k sounds in kdr. [$] represent the way the s# sounds in stjdrna. [@] represent the
way the ng sounds in springer.
[2] in the beginning of a word indicates grave accent.
[+] between two symbols indicates that the two symbols pronunciation is melted together. E.g. between two
vowel this would indicate a diphthong.
What syllable in a word that is stressed is indicated by a capital vowel.

These phonetics are nearly identical to the phonetics used by Lexin, with one major exception. In Lexin [:]
could also be used after consonants to indicate long pronunciation.

16

Appendix C

£} Rasmus och Staffans rimlexikon - Mozilla Firefox =10lx]
Arkiv Redigera Visa GBI Bokmérken Verktyg High Qi
Bﬁt - Fiﬁt * Up;;%tera 5% Sia%da ||_] hth::H‘lgq.4}'.253.43,.’r:gi-bin,,’u\'eb_seard'|.cgi?word=datalogi&da13j I@,hhﬂl forms text
Rasmus och Staffans rimlexikon
Idatalogi
Database: Soksitt:
" Standard Strikt
& Utskad * Normalt
" Utan betoning
€ Nodrim
Sok
1
Ord som matchar 3 | Ord som matchar 2 | Ord som matchar 1
stavelse(r) stavelse(r) stavelse(r)
analogi trilogi bi
antologi bli
astrologi (fri
biologi kli
ekologi ni
|geo|ogi |p||'
mytologi si
psykologi skri
teknologi vi
e [=
B ssk [(D soknasts (O Sokforeafende |- Markera | Matcha VERSALER /gemener

|Idar

The result of a search using our rhyme dictionary.

17

18

Detection of similarity between documents

Axel Bengtsson
Department of Computer Science
University of Lund
axel.bengtsson@gmail.com

Abstract

This document describes an implemented GUI ap-
plication for detection of syntactic similarities be-
tween documents.

1 Introduction

Similarities between documents is interesting in
many different kind of areas. The purpose can
stretch from different kind of areas such as:

e Let the application choose articles such that we
don’t read the same kind of article twice.

e Easily detect cheating at assignments.

e Easily detect changes between two revisions of
papers, source code etc.

2 How to detect syntactic similarities
between documents

To detect similarities, we choose to implement a
vector based algorithm called the cosine similarity.
This algorithm lets all document represent a vector
in the space. To see if two texts are equal or near
equal, they should have a cosine similarity as near 1
as possible.

3 The program

Our program consists of three modules, Topic de-
tection and tracking, TDT which is a module that
counts the document vectors, LCS, the longest com-
mon subsequence counter and the third module
which is the GUL

The first module TDT, reads the articles and
counts the word frequency. Then it calculates the
weights of the words and counts the cosine simi-
larity described above. All the words are included
in this calculation except words described in “sto-
plist.txt”. It returns an ordered list with all the pairs
of articles in descending order of the rank. ' A
XML-file will be created at this time with all the

IThis is the vector analysis number, where 1 is very close to
each other and 0 is not.

19

Ola Olsson
Department of Computer Science
University of Lund
ola@matematik.nu

weights and word frequency that the document con-
tains. The name of the XML-file is the same as the
filename and then the suffix ”.XML” is added.

The GUI starts up and calls the LCS with the
two documents with highest rank. Every time the
up/down button is pushed, a new call to LCS will be
made.

3.1 Class diagram

| ChechArligles | AU
maer -
s
| T
| ot
[m 3 Les
|
|
| NN T
I Y X, Bt
Y . oy
| <.n % ‘WordCount
[Docinfy
| %
'l.«s B
I'ig'F—'.g NMLF'&EL

Figure 1: Representation of the classes.

3.2 TF-IDF

To give every word in the text a weight, we imple-
mented the TF-IDF term frequency, inverted docu-
ment frequency algorithm. This is seen as (Downie,
1997)

. N
Weight(wi;) = fu,; X loga (n_)

Wi

| Term | Meaning |

Wi i:th word in document j

Jwij Frequency for word w;;

N Total number of documents

Ry, Number of documents w; occurs in

This is trivial math but does explain some effects
of the formula:

e If a word occur in every text, the weight for
that word will be zero in every document.

e Two words can have different weights, it de-
pends on which document it is in. The log term
is constant in this sense but the frequency of the
word in the document may differ.

e If a word only occur in one text that certain
word will (of course) get f;; x log(N) which is
the biggest weight a word can get.

This means that, the more a word appears in all
the texts, the less weight it will get. To get a high
weight, the word should appear very often in as few
texts as possible. When the TF-IDS has selected
the two articles which is most equal, we are run-
ning these articles through a LCS algorithm. This
algorithm detects which words are the same in both
articles and paints these red in the GUI Observe
that the words found in the algorithm doesn’t have
to be consecutive. We have slightly modified the
well known recursive algorithm in two ways, first
we have made it iterative and secondly, we are run-
ning it through words instead of single characters.

3.2.1 Cosine similarity rate

After the TF-IDF algorithm, every word in every
document has got a weight. Now we define the sim-
ilarity between two documents as:

Zw,-e(XﬂY) Xwi X Yw;
X[Y

Rate(X,Y) =

| Term | Meaning |

Wij i:th word in document j

X A document

Y A document

Xy, The weight of word w; in X
Yw; The weight of word w; in'Y
IX\ | A/x%, +x2, + ...

YN | /om0, +

First, the program looks up all words which ap-
pears in both documents. The word weights are
multiplied together and sums up for each word. This
sum is divided by the product of both document
norms. This formula will run through all (;) pairs
of documents.

20

3.2.2 LCS

The LCS is often based upon a recursive algorithm.
Imagine two strings, X =< xq,...,x; > and ¥ =<
Y1,-..,yj >. The recursive solution is based on the
fact that if x; and y; is the same character, then the
LCS of the two strings is the same as the LCS of
X1,...,Xi—1 and yy,...,y;j—1 and then add x; to the so-
lution.

If x; # yj, we say that the LCS of X and Y is the
maximum length of one of the two subproblems
LCS(X,yl,...,y,-_l) and LCS(XI,...,xi_l,Y). This
means that if the last two characters are not equal,
the problem can be reduced to two subproblems,
one subproblem that runs LCS with whole Y and
deletes the last character from X and the other sub-
problem runs LCS with whole X and deletes the
last character from Y. This follows cause we are
comparing two strings and if their characters don’t

match, then one of the characters is worthless.

The base of the recursion is when the argument to
the algorithm is the empty string, then the algorithm
returns the empty string.

if i=0 or j=0
if xi=x;
otherwise

LCS(i—1,j—1)+x; 2

LCS(i,) = {
max(LCS(i — 1, j),LCS(i, j — 1))

However, this method is really slow because of the
recursive steps. The worst case happens when i = j
and when the strings doesn’ t have a common char-
acter at all. Of course, in this case the strings can
have a maximum length of the number of characters
in the alphabet. Anyway, the worst case calls the
last row in (3.2.2) all the time which splits the prob-
lem in two parts. In the worst case, this call will be
made i times. This means that the time complexity
of the solution is O(2") 3 which is totally unaccept-
able in our program. Of course some of these sub-
problems are the same and can easily be treated by
memoization (probably using a hash) but we agreed
on implement it iteratively. To find out how to make
an iterative solution we can gain information from
the recursive solution. If we think of the problem as
a matrix:

sl Lopl = Bl eel Bu] 1)

The recursive solution starts at the right-bottom
corner of the matrix and checks whether the charac-

%In this document and context the operator plus is over-
loaded as concatenation of strings, and the function max returns
the argument which has the longest string.

3Here, n is the length which is equal to i and j

ters are the same or not. If they are the same, the
cell; ; is equal to cell;;1 j41 + whats in cell; ;. Else,
the cell; ; will be equal to max(;y1,;j ;i j+1)-

If we make a matrix of the two strings and follow
the recursive solution of this matrix, then we simply
see that the recursive solution can be written as two
for-loops which starts in the right-bottom corner and
works its way up to the left-upper corner where the
solution will be stated.

for (int x=1;x>=0;++x)

{

for (int y=J;y>0;++y)

{

if (X[x]==0 || Y[y]==0)
if (X[x]==Y[y])
ResultMatrix[x] [y]
else
ResultMatrix[x] [y]

ResultMatrix[x] [y]="";
= ResultMatrix[x+1] [y+1] + X[x];

= max (ResultMatrix[x] [y+1],ResultMatrix[x+1][y]);

This means that a certain cell in the matrix is ei-
ther a 0 which means that the letters are not equal,
or the letter itself + the letter (or string) in the cell
down one step and then one step to the right. This
makes the solution a O(n?) in time which is much
better than O(2"). An example of how our algo-
rithm calculates the LCS of the strings "HOUSE-
BOT” and "COMPUTER”.

H 0 U |8 |E |B |0 |T
C|OUT|OUT|OT|OT [OT|OT|[OT|T
Q|CUT|OUT|OT | OT |OT|OT|OT|T
M|UT |OT |UT|T [T |T [T [T
i 16 1 v R W e
U |ur |y |UE|T [E [T [T |T
e T A G ol O 5 e
E|E E E E |E [[7

Figure 2: Note that the result from this algorithm
does not provide us a valid result for substrings of
these strings. To get that, we should run the algo-
rithm forward instead of backward.

4 Screen shots and test runs

The program requires Java 2 Standard Edition 5.0
and can be started as follows:

java CheckArticles

A file chooser window will appear. You choose
your multiple articles by pressing the control key
(or shift). + The program reads and calculates data
and a progress bar will guide you through this step.

4Files have to be chosen from the same directory.

21

After this, a GUI will appear where the words ap-
pearing in both articles in same order are marked
red. The articles that will be shown at the start of
the GUI are the 2 articles of (g) > that got the high-
est rating with our TF-IDF algorithm. When using
the up/down buttons you will go through the docu-
ments in ascending/descending rank order.

Figure 3: Two documents are shown and the red
marked text is the LCS.

5 Quality assurance

To see whether our functions are work as they
should we made some test cases and predicted the
result before running them on our program. The
main items we wanted to test is the cosine similarity
function and the LCS.

To test them, we made three files containing this
information ©

Filel

Hello everybody. this is a test Ola and Axel.

File2
Hello anyone. What may be the deal.
File3
Hello anybody. Great program Ola and Axel.

Before we ran these files in the program we ex-
pected four things.

1. The word “Hello” must get word weight O in
every document because logy1 = 0.

2. Filel and File3 is the pair of files which should
get the highest cosine similarity rate. This is
because of the words ’Ola and Axel”.

3. Filel to File2 and File2 to File3 are the rest of
pairs and these pairs are worth nothing.

SIf n is the total number of documents, this will be the num-
ber of pairs

%Dont care about the semantics of the sentences, it is just
test cases.

4. The LCS of Filel and File3 should be “Hello
Ola and Axel” because the other words isnt
contained by the other string respectively.

We ran all the tests and the predicted results were
correct.

Another test to run through the LCS is at text
which contains a word only one, against the same
text but reversed. The LCS algorithm should dis-
play one word in red. Imagine the text:

This is a test.
If we run this text against the reverse
.test a is This

, the red marked word could be any of the words
in the two sentences depending on how one has im-
plemented the max function. The important thing is
to understand that not two words will be red. This
is because of the reversing text. Suppose that the
strings are build like X =< x1,x3,...,x, >, the other
string Y will look like < x,,,%,—1,..,X1 >. Suppose
we find a word which must be in our LCS. Say x;
where k € 1 — n. Then, this word must be the word
Vnu—i in Y. After some iteration we find a new word
to be in our LCS, say x; where [> k. This means
that this word is found in y,—; where [< k. Because
| < k, it means that the second word is before the
first word which is not possible in LCS.

The word which got red in our program was: ~a”
This is because we didnt implement a max function
ourselves.

6 Statistics

To get a good understanding of how good our appli-
cation is, we tried it on several documents, some
of them were intended to give some result while
other documents were copied directly from news-
papers. We chose two subjects from the newspapers
that have been pretty large in the last weeks, namely
”wilma” and “’the bird disease”. 10 documents from
each subject were collected from DN, Aftonbladet,
Expressen, Sydsvenskan, TT.se and other big news
sources. First, both of us, independently of each
other ranked all the pairs of documents based upon
the LCS and give the pairs a grade between 1-5.
After that we compared our ratings and they were
exactly the same but one or two pairs. We ran
the articles through the program and the result was
that almost every document got a TDT rating very
good compared to our LCS rating except those pairs
where one of the document was much larger than the
other one.

22

7 Conclusions

We think that the assignment was perfect in time
measure. We also liked the subject and we had ab-
solutely no problem with coding whatsoever. The
problem was to get the idea of how the TF-IDF
works but Pierre explained it very good.

What we could conclude from the statistics is that
the program is very good at finding similar doc-
uments when the papers are approximately in the
same length. Otherwise, if one of the documents are
a proper subset of the other but far more smaller, the
TDT will be very low. Maybe it is good, maybe not,
it depends on the purposes. It is now possible for a
student to copy another students paper and keep on
writing without the notice of the TDT, but the LCS
will cover it, if the teacher will search through all
the pairs graphically.

Something notable is also that it was the first time
we used CVS and that worked very good as well.

8 Acknowledgments

We would like to thank Pierre for the help and
for assistance with books and Rolf Karlsson who

sent us the lecture notes of Dynamic Programming
(Karlsson, 2005).

References
J. Stephen Downie. 1997. Term weight-
ing: tf*idf. Webpage, September24

http://instruct.uwo.ca/gplis/601/week3/tfidf.html.

R. Karlsson. 2005. Lecture 5: Dynami program-
ming.

Automatic Article Generator from Extracted Databases

lanick Boudreault
Lund University, Sweden
ianboudreault@hotmail.com

Abstract - The primary goal of an automatic content generator is to bring available new
information to the public by the means of search engines. In fact, nowadays there is a rush for
accumulating a lot of data which is not always “humanly readable”, mostly formatted into
databases. The recent success of search engines has revolutionized our way to search for
information, allowing them our trust in delivering us the most relevant results to our search
requests. The goal of this paper is to present a tool to manipulate into articles such unformatted
sources of data so it can be indexed by search engines ready for the end users to consult through

their searches.

1. Introduction

Humanly readable information: this
seems to be the new fashion in
nowadays best search engines to deliver
what they believe to be the most relevant
results to its users. Wondering why they
have attained such standards makes us
wonder what the end user really wants.
Will a database containing, for example
thousands of species of insects be a
better alternative then reading a websites
presenting articles on each of these
species? The answer to this question
makes us believe that articles are much
more convenient to read. However the
main advantage of articles is that search
engine will “like” such formatted data
and will rank them in their results. This
information will then be available to
searches through specific keywords like
“Hymenoptera bugs” or “Orthoptera
insects”. The optic of this tool is to get
available information to the public that
wouldn’t be available through the World
Wide Web.

2. The ContentBot tool

Contentbot is the name given to the
article generator tool built here. Its goal
is to build unique articles automatically
with a template built by the user with its
inbuilt template creator tools. It mainly

23

works in two main operations: a
template sentence creator containing
“holes” to put the database entries and a
synonym creator to make the articles
more unique. An XML derived syntax is
used to insert the desired information at
the right places in the template
sentences. An extraction tool is also
available to extract web information
aimed at creating database from online
websites. In this paper, examples will be
made with a beer database containing
1600 entries extracted from a list of
beers taken on the web.

2.1 The ContentBot Interface

ContentBot has been built as a web
application tool to guide the user through
the steps of creating new articles from its
raw database. The tool has been built to
ease the creation of this template that
will then be used to generate the articles.
It handles adding, modifying and
deleting sentences and synonyms while
presenting the information in a way to
make it easy to the user to write his
articles. All the information is stored in a
database on the server until the articles
are generated and downloaded to the
user. In this way, a user can create many
projects and finish them later on. When
the process is finished and the articles

generated, the result can be viewed
through the ContentBot result navigator
and then be downloaded to the client
station in different formats.

2.2 The ContentBot Extraction tool

The beer database presented as an
example in this paper has been extracted
with the ContentBot extraction tool. This
tool is a script that basically finds unique
HTML information before and after the
desired information. This unique code
has to be identical through each pages of
the website to extract the same
information in each beer page. Doing so
for each data desired, we run the script
to extract each information for each page
of the website. This has been done on a
beers website to furnish this database of
1600 beer type, having seven relevant
information of each beer: the beers
name, the style and sub style, the
country, the brewery, the level of alcohol
and a score assigned to the beer. For the
moment, the database needs to be in the
form of a single table, it will later be
extended to support relational databases.

2.3 The Sentence Creator Tool

This is the first step to create the
template. The tool first presents the first
row of the database on top of the page as
a resource for writing the sentences. For
the beer database, we have the following
items:

Name: biobier
Style: lager, pale
Sub style: bio
Brewery: Hirter
Country: Austria
Alcohol level: 4.8 %
Score: 76 %

24

We then write an article as if it was
written about the current row. Sentences
are added one by one as they will be
treated separately, for example:

“An interesting beer is the biober
being classed as a lager, pale.”

The sentence creator tool is presented
here with already composed sentences.

_...\T.ﬁ Sentences Creator

[
DB Tagging

Sentence Creator

Ordar

Sentences List

The next step is to add the tags related to
the database so that the sentences don’t
depend anymore on the first row but on
the assigned column. Each column is
identified by a unique id. Adding the id
to the tag is of the form:

<-DB item=2 /DB->

During the final generation of the article,
this tag will make the system replace the
tag for the correct entry in the database.
Here it would change <-DB item=2
/DB-> for biobier. Replacing each tag on
the example sentence will look like:

“An interesting beer is the
<-DB item=2 /DB-> being
classed as a <-DB item=3 /DB->"

2.4 The Synonym Creator tool

The article that would be produced from
the only use of the Sentence creator tool
would result in 1600 articles having the
same text for each beer. That would

result in a really bad website and our
main goal to rank in search engines
would fail since all major search engines
use what is called *“similar content
filters” on websites. This means that
having 1600 sentences with a high
percentage being the same text would be
detected and the website containing the
articles would probably be dropped. This
is where the synonym creator tool gets
interesting as it is used to catch sections
of a text and allocate synonyms. Having
many synonyms for different parts of the
sentence will result in a high level of
diversity for each sentence during the
final generation.

The Synonym generator asks the user to
insert in the sentences “synonym tags”
enclosing the desired part to work with.
Using the same sentence as before for
the example, the tag would look like
this:

“<-syn item=al->An interesting
beer<-/syn-> is the
<-DB item=2 /DB-> being
classed as a <-DB item=3 /DB->"

The id of the tag can be anything as long
as it is made in one word. The synonym
tool now lets the user add as much
synonyms for the “al” tag as wanted.
We could for example add:

e A fabulous beer

e A noticeable beer

e A beer that has raised our
attention

e A beer that we would recommend

We can add an infinite amount of
synonym in a sentence. The more
synonyms there is the highest are the
chances of having all different sentence.
The different possibilities then go

25

exponential. For example for a sentence
having three synonym tags in a sentence
having eight synonyms each, this would
make:

8% =512

512 possibilities for this sentence alone.
The interface of the synonym creator
tool with the completed tagged sentences
is presented below:

Eog Synonym Creator
P
Sentence SYNonyms - tag: a1

&= ®

Tags with Synonyms ®

Sentences List
Sentence arder

The example sentence with the proper
synonym tags would like this:

“<-syn item=al->An interesting beer

<-/syn-> is the <-DB item=2 /DB->,

<-syn item=a2->being classed as a
<-/syn-> <-DB item=3 /DB->.”

Several tools are available on the
internet to help finding synonyms and
ways to say things differently such as the
Prinstons wordnet" tool and synonym
dictionaries.

2.5 The generation of the articles

The generation tool then uses a random
number to select the good synonym for

! WordNet : http://wordnet.princeton.edu/

each tag and adds for each of the articles

the correct database entry. In our
example, we have a total of six
sentences, having a total of eleven

synonym tags. To find out the amount of
different sentence possibilities we
multiply the amount of synonym per
synonym tags together to find:

TX5x6x5x4x3x5x6x4x4x5 = 30 240 000

This makes a total of more than 30
million possibilities. Having 1600
articles to generate the chances a same
article appears twice is

30 240 000 / 1600 = 18 900

This makes a probability of 0.06 %
which is extremely low.

3. Conclusion

The results generated by ContentBot are
very interesting as each article really
seems like they have been written by a
real author. These articles can then be
added to a website that will be indexed
by the search engines, ready for user
consulting. A parallel project of mine
will actually use the information
generated by this beer example. This
project called ISearch® is using article
formatted information to attach to its
search engine and making the
information searchable through the
pages of a new built website. The
information is then available in the
isearch site, which will be called
www.isearchbeers.com. The articles will
finally be easley spiderable through the
major search engines and will be
available to be found using keywords in

2 Examples of Isearch at:
www.isearchquotations.com
www.isearchjokes.com
www.isearchbible.com

26

the articles. Now someone searching for
“merlin's pilsener beer” will probably
find our article on the merlin's pilsener!

Annex A: Example of the beer articles
generated

A beer that a personally recommend is
the pilsner urquell, knowing to be a
lager, pale. We appreciate this beer,
thanks to plzn (pilsen), a famous local
brewery in czech republic well known
for its other conception than the pilsner
urquell. This famous brewery is known
to be loved in Czech Republic. the
pilsner urquell contains an amount of
5,0% of alcohol, which makes it an
interesting beer. It is also described as a
"pilsen”. isearchbeers.com has given to
the pilsner urquell a score of 80%.

A beer that has raised our attention is
the merlin's pilsener, knowing to be a
lager, pale. All the credits are accorded
to bextrim, a talented brewery from
germany which is not only brewing the
merlin's pilsener. This famous brewery is
known to be very successful in Germany.
The Merlin’s pilsener contains an
amount of 4,9% of alcohol, making it a
very tasteful beer. It is also
characterized as a "pilsen". We have
accorded to the Merlin’s pilsener a
score of 70%.

An interesting beer is the dachsenfranz
kellerbier, characterized as a lager,
pale. It is actually brewed by Herbert
Werner, an award winning brewery
coming from Germany having much
more to know than the dachsenfranz
kellerbier. This beer is known to be very
successful in Germany. The
dachsenfranz kellerbier is powered by
an amount of 5,2% of alcohol, enough
for a good night of fun.

isearchbeers.com has granted to the
dachsenfranz kellerbier a score of 70%.

A noticeable beer is the warsteiner,
knowing to be a lager, pale. All the
credits are accorded to warsteiner, a
famous local brewery in Germany which
is not only brewing the warsteiner. It is
known to be loved in Germany. The
warsteiner includes about 5,0% of
alcohol, enough to cheer you up.
isearchbeers.com has granted to the
warsteiner a score of 86%.

27

28

Automatic Identification

of Participants in Discussion Groups

Jakob Carlsson
Vipplingv 7
227 38 Lund
Sweden
dat04jca@student.lu.se

Bobo Wieland
Transtigen 39
262 41 Angelholm

Sweden
bobo@bitbob.biz

January 23, 2006

Abstract

The idea behind this project was to see if you could
create a system that could tell you who wrote a
certain piece of text. The method that we used for
this was to encode the text as numerical data with
an id for each word followed by it’s frequency in
the text. The numerical data was then fed to an
SVM that predicted the author of the text. This
report briefly discusses information extraction from
the internet and describes the thoughts behind the
java application RUU.

1 Introduction

The project idea was to see if there was any pos-
sibility to create a system that could tell you who
wrote a certain piece of text. It was an interesting
area that not too many people had thought of. We
early decided that the best way to get data to test
the system was to download it from discussion fo-
rums on the internet. We also thought about how
to implement the system and found that the easi-
est way would be to use Support Vector Machines
(SVM) for the classification of the text.

At this point we started collecting test and train-
ing data for the project from discussion forums on
the internet. At an early stage we decided that our
first goal would be to have a system that could see
the difference of two people in a discussion between
only these two; our second, and final goal to see the
difference between several people in a discussion be-

tween these and other people as well. At this point
we also started writing our system and we needed
a name for it, after a while the system was named
RUU (pronounced: Are You You) because it can
tell if a text realy is written by a certain person.

1.1 Support Vector Machines

SVM is a method to classify data using vectors and
mathematical models. We downloaded LIBSVM [1]
and used it in the project because it is quite big to
write your own SVM. Since we are beginners on
using SVM for data classification we had to read
through the beginners guide [3] to get a good grip
of how to use SVM.

2 Application Structure

In the following section we will first briefly explain
how we gathered and formated our test data (Sec-
tion 2.1). We will then move on to explain in more
detail how our main application - RUU - works
(Section 2.2).

2.1 Information Gathering

We had some different web forums in mind when we
started to work on this project but soon decided to
use the swedish spoken forum on dvdforum.nu [2].
dvdforum.nu is a web site for movie enthusiasts and
has many active members in their forums. It’s been
online since 1996 and is to some extent a closed

29

=fuml wersion="1.0" encoding="is0-8859-1" 7>
- <thread xmins="http:/ fdvdforum._nu" title="Den
ultimata Criterion-traden!!":
- =entry length="470">
<trueauthor name="d-boy" type="Medlem"
posts="2000+" />
Ar det ndgon som skulle kunna beriatta
lite om Carnes Children of paradise, samt
hur utgdvan ar?Samtidigt skulle jag

</entry >
</thread>

Figure 1: Example of Criterion.xml

domain since most discussions concerns movie re-
lated subjects. It suited our needs perfectly since
we needed a long forum thread with many posts for
our tests and as many posts as possible from forum
members active in that particular thread.

After finding a suitable test thread, Den ulti-
mata Criterion-traden!! (The ultimate Criterion!
thread!!) with >1100 posts over a period of four
years, we created a simple PHP script to parse
the thread data. The script simply looked at the
HTML source and split the text by the tag pattern
of the code. After stripping out all HTML tags the
script saved the data in a convenient XML format
as Criterion.xml (Figure 1).

By counting the number of posts from different
users in Criterion.xml we could easily single out
our test subjects. We will reference our four test
subjects in the remaining of this rapport by their
screen names - d-boy, JLI, ola-t and von Krolock.

When we knew the screen names of our test sub-
jects it was easy to modify our existing PHP script
to loop through the threads at dvdforum.nu, catch-
ing all posts by either subject and append the post
to a specified XML file; one for each of our five
subjects with their screen names as file names (Fig-
ure 2). At this point we also decided not to use
posts consisting of fewer than 250 characters.

While being an easy and simple way of gathering
data it wasn’t the most efficient one. We started
our loop counter at the then most recent thread
id and went backwards in time from that point
on, looping through each thread, existing or non-

I The Criterion Collection is a line of authoritative con-
sumer versions of "classic and important contemporary
films" on DVD (and on Laser Disc pre DVD era). The qual-
ity of these releases - from picture and sound to packageing
and included extras - are always top-notch.

«7#ml version="1.0" encoding="is0-8859-1" 7>
- <author xmins="http:/ /dvdforum.nu" name="JLI">
<entry length="705"=Det &r vél inte sa
konstigt om ett par av 160 {eller hur
manga det nu exakt &r) filmer mer eller
mindre behandlar lite mer vdgade damnen?

Jag hade snarare hojt pd ogonbrynen om
saken varit den motsatta.</entry=

<entry length="418"=Ja, Lemming l&ter ju lite
spannande. Kanske svanger forbi den

som finns recenserad har.</entry=
- f - - =
</author=

Figure 2: Example of JLI.xml

existing, and each page of each thread (in case it
was spread out over many pages due to it’s number
of posts). After letting the script run for 24-hours
straight and looping through approximately 50.000
threads we hoped that we had gathered enough
data and aborted the information gathering.

After doing some labour-some manual edits to
our test files, removing the signature each subject
put last in all of their posts that unfortunately was
impossible to remove automatically (at least with
our simple PHP script), our information gathering
was complete.

2.2 RUU

RUU is our main java application that converts our
XML files to files that can be used with SVM. It
does not, however, simply convert from one format
to the other but tries to format the text in the XML
files to maximize the final svm prediction rate by
apllaying some simple rules.

RUU does two passes over the supplied data, first
building a dictionary of tokens and the in the sec-
ond pass generating the output.

We will now explain in more detail four parts
of the application; The Sink (Section 2.2.1), The
Tokenizer (Section 2.2.2), the Dictionary (Section
2.2.3) and the svmFileCreator (Section 2.2.4).

2.2.1 Sink

RUU uses a SAX parser to parse the XML files.
We choose to use a SAX parser rather than a DOM
parser since we, at the time of the decision, didn’t
know how large our XML files where to be and if

30

they would be well-formed or not. In contrast to a
DOM parser a SAX parser reads the XML files a
bit at the time. This means that the whole XML
document will never be in the computers memory
(which could cause problems if the documents are
huge) and it also guaranties that until the parser
encounters an error in the XML syntax it will parse
the data. A DOM parser would abort the attempt
to read the XML document immediately.

The second reason to use SAX rather than DOM
was the simplicity of our XML files and the knowl-
edge that we would only use the parser to read the
data - not to manipulate it.

The Sinks main purpose in our application is to
handle the data sent from the SAX parser. In it’s
basic form it had three important methods for han-
dling XML data; one for handling data sent when
a XML tag is opened, one for handle data when a
tag is closed and one for handling character data.

The actions the Sink takes is different depend-
ing upon what stage of the process RUU are in. In
the first pass that RUU does over the files the Sink
sends the data from all the documents to the Dic-
tionary. In the second pass it sends the data to the
svmFileCreator instead. In both cases all character
data is processed by the Tokenizer.

2.2.2 Tokenizer

A regular tokenizer breaks a character stream into
tokens - separate words - and sentences [4]. Our to-
kenizer breaks the string of words supplied by the
Sink into tokens, but sentences are not generally
taken into account. Before storing a token our to-
kenizer turns all regular characters into lower case
and on top of this scans the input string for spe-
cific patterns and possibly add some of three special
tokens;

1. #SMILEY# - Some regular ascii smilies - i.e.
1) or ;-(- are recognized and are replaced with
this token.

2. #NET SHORT# - The most regular internet
short forms for different expressions - such as
lol (laughing out loud) or isf (swedish for i s&
fall (in that case)) - adds this token to the list.
It does not, as with #SMILEY#, replace the
old token.

3. #NON-CAPITAL# - While sentences are of
no interest to us in general, the Tokenizer does
check ff the first character of a sentence is in
lower case and if that is the case adds this to-
ken to the list.

This special treatment of the input string is done
since it will, supposedly, help SVM to predict who
is who more accurate. To explain our thoughts be-
hind this we have to see ourselves as long users of
the internet. We’ve grown accustom to the way
people express themselves and it feels naturally to
categorize peoples use of words and symbols.

Some users use a lot of smilies in their post - some
use non. Some use a lot of internet abbreviations -
some, again, use non.

Also, to abuse the use of capitalized letters
means, in net-language, to shout. And excessive
shouting is often followed by excessive amounts of
angry replays to the point where the original poster
learns to fear Caps-Lock. This is why we treat
the few capitalized words as a non-capitalized word
since it won’t be a net users regular way of writing.

Finally, many - but far from all - regular forum
posters have the bad habit to, more often than not,
forget to start sentences with a capitalized letter.
If this is because of laziness or fear of Caps-Lock,
we won’t elaborate further on #SMILEY#.

2.2.3 Dictionary

In the first pass that RUU does over the XML
files all tokens returned by the Tokenizer is sent
to the Dictionary. The Dictionary gives each token
a unique label - starting with 1 for the first token,
2 for the second and so on - and keeps track of the
total number of times - it’s frequency - a token is
used throughout the XML documents.

We’ve also added the functionality to store bi-
grams (word pairs) instead of unigrams (single to-
kens), or to store both bigrams and unigrams at the
same time, in the Dictionary. Since bigram and n-
gram predictions themselves can be used to check
authorship of texts this seemed a resonable thing
to do. However - later tests showed us that using
bigrams instead of unigrams gave a great (huge!)
performance hit and a much worse final results, so
we won’t say much more on this matter.

31

Number of Correct/
subjects Method used | T-limit C / g(e-5) | CV rate | Tot(Valid)
2 Unigrams 1 128 / 12.21 94.84 71/83
2 Bigrams 1 32 / 12.21 92.46 42/83
2 Uni+Bi 1 32 / 12.21 94.05 42/83
2 Unigrams 2 32 /48.83 | 94.84 | 70/110(83)
3 Unigrams 2 512 / 03.05 87.09 80/110
4 Unigrams 2 512 / 03.05 81.10 101/242
4 Unigrams 2 512 /03.05 | 81.10 | 118/1090(242)
Table 1: Final results
2.2.4 svmFileCreator With the two files created - the train file for

After the Dictionary is populated RUU parses the
XML files a second time. This time the Sink keeps
track of the author of the entries (forum posts) in
our test files giving them unique labels, once again
starting at 1 for the first author, 2 for the second
(and so on and so forth)...

After character data has been tokenized the to-
kens for that particular user and entry is stored
along with the frequency for each of the tokens. In
this case the frequency is the number of times the
token has appeared in the current entry and not
the total frequency stored in the Dictionary.

When the Sink encounters the end element of an
entry the svmFileGenerator is used to generate an
SVM suitable representation of the stored data for
the entry in question. This data is appended to
a train file, later to be used by SVM to build a
prediction model.

When all test files are parsed and the train file
is completed, the procedure is repeated once more
for the XML file that should be used to test our
SVM model. When the Sink encounters a entry in
this file that has not been written by one of our
test subjects it - depending on what we’ve chosen
- either completely discards the entry or generates
a new unique label for it (the Sink does not keep
track of other authors of our test files so two entries
posted by he user bitbob will not get the same label
- in fact we increment the label value by one each
time we come across a post that is not from one of
our test authors)).

As before, when encountering the end element
of an entry the svmFileGenerator comes into play;
generating an SVM suitable representation of the
data that gets saved to disc.

building the SVM model and the test file to test
the model on - RUU is done and it is time to let
easy.py give the CPU a run for it’s money.

2.3 easy.py

Throughout the project we’ve followed the guide
lines given in the paper A Practical Guide to Sup-
port Vector Classification [3] and their suggestion
to use easy.py for fast and easy, as well as good,
results.

easy.py is a python script that comes with the
LIBSVM package. It simplifies the use of SVM by
automatically fine tune your files and finding suit-
able values for constants used by the RBF kernel
function. It creates the SVM model and and runs
the model on a test file, if specified.

All of our result data is data given by easy.py

3 Results

While generating train and test files in RUU, we’ve
tried some different approaches, just to see what
gave the best result. In most of our early tests
we’ve used only two of our test subjects; JLI and
von Krolock (since we had most data from these
two). After getting some initially poor final results
we decided to skip the test on Criterion.xml and
use a subset of JLI’s and von_ Krolock’s test files
instead. We’d gotten a fairly good CV rating? on
them (between 80- and 95%) so it felt like a good

2CV stands for Cross Validation and the CV rating is the
probability that SVM guesses right when it uses parts of the
training file as test data (used when easy.py tries to find the
optimal constants)

32

place to start. We cut out 25% of each file and put
randomly each entry of the data in a new test file.

After sorting out a small error (causing a major
drop i prediction accuracy) in our code we could
see a fairly good result with a prediction rate ap-
proximately 10% lower than our CV value.

From this point we concentrated on tweaking our
variables in RUU for best results. As mentioned be-
fore we had an idea that maybe using bigrams in-
stead of unigrams would give a better result. This
wasn’t the case at all and we noticed a huge per-
formance hit as well as really poor results.

We also, at one point, tried to raise the frequency
of each token by a power of 2 or even 3. While not
taking SVM much longer to process it gave a small
decrease in prediction accuracy (minus 1- or 2%).
So, as the with the case with bigrams, we soon
discarded this idea.

The final modification we tried was to put a lower
limit on how many times, in total a token had to be
used in the text to be considered. Trying different
values we decided to use 2 as the lower limit, mak-
ing RUU discard all tokens that was only mentioned
once in the text. This will include non-standard
miss-spellings, unusual names and other rare char-
acter combinations.

Table 1 shows some of our test results. The left
side of the tables is values we’ve decided in RUU
(T-limit being the lower limit of tokens mentioned
in the previous paragraph) and the right hand side
is the values easy.py calculated for us; C and g be-
ing the constants used by the RBF kernel function
and CV being the cross validation accuracy. The
last column is the final result of applying the train
model on the test file. Correct is the number of cor-
rectly predictions and Tot being the total number
of predictions made (or total number of rows in the
test file). However, when supplied with a test file
that had entries from others than our test subjects
SVM allways predict each row as one of the known
subjects. In these cases the number of valid entries
(entries written by any of our test subjects used in
the test) is written in parenthesis.

4 Conclusion
One of the most important things that came up

during the project was that it wouldn’t be possi-
ble to use this implementation in a real-time sys-

tem, but that was never our intention with RUU.
To have this in a real-time system we must have
a model created before and a direct link between
RUU and the SVM so that we don’t need to create
any files or run an external program in any part of
the process. Another thing is that it takes a lot of
CPU and time to create the model and when fin-
ished the model is quite large so you don’t want to
create a new model to often.

Finally; our test results show us that the more
people that are involved in a disscusion the more
our final results will suffer. Trying to separate and
keeping track of hundreds of people at once proba-
bly will prove to be impossible simply using SVM.

Acknowledgements

We would like to thank Richard Johansson for all
the support and help with the project. Special
thanks to Chih-Jen Lin for fast response and in-
valuable help and advice.

References

[1] Chih-Chung Chang and Chih-Jen Lin. LIB-
SVM: a library for support vector machines,
2001. Software available at http://wuw.csie.
ntu.edu.tw/~cjlin/libsvm.

[2] dvdforum.nu. www.dvdforum.nu. A swedish
discussion forum on http://www.dvdforum.nu.

[3] Chih-Wei Hsu, Chih-Chung Chang, and Chih-
Jen Lin. A Practical Guide to Support Vector
Classification. http://wuw.csie.ntu.edu.tw/
“cjlin/papers/guide/guide.pdf.

[4] Pierre Nugues. An Introduction to Language
Processing with Perl and Prolog. Springer, 2005.

33

34

Information extraction for classified advertisements

A project in the course
EDA171/DAT171 Language Processing and Computational Linguistics

Johan Eriksson

Abstract

This paper presents work done in project
form in the course Language Processing and
Computational Linguistics given at Lund
School of Technology during the fall of
2005. The goal of the project has been to
implement a simple information extraction
tool from the domain of classified
advertisments about apartments.

Introduction

The desire to find things on the web has lead
to the development of search engines like
Altavista, yahoo! and many more. The basic
idea of these is to allow the user to find
pages that contain certain words and do not
attempt to understand or make sense of any
web pages. Whenever they do take steps
towards understanding web pages they risk
losing their generality. Google, for instance,
did not support stemming in the beginning
but does so now and it is described here:
http://www.google.com/help/basics.html#ste
mming . Searching for ”google stemming”
currently, 2006-01-11, gives 716,000 results
and browsing through the results one can see
that there are a lot of discussions
surrounding the peculiarities of Google
stemming.

Another category of search engines is the
shopping agents who index web shops.
These are specialized to index the
semistructured data of web shops where
product data and prices usually are displayed
in table-like structures. A technology that
can be used for such applications is
described in ”A Scalable Comparison-
Shopping Agent for the World-Wide
Web”[3]

Examples of sites using this technology
include Froogle(http://froogle.google.com)

35

and Pricerunner (http://pricerunner.com).

A third category, which index text that is
unstructured, is what this paper is about. An
example of this is http://eniro.jobsafari.se
which indexes job ads. I have chosen to
work with apartment ads from the site
www.blocket.se which is a Swedish
categorized ad site. [have implemented
a simple information extraction engine
using hand crafted patterns.

Implementation

I chose to split my system into three
different logic parts: the robot that gathers
ads from the site blocket.se, the web
interface where a user can make queries and
the information extraction engine.

From ad to information

Figure 1 shows how the information from
an ad in a web page becomes extracted. The
differrent steps are then described in detail.

http://froogle.google.com/
http://www.google.com/help/basics.html#stemming
http://www.google.com/help/basics.html#stemming
http://pricerunner.com/
http://www.blocket.se/
http://eniro.jobsafari.se/

Figure 1: From ad to information

Ad on web page

s
Web harvesting

o

Ad extraction

a2

Text normalization

ue

Information extraction

v .
MGQO

Extracted attributes

Web harvesting
An ad starts out being a web page that is
gathered by the robot.

Ad extraction
The actual ad is extracted from the markup
of the web page.

Text normalization

Ad text is split into chunks that are well
fitted for running patterns against. [choose
to split the text at the sentence level.

Information extraction

Regular expressions are run against the
sentences in an ad to retreive the desired
information.

Nature of ads

Sometimes the data of interest have what I
would like to call labels while other times
context is used to tell the reader about the
data. To exemplify we can look at apartment
rental ads. My translations of the examples

36

appear in paranthesis after each sample and
might not be exact, but they suffice for the
point [am trying to make.

For "Hyran ligger pad 3207" (The rent is
3207) or "pris 4136 Kr/méan" (Price 4136
crowns/month), the labels are "Hyra" and
"pris" respectively.

In other cases the data is described by
context like

"2100:-/ménad (forstahandskontrakt) inflytt
1/10" (2100 crowns/month (first hand lease)
available 1/10) where the fact that it is a
price/month and the mentioning of type of
lease tells us that it is about rent.
Another example is the very short:
"900kr/mén" (900 crowns/month) which
really only consists of a measure and a unit.
The available information, out of context,
only tells us that it is a price, but in the
context of an ad for an apartment
an unlabeled price is likely to be
the price of the apartment.

In my observations it seams like if a price
refers to something other than what one
would expect for a typical item of this kind
it usually carries a label: "Jag kommer borja
arbeta i Kopenhamn och kommer ha en
ménadslon pa ca 25 000 danska" (I will start
working in Copenhagen and I'll have a
monthly salary of about 25000
danish[crowns]), which carries the label
“ménadslon” or “Hyra 4828:- Deposition
7500:-” (rent 4828 crowns deposit 7500
crowns) which wuses the labels “hyra”
”deposition”.

It seems like for different kinds of ads, or
maybe texts to be more general, there exist
some kind of defaults which tell us what
unlabled data is about. If you look at ads for
bikes, it seems like the only time you would
find any mentioning of the number of
wheels is when it is different from the
default 2-wheel. It would be interresting to
examine to what extent an information
extraction system needs to have knowledge
about such defaults and what influence
cultural differences have on this matter, but

there was no time to dwell deeper into this
area.

regular expressions sub language

In an attempt to maintain some order in the
chaos that emerged from testing a lot of
regular expressions and having cleanup or
transformation code that should be run after
a successful match I experimented with
creating a new regular expression definition
language. The main features are that such a
regular expression can

+ inherit from another regular

expression
define cleanup/transformation
« add things that must match

Example. Price pattern:

base pattern 'number_free'

'number_free' => {
'pattern’ => q{\b(\d+[\d., 1%)},
postprocessing’ => [q{=~s/(\s|\.)+//g}]

pattern 'rent' which inherits from
'number_free'
'rent' => {

'"ISA' => 'number_free',

'preceeded_by'=>q{hyra.*?}

pattern 'price' which also inherits

from number_free'
pr1ce = {
ISA' => 'number_f
}'fo11owed _by'=>q{ 7(kr\b| -1\/[md])}

First 1 define the pattern 'mumber free'
which matches a wide range of numbers
including “2 000” and “2.000”. I also define
a some post processing which removes
space or dot characters turning both “2 000”
and “2.000” into 2000

Then 1 create two sub patterns of
'number_free'. The first sub pattern is able
to match the kind of prices that are
preceeded by a label, as mentioned in
'Nature of ads'. It is called 'rent' and is a
'number_free' preceeded by the label 'hyra'.

The second pattern can match a price. It is
called 'price' and also inherits from

37

'number_free' and narrows the matching by
saying that ‘'price' is a ‘'number_free'
followed by a (Swedish) money unit.

Web interface

The web interface consists of a text box in

EMozilla Firefox

Eile Edit Wew Go Bookmarks Tools Help

=181

@-op- & @ @ [-<. hetp:11127.0.0.1:3000/statichingez htmi

Z Ce |

QU stumble! Al &) Ilkeitl (P Motfor-me | € b - | £ Menu~

Jag sdker en 2:ia. Jay vill inte att hyran
skall vara wer &n 5000

Extracted from cuery

Price criteria

Eeooms criteria
2:nd hand ok

PTICE OOIMS S1EE

2

bR ORY DD N2

[

500 2
30002
33002
35002
35002
4000 2
4200 2
4300 2
4500 2
4500 2
47522
47732

58

55

a9
50

34
42
53
57

64
72

EEFEEFEEFEEEEEEEEERE

5000
2

Figure 2 The web interface

the left side where the user can enter a query
and then press 'Submit Query' after which
the results will be displayed in the right part
of the browser. It is shown in figure 2.

The results page starts with displaying the
values that have been extracted from the
query and continues with displaying
information from the 'For rent' ads that
match the query. The web application was

created using the Catalyst[4] web
framework.

Evaluation

Scoring

I have used a simple way of scoring, namely

for each attribute to be extracted:
+1 for correct value
0 for incorrect value

The learning set has not been included in

these test runs.

For rent ads

The following table show the results for the
'for rent' ads.

attribute correct/ percentage
total correct
price 114/133 85%
number of 91/133 68%
rooms
size 113/133 85%

38

Wanted ads

The following table show the results for the
'wanted' ads

attribute correct/ percentage
total correct
price 109/115 95%
wanted 71/115 62%

rooms range

”Price” here is maximum price, "wanted
rooms range” is the number of rooms the
advertiser wants expressed as a range like 2
to 4”.

Comment

The closer you desire to come to

being able to extract all information
correctly using this method the more domain
and language knowledge you have to add to
the system.

This fact makes it not feasible to use this
method on a larger scale(across many
different domains). When building this
system I came up with the idea that it
would be nice to have a system which
discovers the patterns itself and that
maybe something like n-grams and manual
tagging could be used to find the
kind of labels I mentioned before.

This might be a

bit naive and would not solve the problem
for data that does not carry labels, but it
could be a starting point for diving into
this problem.

A simple example would be "The rent is
$500" and "The rent, including electricity,
is $1500". Having a corpus of such

39

sentences and the price tagged, you would
probably get "the" and "rent" as candidate
labels. The system could then try "the",
which would probably get too many false
hits since it is such a common word and
"rent" which would prove to be a good
candidate.

Something similar had already been done
and one example | found was the
AutoSlog[1] system which “automatically
builds dictionaries of extraction patterns"
and "uses an annotated corpus and simple
linguistic rules". Another would be the
TIMESJ2] system.

Conclusion

For a simple information extraction task
within one or few domains, handcrafting
patterns might be the right way to go. But as
the task grows larger and the domains
increase the need for more sophisticated
tools emerges like the aforementioned
AutoSlog and TIMES.

References

[1] Ellen Riloff: Automatically Constructing
a Dictionary for Information Extraction

Tasks(http://citeseer.ist.psu.edu/riloff93auto

matically.html)
[2] AMIT BAGGA, JOYCE CHAI and

ALAN BIERMANN: Extracting
Information from Text
(http://citeseer.ist.psu.edu/588088.html)

[3] Robert B. Doorenbos, Oren Etzioni,
Daniel S. Weld: A Scalable Comparison-
Shopping Agent for the World-Wide Web
(http://citeseer.ist.psu.edu/doorenbos97scala
ble html)

[4]Catalyst web framework
http://catalyst.perl.org/

http://citeseer.ist.psu.edu/doorenbos97scalable.html
http://citeseer.ist.psu.edu/doorenbos97scalable.html
http://citeseer.ist.psu.edu/588088.html
http://citeseer.ist.psu.edu/588088.html
http://citeseer.ist.psu.edu/riloff93automatically.html
http://citeseer.ist.psu.edu/riloff93automatically.html

40

Information extraction for classified advertisements

David FAURE
david.faure.401 @student.lu.se

1. Abstract

This report describes our work on the
project part of the course Language
Processing and Computational
Linguistics. It presents a java written
program that extracts six important
pieces of information from French job
advertisements. The inputs of the
system are advertisements taken from
the internet and converted as text files.
The results presented in this paper
show that the extraction mechanism is
reliable and robust.

2. Introduction

Everyone entering the job market knows
how time consuming the search for a job
is. The main contribution of this waste of
time is the time spent while reading the
advertisements in order to see if the
proposed job can fit with one’s
competences and requirements. From this
observation, we guess how useful a
program that extracts automatically the
interesting information from these job
advertisements could be.

This paper will present a java written
program whose role is to extract six pieces
of information from some internship
advertisements found on the Internet. The
six characteristics of interest for the
internships are: its subject (subject), its
duration (duration), the required study
level (studylevel), the company
(firm) and the place (city) where it
takes place and finally the date when it
starts (beginning).

Y|

Claire MORLON
claire.morlon.612 @student.lu.se

This paper is organized as follows: After
this short introduction, section 3 presents
the source texts that can be used with the
program, section 4 deals with the
functioning of the written java program.
The results obtained with this program as
well as its evaluation are presented in
section 5.

3. Source texts

The program was developed to extract
information from French advertisements.
The advertisements used throughout the
project were taken from the internet: at
first, we took them on some companies’
web sites. As some information were not
explicit in this case (the name of the
company was for example supposed to be
known), we finally chose to work with
“general” web sites for job advertisements.
The advertisements, chosen such that they
had at least two pieces of interesting
information, where then converted into text
files (.txt) in order to get rid of all web
formats (tables, headers ...). These files
were finally used as inputs for the java
program.

We used 15 advertisements as a working
set during the development of the program.
We then applied the final version on 14
other unread texts in order to evaluate the
program more objectively, and to measure
how independent from the texts the results
were. All these 29 texts were hand marked
to make easier the comparison between the
theoretical words of interest and those
found by the program.

4. The information
extraction program

1. Mechanism

The information extraction mechanism in
our program works in two steps:

¢ Division of the text into blocks

The first task consists in dividing the
text into smaller blocks corresponding
to the different pieces of information
(subject, beginning...), to make the
search of useful information easier and
quicker.

In order to do that, we first look for
keywords in the text, which will
delimit the different blocks. The
program runs through a list of
keywords, and performs pattern
matching for each of them.

For instance, let’s consider a text
composed by the sentence:

Nous recherchons deux futurs
ingénieurs pour une durée de
<duration>6 mois</duration> sur
notre site de production dans le centre
ville de <city>Quimper</city>.

Three key words are found in this
text : durée (duration), site (site) and
ville (city). The first one will thus
introduce a block where there is a high
probability to find an information of
duration. The two other ones are both
related to the city information; they
will thus delimit two blocks
corresponding to city. The blocks
obtained for this example are finally:

1. durée de 6 mois sur notre
2 . _site de production dans le centre
3. ville de Quimper.

Since several keywords can be found
for the same piece of information (such
as city in the example), all the blocks
corresponding to a same information
are stored into a table. Finally, we store

42

all these tables into a hashtable whose
keys are the different kind of
information that are looked for. The
final hashtable corresponding to the
example is represented in Table 1.

information blocks

duration | durée de 6 mois sur notre

site de production dans le

city centre

ville de Quimper

Table 1: Hashtable listing the different blocks
found in the example and the pieces of
information they are related to

The idea behind this system is to try
to isolate the relevant information to
avoid searching the whole text. But it is
also a good way to chose the better
solutions in a list of several
propositions, which leads to a better
accuracy. For example, if several
names of cities are present in the whole
text, a global search would normally
detect all of them. But then, how to
choose the one where the internship
really takes place? With our solution,
only the names detected in the blocks
related to city will be kept, as it’s
very likely that the relevant city is
mentioned in those blocks.

e Pattern matching

Secondly, the useful information has to
be detected in the relevant blocks. This
is done with pattern matching. The first
step of this stage consists in removing
the keywords at the very beginning of
the blocks. Then, for each piece of
information, we look for patterns inside
the corresponding block(s). If one
pattern matches, we keep it and store it
in a hashtable. The next section
presents some of the patterns used in
the program. If no pattern is found in
any of the blocks, the same pattern
matching is applied in the whole text,
in case the block division would be
inappropriate. It’s however good to

keep in mind that the patterns found in
the blocks give in general a better
accuracy than the ones found after a
search in the whole text.

Since several patterns can be found for
one piece of information, only the first
matched pattern is stored in the
hashtable. Indeed, the wuseful and
relevant information are often present
at the beginning of the advertisement.

The resulting hashtable
corresponding to the example is
represented in Table 2.

Information | Result
duration 6 mois
city Quimper

Table 2: Hashtable listing the final
results for the example

2. Some patterns used

Here are some examples of the patterns we
used to find the relevant information in the
blocks or in the text.

e In order to find the location of the
internship, we used an alphabetical
list of all the French cities. The
program runs through this list and
for each city, looks in the block or
in the text if it can find it.

e To find the beginning
information, one of the pattern we
used was “month 200[0-9]” where
month was one of the twelve
months of the year.

e For the studylevel information,
we took advantage of the French
system of qualification which has
the type {bac +number between 0
and 7} (Ex.: bac +5). We thus used
as pattern : “bac.{1,5}[0-9]”

e We noticed that the subject
information corresponds often to a
complete sentence introduced by a

€«

subject keyword (“sujet :

43

¢

“intitulé : “, ...). Therefore, we
took the first sentence of the
subject block if there is such a
block, or the first sentence of the
whole text in the opposite case.

e To find the duration
information, we used the pattern
“[0-9].mois” (where “mois” means
month in French).

e To find the name of the company,
we took the first line of the firm
block, the name included in the
email address (pattern: "@(.*?)\\."),
or in the web address (pattern:
"(Wwww\\)(.+)(\\.comI\\.fr)").

5. Results

In order to have a quantitative evaluation
of the performance of our program, we
computed two parameters (precision and
recall) for each of the six desired pieces of
information.

The precision gives an evaluation of the
correctness of the proposed instances; it is
defined by:

Precision = nbr of instances proposed correctly

nbr of proposed instances

The recall measures how well the program
finds what was expected; it is defined by:

__nbr of instances proposed correctly

Recall - -
nbr of instances possible to find

1. Results for the working set
of texts

The precision and recall average values for
each piece of information obtained with
the 15 texts of the working set are
presented on Fig. 1 and Fig. 2.

We can notice that the city and the firm
information get good results (precisions
over 80% and largest recalls). For the firm
information, this can be explained by the
fact that the name of the company is often
well isolated in the advertisement and
introduced by regular keywords; thus our
system of blocks works quite well for this

information. For the city information, this
shows that the use of the city list is very
efficient.

Precision

OO0 O0OO0O0OOOOO

oL oLo0o0o
O NWAUION®OO

Fig. 1: Precisions obtained with the 15
working texts for the 6 parameters of interest

Recall

0,90

0,80

0,70

0,60 -
0,50 ~
0,40
0,30 -
0,20 -
0,10 ~
0,00 -

Fig. 2: Recalls obtained with the 15 working
texts for the 6 parameters of interest

The other parameters get less good results
mainly because of the difficulty to isolate
and delimit very precisely the correct
answers. Indeed, when we have a look to
the proposed instances, we notice that the
program sometimes proposes either only a
part of the correct answer or a bit more
than it.

Fig. 3 and Fig. 4 represent two lightly
modified versions of the precision in order
to quantify more precisely the amount of
“inexact” answers.

In the case of precision 1, an answer is
considered as correct if the instance
proposed by the program contains the
theoretical value. We see on the graph that
only the subject information is concerned
by this case. Indeed, it’s easy to find the

44

beginning of the subject (with
keywords) but difficult to know where it
ends. Consequently, the program
sometimes takes more words that needed.
At the opposite, precision 2 is obtained by
considering an answer as correct if the
instance proposed by the program is
included in the theoretical value. In this
case, the information studylevel,
duration and beginning are
concerned, especially because the pattern
matching system is too rigid.

Precision 1

L0000 ~
O NWAUDHNXOOD
Soo0o0SSoood

&
& "SQ

& W

& & &

Fig. 3: Precisions obtained if “unprecise”
solutions are accepted

Precision 2

Lo o0000
OS2 NWATDN OO
[sISi=<T-YYoToRo=T]
L

) & " O
& S RS &
& &
¥ 4

Fig. 4: Precisions obtained if partial solutions are
accepted

ror Instance, IOr 1N€ Deginning
information, the program finds “janvier
2006” when the expected answer was “fin
janvier 2006”. Likewise, the study levels
Bac +4/+5 are partially detected (we only
obtain Bac +4). However, a more precise
pattern matching system which could have
improved the results and detected those
kind of missed words would have be too
“hard wired”. It was indeed very difficult

to find general rules that could have taken
into account those exceptional cases.

2. Results with new texis

When applied on unread texts, the program
gives the results on Fig.5 and Fig. 6. The
results obtained with the new texts are
plotted in green on the graphs, while those
considered previously are still in blue.

Precision

L0000~
O NWRUIONPOO
S000O0OS0S0d

Fig. 5: Precisions obtained with the working
texts (blue) and the unread texts (green) for the
6 parameters of interest

Recall

0,90
0,80
0,70
0,60 -
0,50 -
0,40
0,30 -
0,20 -
0,10
0,00 -

Fig. 6: Recalls obtained with the working texts
(blue) and the unread texts (green) for the 6
parameters of interest

We can notice that the results are very
similar, at least on average: some pieces of
information obtain larger precision and
recall with the working texts, whereas
others have better results with the new
texts. This shows that the results are quite
independent on the texts, and this can
prove than our program is robust enough to
be applied on unknown texts.

45

The small differences in the results for the
two sets of texts are probably due to the
fact that we used in fact a small amount of
texts, for both development and evaluation.
The results would consequently be much
more reliable if a larger amount of
advertisements was used.

6. Conclusion

According to the results, the program that
we implemented is reliable enough to get a
good overview of a French job
advertisement. However, all the useful
pieces of information are not always found,
especially because each advertisement has
its own format. It’s therefore very difficult
to establish general rules for pattern
matching. Some improvements, such as
taking advantage of the HTML format
(exploiting the tables to delimit easier the
blocks, using headers to find the most
important information such as subject and
company,...), could have been done if we
had more time.

References

Hugo Etiévant 2004. Expressions

régulieres en Java avec I’API Regex
http://cyberzoide.developpez.com

46

Informationsextraherare — Olrecensioner

Hugo Forss och Henning Noén

1 Introduktion 1.2 Oltermer
1.1 Prolog Ett 0l bedoms efter fyra egenskaper: utseende,

Nar det har projektet paborjades sa var vart syfte?rom’ smak och gomkansla. Utseende handlar om

. X . argen pa vatska och skum, huruvida vatskan ar
att skriva en informationsextraherare. Att det blev, gen p . -
. . . N o . o klar eller grumlig och om skummet ar tjockt och
for just Olrecensioner beror framst pa tva aspeks;, . . o
o langlivat eller inte. De tre smakerna ar sott, surt
ter. Dels var det ett personligt intresse - det var . . .
N . . eller beskt (6l brukar i regel inte vara salt). Arom
en chans att lara sig mer om olkultur och attar det vi tar upp med nasan och brukar allt som
fa utveckla ett verktyg som faktiskt kunde vara PP

R N . oftast kallas for smak det ocksa. Har handlar det i
anvandbart. Dels fanns det en begransat man . L I
~orsta hand om att fri association och darfor finns

information att hamta och en begransad vokabular, o
det ocksa en narmast obegransad mangd ord inom

(en sanning med viss modifikation).
) S ol . denna kategori. Gomkansla ar slutligen huruvida
Det forsta problem vi stalldes infor var att finna ,

en korpus som var stor nog. Vad vifann var en sida?Iet upplevs som torrt, oljigt, stickigt med mera.
vid namn Sidan RateBeer.com. Den kan i princip2
ses som en gigantisk databas med olrecensioner,

skrivna av sidans medlemmar, sorterade under re2.1 Forberedelser
spektive ol. Att det dé_lrmed redgn_ framgér viI_ketEtt Perl-script loggar in pa sidan RateBeer.com
Ol det ar fragan om gjorde att vi fick mindre in- och hamtar samtliga recensioner for ett givet 8l

formation att forsoka plocka framh andra sidan paserat p& dess id-nummer. Darefter snyggar ett

gav det oss material nog att prova en annan ide 4nnat script recensionerna och utfor inledande tag-
att sla samman informationen fran de olika receNgning

sionerna och fa fram den allmanna uppfattningen
om varje ol (och i slutanden fa fram nagot liknande2.2 Regler

posterna i Systembolagets kataloger). _ Parsning och taggning skots av SloppyTagger.
Vidare gav sidan mycket nyttig information i pegan i ett tidigt stadium bestamde vi oss for

form av artiklar om &lprovning for nyborjare samt 4 jnte anvanda ordklasstaggning. Istallet arbe-

en nyborjarvokabular som for 0ss utgjorde en ypya; taggern i flera pass dar den matchar och tag-
perlig startpunkt. Vad vi genast noterade var

F X X gar allt mer komplexare strukturer. Reglerna ar
att vokabularen var uppdelad enligt 4 olika kat-gyrina med en regex-inspirerad syntax som later

egorier. Da manga av recensionerna snyggt 0Cflsq matcha bade klartext och xmi-taggar samt att
prydligt tog upp kategorierna en efter en foll detinfoga nya taggar pa valfri plats i de matchade
sig naturligt att forsoka fanga in hela langre frag'sekvenserna

ment innehallande ord tillhorande samma kate-
gori. 2.3 Ord
| det forsta passet taggas de ord som vi har

definierat i var ordlista. Dessa kan delas in i fyra
kategorier:

Informationsextrahering

47

e Kategoriord ar ett ord eller monster som2.5 Fragment

anger kontext, Fragment ar ytterligare ett satt att forstarka or-

o Nyckelord r ord som bar p& information. De dens kontext. Har taggas sammanhéngande sjok
flesta nyckelord kan Klassificeras direkt i or- @V redan taggade ord som ofta inleds eller avslu-
dlistan, men nagra - speciellt farg - blir helt tas med ett kategoriord. Dessutom hanger vissa

beroende av kontext. kategorier naturligt samman och aterfinns ofta till-
sammans atskilda av ett lankord. Andra separeras
e Modifierare ar ord som mer naturligt av meningsgranserna.

(forstarker/forsvagar/inverterar) ett ny- Dessa regler kommer inte att finna nagra nya
ckelords betydelse. De kan ocksa anvandagyckelord, tvartom anvands de for att plocka
for att hitta okanda nyckelord. Modifierare ar bort enheter som inte ingar i nagot fragment och
egentligen valdigt svara da det for det mestasom darfor kan ha taggats felaktigt. Fragmenten
inte gar att gissa recensentens intentionanvands ocksa for att I6sa vissa oklarheter. Ex-
Eftersom vi inte vet om en modifierare syftar empelvis genom att skilja de farger som beskriver

pa ett eller flera ord s& delar vi helt enkelt in glets kropp (sjalva vatskan) fran de som beskriver
dem i tva kategorier, de som star fore och degess skum.

som star efter sitt nyckelord.

. . . 2.6 Sammanslagning
e Lankord ar alla typer av bindeord. De hjalper

ytterligare vid kontextbestamning. Ett problem med sprék som engelska ar dess
manga bojnings- och avledningsformer. Pa nagot
En lockande tanke vore att helt slopa ordlistan s&is ska de olika formerna raknas samman. En-
nar som p& kategoriorden och darmed lata proklast ar att utnyttja storleken hos véar textmassa. |
grammet sjalv identifiera nyckelord. Men s& somen speciell ordlista finns ett antal kanda andelser
informationsextraheraren ursprungligen var tankkngivna. Orden matchas mot de olika andelserna
att fungera behdvde vi kunna ange betydelser fosom isafall plockas bort/ersatts med sin grund-
flertalet ord (som modifierarnas vikter). form. Det nya 'hypotetiska’ ordet testas darefter
| vissa fall finns en sa pass liten och val ved-mot textmassan for att se om det forekommer
ertagen vokabular att vi bedomt det onddigt atihdgonstans.
leta efter ytterligare uttryck. Ett annat skal kan Ay de ord som taggats och klassificerats valjs de
ocksa vara att det rader en tydlig relation mellanmest frekventa ut. P& sa satt kommer en stor del

de olika orden. Farger ar ett tydligt exempel ochay alla felklassificeringar att sorteras bort.
modifierare an mer sa. | var ursprungliga design

placeras dessa pa en slags skala och i slutandenzr Utvardering
det tankt att informationsextraheraren ska presen-

tera ett slags genomsnitt av dessa varden. For att kunna beddoma hur pass val informationsex-
traheraren fungerar sa har vi for hand plockat ut
2.4 Enheter information ur ett flertal ol. Tvé jamforelser gors:

Nyckelord och modifierare bildar tilsammans en-dels dvergripande proportionerna falska positiver
heter dar nyckelordet anger grundbetydelse ochch negativer, dels hur m&nga av de topprankade
modifieraren ordets vikt. Enheterna forenklar panyckelorden den lyckas pricka ratt.
manga satt kommande steg. Dels ger det oss Ovanstaende tabell visar ration for antalet falska
mojligheten att placera nyckelord tillhérande mernegativer (sddana vi inte taggat men som vi borde)
specifika kategorier i enheter med mer generellaamt falska positiver (sadana vi felaktigt taggat)
namn. Med detta uppnar vi att vi pa ett enkeltfor testet mot varan testmangd. Fler falska nega-
satt kan matcha ord fran olika kategorier med ertiver an positiver tyder pa att vara regler ar alltfor
gemensam regel. strikta och borde skrivas mer generella. Kategori-
Med enheternas hjalp kan vi ocksa tagga kringerna palate, head och body lider av att det ar ratt
liggande ord. Manga ganger ar recensionerna byda recensenter som tar upp dem i sina recensioner.
gda som upprakningar av olika egenskaper oclbe kan ocksa ses som mer abstrakta an de andra
darfor ar det naturligt att misstanka att intillig- kategorierna. Vad farg, smak och arom betraffar
gande ord ocksa kan vara nyckelord. sa brukar recensenterna vara betydligt mer ense.

48

Kategori Falska Negativa Falska Positiva
AROMA 0.602 0.061
FLAVOUR 0.767 0.029
PALATE 0.388 0.511
HEAD 1.289 0.130
BODY 1.308 0.111
HEADCOLOUR 0.256 0.400
BODYCOLOUR 0.366 0.516
TOTAL 0.611 0.157

Som man ser sa ar precisionen inte sarskilA Anvandarhandledning

upplyftande om man inte plockar fram ma- .
joritetsvardena. For att systemet skall fungera maste man skapa

Ovanstaende tabell visar pa precisionen nar \iva underbibliotek fran dar man har programmen;
enbart tar med majoritetsvardena for kategoriernd, €Vi @ws - har hamnar alla recensioner man
Varje kategori har med sitt majoritetselement utorrfnkar hem, dopta efter dlet. Tom detta bibliotek
aroma som har med sina 3 storsta majoritetselghellan korningama eller tag och anvand en
ment.Okar man antalet majoritetselement till fyra 0ackup mellan momenten om du vill kora flera
far vi 92% precision samt 87% for 5. Sammaganger da alla programmen utaonpar er . pl
monster som syntes ovan kommer tydligare franPCh stats. pl ar destruktiva och forandrar
nu nar vi bara har majoritetselementen. Head sanipnehéllet i detta bibliotek
Palate har vi vissa problem med och Body sonf' €Vi ews - har skall alla handtaggade data

bade ar ganska ovanligt i beskrivningarna sam#992, dopta efter olet methNORKED i slutet av
saknar tydliga monster for beskrivningen har vinamnet.

valdigt daligt resultat pa.

4 Slutsats A.1 autologin

Vi har inte natt fram till vrat slutmal, att produc- Ut ol ogi n. pl - autologin ar en automatis-
era kort lasbar sammanfattning av dlet men frarfrad recensionsinsammlare for var databas (rate-
vara resultat s& bor det inte vara nagra storre prot2€er.com). Programmet tar ett eller flera argument
lem. Det som t ex systembolaget brukar ha med form av idn for 6let man vill hamta ner. Man kan

ar tre-fyra aromer, farg samt flavour. Dessa visaPVen begransa sa att programmet bara hamtar ner

ovanst&ende att vi med god sannolikhet kan plockg€n forsta sidan genom att som forsta argument
ut ur en tillrackligt stor mangd recensioner. Det@nvanda- f. Autologin anvander ett hardkodat

finns dock mer att gora. Vikter for modifierare och @nvandarnamn och lésenord till ratebeer.com men

farg bor kunna tas in for att ge mer nyans och preman kan enkelt andra det genom att andra vari-
cision i beskrivningen. Férbattringar av matchn-ablernasuser name samt$passwor d parad 12
ing av Body, Head samt Palate bor kunna gorad€sp- 13.

Var bristfalliga suffix-hantering borde bytas ut)

mot en riktigt transducer, anpassad for den typ af™2 formatreviews

nagot kaotiska data som vi jobbar med, vilket an{ or mat r evi ews. pl - formatreviews format-
tagligen Okat precisionen annu mer. Vi anser aterar, rensar och bygger xml-trad av den raa datan
med viss anpassning sa skulle varat system kunrngom autologin har tankat hem. Programmet tar
koras mot en levande recensionsdatabas for 6l odhga argument.

automatiskt plocka fram majoritetsuppfattningen

av de mer populara kategorierna med tillrackligtA.3 sloppytagger

stor precision for att vara intressant. N oppyt agger . pI _ sloppytagger Ar sjélva

taggaren som tar som argument filnamnet for en
regelsamling och tillampar den pa recensionerna.
Generellt kor man detta program i flera pass med

49

Kategori Top X element Andel ratt
AROMA 3 100%
FLAVOUR 1 100%
PALATE 1 50%
HEAD 1 50%
BODY 1 33%
HEADCOLOUR 1 100%
BODYCOLOUR 1 100%

olika regelsamlingar for att pa sa satt fanga meA.7 Exempelkdrning 1

och mer komplexa monster. Vi plockar hem ett sex stycken dlsorter och kor

dem genom hela systemet for att avsluta med att

A.4 collector : . i
skriva ut en sammanfattning om dem.;

col | ector. pl -collector samlar ihop data fran

de taggade recensionerna och stoppar in dem i de

olika kategorierna. Formatet ar detsamma som de

handtaggade recensionerna ar i sa detta ar slutpro-

dukten av sjalva insamlingen av information. Col-

lector tar inga argument.

A.5 comparer

conparer. pl - comparer jamfor slutproduk-
terna fran reviews med de handtaggade fil-
erna. Programmet kraver att underbiblioteket
r evi ews innehaller alla de recensioner som finns
i crevi ews. Programmet tar inga argument och
skriver ut resultatet pa skarmen, olvis och kat-
egorivis och sedan ett slutresultat som avslutas
med det kryptiska TOP TOTAL. Nasta rad skriver
ut hur manga olsorter/filer som behandlats och
sedan 7 heltal som representerar de olika kategori-
erna. Vardena for hur manga majoritetselement
som skall vara med ar hardkodat till 3 for aroma
och 1 for resten och ordningen pa dem ar: aroma,
flavour, palate, head, body, headcolour, body-
colour. Varje heltal representerar hur manga ma-
joritetselement som stammer med de handtaggade
och for 100% sa skall alltsantal filer x
antal majoritetsel enent vara lika med
vardet som skrivs ut. En nolla innebar att inga
matchade. Progrmmet ar inte destruktivt s man
kan kora om utan att skyddaevi ews eller
Crevi ews.

A.6 stats

st at s. pl - stats skriver ut en sammanfattning
for vilkka ord som klassats i vilken kategori for
varje 6l som finns taggat. Programmet tar inga ar-
gument och och ar inte destruktivt sa det kan up-
prepas utan att man behodver skyddavi ews

50

$>./autol ogi n. pl 12492 32111 36624 51539 6115 8484 &&
./formatreviews.pl && ./sloppytagger.pl ordlista &&
./ sl oppyt agger. pl enheter && ./sloppytagger.pl kandi dater &&
./ sl oppyt agger.pl fragnment && ./collector.pl && ./stats.pl

Cememmmme-- Val | ey_Br ew_Uber hoppy_I PAWORKED ---------- >

AROVA: hops(10) malty(7) al cohol (5) caranel (4) toast(3) hoppy(2) resin(2)
woody(1) ginger(1l) yeasty(1l) lenon(1l) grass(1l) chocolate(1l) floral (1)
citrus(l) fruity(1)

FLAVOUR: sweet (5) bitterness(2) bitter(2) sweetness(1l)

PALATE: bodi ed(3) carbonation(3) thin(1l)

HEADCOLOUR: tan(2) white(l) yell ow1)

$>_

A.8 Exempelkbrning 2

Efter att vi kort exempel 1 sa vill vi jamfora
resultatet mot de handtaggade filer vi har, som
rakar stamma precis med de o6lsorter vi har tankat

hem och jobbat med;
$>. / conpare. pl

Cememmmme-- Val | ey_Br ew_Uber hoppy_I PAWORKED ---------- >

<--- AROWA --->

MATCH. 30 mal t (6) al cohol (4) hops(4) toasty(3) hoppy(2) resin(2)
woody(1) yeasty(1l) ginger(1l) caranelly(1l) grass(1l) chocolate(l) floral (1)
citrus(l) fruity(l)

F NEG 55 hops(6) hop(4) caramnel (4) grapefruit(3) caranelly(3) pine(3)
citrusy(3) malts(2) bready(1l) piney(1l) mlk(1l) spice(l) mango(1l) tropical (1)
resi ni ousness(1) anmarillo(1l) orange(1l) cookie(1l) gingersnap(1l) malt(1)

al cohol (1) peppery(1l) grassy(l) flesh(1) blackberryish(1l) grassiness(1l)

mal tiness(1l) grapefruity(1) spiciness(1) juiciness(1l) berryish(1l) cascade(1l)
roastiness(l) papaya(l) rye(1)

F PCs: 4 resin(2) lenmon(l) citrus(1)

fal se negative rate: 1.618, false positive rate: 0.047

<--- FLAVOUR --->

MATCH. 7 sweet (3) bitter(2) sweetness(1l) bitterness(1)
F NEG 3 sweet (2) bitterness(1)
F PCs: 1 bitter(1)

<--- BODY --->

fal se negative rate: 1.308, false positive rate: 0.111
<--- BODYCOLOUR --->

fal se negative rate: 0.366, false positive rate: 0.516
<--- TOTAL --->

fal se negative rate: 0.611, false positive rate: 0.157
<--- TOP TOTAL --->

of 6 files: 186 33266

$>_

51

52

Dependency Parsing

Johan Hellstrom and Tan Kumlien

January 23, 2006

Abstract

This paper presents an implementation of a deterministic parsing al-
gorithm for dependency grammar in Swedish Natural Language. The pur-
sued implementation is based upon the Java programming language and
not Perl or Prolog commonly used in this field of research. This project
constitutes a part of the undergraduate course Language Processing and
Computational Linguistics by the department of Computer Science, Lund
University.

1 Introduction

An essential part of processing natural language is to properly understand and
determine the hierarchy of dependence. This means, given an arbitrary sentence,
to find the main word and how all the other words come to depend upon this
one word. The main word by convention or almost without exception turns out
to be the main verb or the most central proper noun, and the dependences to
this word naturally can be expressed as a tree structure. In this structure the
main word is elevated to the root of the tree allowing for two branches, left and
right, designed to express the dependencies of the words found on either side,
still maintaining the original order of words, creating sub-trees for dependencies.

2 The Model of Our Parser

The art of dependency parsing of Swedish texts has been expertly explored by
Joakim Nivre [2], and it was his work on parsing which inspired us to implement
a similar parser designed in Java, not Perl or Prolog which most often is selected
for natural text parsers today.

2.1 Nivre’s Principal Parser

The principles of this kind of parser was developed by Joakim Nivre', and has
many similarites to the basic shift-reduce algorithm for context-free grammars?
The principal parser make use of a rule set composed of suggested word class
pairs ordered in expected frequency and four methods; Right-arc (RA), Left-arc
(LA), Shift and Reduce as presented in table 1.

Lprinciples and outline by Nivre [1].
2extensively defined by Aho et al [4].

53

Initialization (nil, W,)

Termination (S, nil, A)

Left-Arc (n|S,n'|I, A)y — (S,n'|I, AU {(n',n)}) LEX(n) « LEX(n') € R
-3In" (n",n) € A

Right-Arc (n|S,n'|I, Ay — (n'|n|S,I,AU{(n',n)}) LEX(n) — LEX(n') € R
-In"(n",n") € A

Reduce (n|S,I,A) = (S,I1,A) In'(n',n) € A

Shift (S,n|I, A) = (n]S, I, A)

Table 1: Formal description of Nivre’s Parser [1]

3 Implementation Outline

For a matter of practicality, offering attractive possibilities of reuse and cus-
tomizing, the parser application is actually composed of three semi-independent
parts, intended to be executed in sequence. The source text, a fully annotated
collection of Swedish natural language called "Talbanken MALT" [6], first was
processed to determine the frequency of different pairs of word groups appearing
in typical. The 100 most frequent, in ascending order, were selected as set, of
rules, considered to well enough represent typical Swedish natural language in
general. Next, the parser principles of Joakim Nivre were consulted [1]. While
using an unaltered syntactic approach we introduced different choices of classes,
native or optimized for Java performance. Our parser made use of the annota-
tion tagging offered in the text-source as far as word classes were concerned, but
ignored the sentence structure tagging during this phase. Finally, the outcome
of our parsing was compared with the previously neglected sentence structure
tagging available in the source text. Statistics were created based upon word
correctness and full sentence completeness.

3.1 Rule Extraction

The rules used in the parser are a list of pairs of word classes ordered by how
frequently they occur. By pre-parsing the entire source of natural text for every
single pair of words and keeping score of what combinations of word classes is
most frequent, the most proper account of how frequent word pairs in typical
Swedish language are is obtained. This list will control the order in which word
class combinations are considered as well as determine the time effectiveness of
parsing since the list will be consulted top-to-bottom until the specific pair is
matched or else the search will fail

3.2 Parsing Dependencies

The basic implementation consists of four different operations, in order they
are: Left-Arc, Right-Arc, Reduce and Shift. In our implementation we added
a extra top priority shift operation that makes sure that there are elements on
the stack.

First construct a string from the word classes involved, elements: the first
element on the stack and current element.

Here is some documented pseudocode, this is all done in a iterative way, this
the continue statements below.

54

if stack.isEmpty then:
shift

Left-Arc:

if stack.peek.isDone is false then:

if tmp in rules_left then:
stack.peek.setDone_LeftArc
stack.pop
continue
else:
if element in rules_root then:
stack.peek.setDone_Root
stack.pop
continue

Right-Arc:

if stack.peek.isDone is false then:

if tmp in rules_right then:
element.setDone_RightArc
stack.push element
continue
else:
if element in rules_root then:
element.setDone_Root
stack.push element
continue

Reduce:
if stack.peek.isDone is true then:
stack.pop
continue

Shift:
stack.push element

/*if the element hasn’t been handledx*/

/*if it’s in the list of rules
/*the element is a left arc
/*remove the element from the stack
/*continue the iteration

/*if it’s in the list of rules
/*the element is a root element
/*remove the element from the stack
/*continue the iteration

*/
*/
*/
*/

*/
*/
*/
*/

/*if the element hasn’t been handledx*/

/*%if it’s in the list of rules
/*the element is a right arc
/*push the element to the stack
/*continue the iteration

/*if it’s in the list of root rules
/*the element is a root element
/*push the element to the stack
/*continue the iteration

*/
*/
*/
*/

*/
*/
*/
*/

/*If the element on the stack is donex/

/*then remove it
/*continue the iteration

/*push current elementto the stack

Each rule continues the iteration and thus terminates any additional parsing

done.

3.3 Correctness Evaluation

Since the source text is fully annotated, even when sentence structure is consid-
ered, the process of determining the correctness of the parsing is simply a matter
of processing the source text yet another time, comparing the parser’s findings
with the tags of annotation. Since the annotation is available word-by-word,
the correctness statistics can be calculated by word as well as by sentence

55

*/
*/

*/

4 Results and Conclusions

By parsing the corpora, keeping score of the occurrences of word class pairs,
we select the top 100 of these for rule set. This is then used in the Nivre style
(Left, Right, Reduce and Shift) dependency parser. When a correctness score
parse finally is performed, our findings are that 70,515 words from the corpora
of 103,939 words are correctly determined. This would then give an average of
67.84%. For the completion of entire sentences, in essence a 100% correctness
of words per sentence, the result is the somewhat modest count of 546 out of
6,316 sentences, or 8.64%.

5 Comments and Future Improvements

We need to point out that no further guides or pre-processing steps were taken,
besides the general top 100 pair-of-word-classes statistics.

Further improvements, would surely be made by recognizing subclasses of cer-
tain word classes, say for instance making the parser sensitive to specific prepo-
sitions linked to certain verbs. But the path along this thinking is long and
by these steps the method is no longer as general as now is the case. Different
language parsers would of course have all different subclasses and the top-100
count would be even more dependent upon the nature of the training corpora.
By applying this subclass distinction, the results would improve at the cost of
narrowing the range of application.

Neither did the parse allow for different context recognition. Certainly, one
would not consider the often short-and-to-the-point chapter headlines to be
as fluent and be composed of as colourful language as the rest as the text. By
adding methods to make this distinction, one would in fact have even more valid
statistics from the word class frequency parse and probably raise the score. But
once more, general application would be sacrificed. The types of headline com-
position vary as the nature of the corpora does and also, most likely the trends
of headlining is different in different languages.

In our code there is a small race condition. If Right-Arc is triggered and we get
a Left-Arc right after, it can set the setDone_ right element to be root as well,
while this is intended behavior it still wrong. Any given sentence should only
have one root element. This is easily fixed with some post processing or better
rules, but it was not one of our goals due to time constraints.

6 Acknowledgements

We would like to thank Pierre Nugues for his patience and guidence during this
project, which initally was a challenge due to some confusion about the details
of the algorithm development. It was by invaluable guidence and much effort
the completion of this project came to be.

56

References

[1] Joakim Nivre (2003), An Efficient Algorithm for Dependency Parsing,
School of Mathematics and Systems Engineering, Véxjo University, 12 p.

[2] Joakim Nivre (2005), Inductive Dependency Parsing of Natural Language
Text, School of Mathematics and Systems Engineering, Vixjé University,
209 p.

[3] Pierre Nugues (August 2005), An Introduction to Language Processing with
Perl and Prolog, Department of Computer Science, Lund University, 544 p.

[4] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman (1986), Compilers: Prin-
ciples, Techniques and Tools, Addison Wesley.

[5] (1997), Stockholm Umed Corpus, Produced by Department of Linguistics,
Umea University and Department of Linguistics, Stockholm University.

[6] (1997), Talbanken MALT,
Available at Nivre’s website; http://w3.msi.vxu.se/ nivre/research /maltDT.html
(Certified jan 2006)

This paper was printed using BTEX 2¢.

57

58

Comparing methods for Coreference solving

By Jonas Henrikson, 2006

Abstract

In 2005, Magnus Danielsson created a coreference solver for a project called Carsim. The
purpose of this project was to automatically analyze news reports about traffic accidents,
extract the relevant details of the events in an accident, and recreate a simulation of these
events. In analyzing the news reports, an important part of the program is the ability to
understand when seperate references to e.g. a car or a person involved in the accident are
actually references to the same car or person; i.e. the ability to understand when coreference
occurs in the text. In the coreference solving program by Magnusson, the method used to
make final decisions of whether two nouns (or, more precisely, two noun phrases) are indeed
coreferential was the ID3 decision tree algorithm. The purpose of my project is to generalise
the code to make it possible to substitute the ID3 algorithm with other solver methods, so as

to be able to compare the efficiency and accuracy of different methods.

59

Original program structure

Instead of changing the coreference implementation in the actual Carsim program, I used an
evaluation version of the coreference solver. This evaluator selects a number of random
documents from a collection of accident reports, performs the coreference calculations, and
compares the results to manually identified coreferences. The final results are shown as three
percentages: recall, precision and the so-called f-measure. Recall is the percentage of how
many of the actual coreferences are identified by the solver, precision is the percentage of
identified coreferences that actually are coreferences, and the f-measure is a sort of mean

value calculated from the first two percentages.

The evaluator includes a lot of code for identifying noun phrases and their grammatical
features, etc, but fortunately most of these processes are carried out before the final result of
whether a pair of noun phrases are coreferential or not is calculated. Not that much of the
code was originally dependent on the decision tree algorithm, and most of the code
concerning the ID3 solver method were contained in a seperate directory: the “decisiontree”
packade. My first step was to identify what segments of code outside the decisiontree package

were specifically dependent on the ID3 solver.

First of all, the Evaluator class is where most of the central work is done, and this is where the
ID3 object was created. Each document used in the evaluation is represented in the Evaluator
by an instance of the CorefDocument class, and since this is where the information about the
noun phrases are stored as private vectors, and since these vectors are the data to be
“analyzed” by the decision tree algorithm, the Evaluator sent the ID3 object to each
CorefDocument object which in turn used a TreeExecutor object to execute the desicion tree
solver with regard to the noun phrases in the document. The TreeExecutor class was part of
the decisiontree package, and this class is where the final call to the ID3 algorithm occured, to

decide whether a given pair of noun phrases actually corefers or not.

So, in short, the only classes outside the decisiontree package which contained specific uses

of classes inside the decisiontree package were the Evaluator and CorefDocument classes.

60

My changes — Step 1: Generalisation

What I did first was to make the CorefDocument independent of the decisiontree package.
Instead of having a method in the CorefDocument class to which the Evaluator sent the ID3
tree, and which used the document’s private noun phrase vectors and the TreeExecutor class, |
added simple “get”-methods making it possible for the Evaluator to access the otherwise
private noun phrases, so that the uses of decisiontree package classes could be contained in
the Evaluator class. (See the appendix for specific examples of this and other changes to the
code.) By doing this, I could move the use of the TreeExecutor class to the Evaluator, and

hence the CorefDocument class became completely free of ties to the decisiontree package.

Next, I discoreved that a couple of the classes contained in the decisiontree package were
actually not specifically dependent on any of the other decisiontree package classes, and
therefore I moved them out of the package and put them among the rest of the standard
evaluator classes. These were the NPFeatureTransferer and ApplyHardConstraints classes.
Only one line was changed in each of these files: the first line of the file saying which

package the classes were part of.

Then I looked closer at the TreeExecutor class and noticed that this class was only minimally
dependent on the decision tree solver method. What was happening at this point in the
changes being made was that the Evaluator created an ID3 tree and a TreeExecutor, sent the
ID3 tree to the TreeExecutor, and the Treeexecutor at one (and only one) point in the code
asked the ID3 object whether a pair of noun phrases coreferred or not. What I did here was to
create a simple interface called CoreferenceSolver, and a simple class called TreeSolver
which implements the CoreferenceSolver interface. I moved the creation of the ID3 object to
the TreeSolver class, and I changed the TreeExecutor class so that instead of using the ID3
tree directly, it now used the CoreferenceSolver inferface. By doing this, the TreeExecutor
class became fully independent from the decision tree solver method, and because of this I
thought it to be apropriate to change the name of this class from TreeExecutor to
SolverExecutor, and to move it out of the decisiontree package and put it among the other
standard evaluator classes, just as with the NPFeatureTransferer and ApplyHardConstraints

classes mentioned above.

61

Now there was only one line left in the Evaluator class that specifically used the decision tree
solver method: the line where the TreeSolver object was created (which of course was
represented by and used as a CoreferenceSolver object in all other places). No other files
outside the decisiontree package now had any ties to the ID3 solver method, except the new

and simple TreeSolver class. Generalisation complete!

My changes — Step 2: Implementing another solver method

The alternative solver method I implemented was an SVM classifier. Only two things were
needed to make this work. First, a new class implementing the CoreferenceSolver interface
had to be created, which I naturally called SVMSolver, and second, the one line in the
Evaluator class which created a TreeSolver object was changed to instead create an
SVMSolver object. The only issue here was the difference in format of the input to the two
solver methods. While the ID3 solver method used two seperate vectors to build the decision
tree — one with positive examples of coreferences and one with negative examples — the SVM
solver method used only one vector to build the SVM classifier. This one vector had the same
content as both of the positive and negative examples combined, but with a boolean value in
the beginning of each example to flag it as positive or negative. Also, while the ID3 solver
used standard Vector objects, the SVM solver used ArrayList objects. I decided to handle this
type conversion in the constructor for the new SVMSolver class, so that nothing else needed
to be changed in any other class. Once this type conversion was implemented, the SVM solver
method fit perfectly into the program and could be tested and evaluated in exactly the same

way as the original ID3 solver method.

Results / Evaluation / Conclusion

To compare the two methods of coreference solving, I ran two Evaluations of each method.
One evaluation actually contains four iterations of the whole process, and shows a total result.

The resluts from these evaluations are as follows.

62

Recall Precision F-measure

Total results for ID3, 1°st and 2’nd run: 86.1% 81.6% 83.8%
Total results for SVM, 1’st run: 86.1% 79.6% 82.7%
Total results for SVM, 2’nd run: 85.3% 79.8% 82.4%

Interestingly, the results from the two ID3 evaluations were identical, even though the
documents used are randomly selected. I have no explanation for this. As you can see, the
SVM solver method can be equal to the ID3 solver method in terms of recall, although it
shows bigger variation in this value. When it comes to precision, however, the ID3 solver
takes the lead. This 2% drop in precision on the SVM’s part might look like very slight, but
this difference becomes much more striking when formulated as a 10% increase in incorrectly

identified coreferences.

Philosophical comment on coreference

In the philosophy of language, coreference remains a problem in the sense that it is difficult to
explicate just how coreference works and is comprehended by language users. However, it is
not a central problem. The question of what coreference is is not as problematic as the
question of how it works, and the latter question is of much bigger interest in computational
linguistics. Up to and including my candidate course in theoretical philosophy, coreference
has hardly been mentioned as a difficulty, while on the other hand you are probably already
aware that coreference is a very difficult problem in computational linguistics. Apparently,
there is a difference in how this issue is viewed within these two disciplines. In philosophy, it
is generally thought that the comprehension of coreference is highly dependent on a wide base
of knowledge about the world. In computational linguistics, by contrast, one usually tries to
find a solution by focusing on grammatical features and basic semantic category information.
Some mean that it is important to realize that while this approach is perfectly legitimate, a big

part of the problem remains unsolved.

63

Appendix — Relevant code segments

It is recommended that you are somewhat familiar with the source code when reading this

appendix.

Originally, the ID3 tree was created in the Evaluator class with these three lines:

ID3 id3 = new ID3(yesVector, noVector, "true", "false");
String generatedTree = id3.getResultTree() ;
DTreeNode treeInMemory = id3.getRootNode() ;

With the creation of my new CoreferenceSolver interface and TreeSolver class, these lines
were removed and replaced by the following line. This line is the only thing that needs to be

changed in the Evaluator class if one wants to switch solver methods.

CoreferenceSolver coreferenceSolver = new TreeSolver (yesVector, noVector) ;

To use the SVM solver instead, one would simply change the above line to this:

CoreferenceSolver coreferenceSolver = new SVMSolver (yesVector, noVector) ;

This method was removed from the CorefDocument class:

public void addToEvaluation (EvalMaker localEv, EvalMaker globalEv, DTreeNode treeInMemory) {
TreeExecutor t = new TreeExecutor (nounPhraseFeatures, treeInMemory) ;
Vector postiveChains = t.getPositiveChains() ;
localEv.addValues (chainsAsInts, postiveChains);

globalEv.addValues (chainsAsInts, postiveChains);

In its stead, these two methods were added:

public Vector getChainsAsInts() {
return this.chainsAsInts;

}
public Vector getNounPhraseFeatures() {

return this.nounPhraseFeatures;

Because of these changes to the CorefDocument class, this line was removed from the

Evaluator class:

doc.addToEvaluation(localEvaluator, globalEvaluator, treeInMemory) ;

64

...and was substituted by the following lines. Note that these are very similar to the contents of

the removed addToEvaluation method shown above.

Vector nounPhraseFeatures = doc.getNounPhraseFeatures() ;

SolverExecutor solverExec = new SolverExecutor (nounPhraseFeatures, coreferenceSolver);
Vector chainsAsInts = doc.getChainsAsInts();

Vector postiveChains = solverExec.getPositiveChains();

localEvaluator.addValues (chainsAsInts, postiveChains) ;

globalEvaluator.addValues (chainsAsInts, postiveChains) ;

Here is the very simple new CoreferenceSolver interface:

public interface CoreferenceSolver {

public boolean corefers (Vector features);

And here is the TreeSolver class which implements it. Again, note the similarities with the

first three lines mentioned in this appendix, which were removed from the Evaluator class.

public class TreeSolver implements CoreferenceSolver {
private ID3 id3;

private DTreeNode root;

public boolean corefers(Vector features) {
return ExecutingTree.corefers (features, root);
}
public TreeSolver (Vector yesVector, Vector noVector) ({
this.id3 = new ID3(yesVector, noVector, "true", "false");

this.root = id3.getRootNode() ;

The new SVMSolver class is a bit too big to be included in this appendix, while other changes
are too small to deserve mention. Please refer to the source code for further code reading

pleasure.

65

66

A compiler for phonological rules

Hans Jansson
Department of Computer Science, Lund University
Box 118
221 00 Lund,
Sweden,
hans.jansson.667@student.lu.se

Abstract

This is a report of an implementation of a com-
piler for phonological rules. The implementa-
tion processes files written in lexc (Karttunen,
1993) annotation and produces data suitable
for processing with SWI-Prolog (Wielemaker,
2005). The output is a transducer (a Mealy
machine, to be more precise), a finite-state ma-
chine which not only accepts but also translates
its input. Such machines can be used to per-
form spell checking, morphological analysis etc.
The project resembles the lexicon compiler from

Xeroxt.

1 Introduction

Implementation of a compiler for phonologi-
cal rules is nothing new. Xerox has already
a set of adequate tools for working with such
rules, these are, however, not open source and
the free of charge copy is limited and for non-
commercial use only. Yet, they have gained
popularity and thusly, their formalisms have
too. Other formalisms and tools for phonolog-
ical facts and rules (e.g., XML-annotated cor-
pora) exists alongside those from Xerox, even
some GPL-licensed ones such as SFST (Schmid,
2001)), but many suffer from a common mistake:
everyone likes standards, and thus a new such
is borned. This project aims to be a prototype
for a generic tool, able to generate descriptions
of transducers provided phonological rules and
easy to attach new front- and backends to.

2 Design

To achieve a modular, easily extendable com-
piler, I chose to build front- and backends
around a abstract model of a transducer con-
sisting of start node marker, nodes, labeled arcs
and end node markers. Unfortunately, I have al-
ready found a design flaw in the representation
of the nodes; they are objects, and as such exist

Hexc

67

uniquely in memory and are therefore already
easily distinguishable, but I added a unique non-
negative integer to each of them, usable only
in the final output. Such details are backend-
specific and should of course be implemented in
the appropriate backends. The needed correc-
tion is however quite small and has no impact
on the design as a whole.

3 Tools

The JastAdd (Ekman et al., 2005) package was
used in the implementation, simply because I
was already familiar with it. It was used on
top of JavaCC (Viswanadha, 2006), a Java com-
piler compiler, and it added advanced features
of which I only used the parts providing as-
pect orientation and abstract grammar. By
using aspect oriented code, no Visitor pattern
was needed to traverse the AST. The choice of
JavaCC turned up to be sinister; when I was
about to implement the lexc frontend I discov-
ered that JavaCC simply couldn’t tokenize cer-
tain parts correctly.

4 Frontend

There is only one frontend in the prototype ap-
plication, for lexc source files. The lexc for-
malism is fairly easy to parse, there is a catch
though: sometimes a string of characters should
be interpreted as one token and sometimes each
character alone should be considered a token.
This can be solved in two ways, by means of
scanner /parser co-operation, where the scanner
asks the parser for the correct interpretation, or
using a stateful scanner, where the interpreta-
tion depends on the current state of the scan-
ner. The first alternative gives no reliable re-
sult within JavaCC, because the scanner may
be several tokens ahead of the parser, and thus
a stateful scanner was made.

There are more quirks though. A normal
lexc file (see listing [1)) declares multicharac-
ter symbols before the lexicon part begins, i.e.,

strings of characters intended to be interpreted
together as a single token within the context
where these characters normally should be con-
sidered as several one-character tokens. Since
there are no characters reserved for marking
the start and end of such multicharacter sym-
bols, the only solution is to rely on the scanner’s
feature of choosing the longest possible match
when tokenizing the character stream. All you
have to do is to modify the symbol table of the
scanner by adding the new symbols as soon as
they are defined at the top of the source file,
and the scanner will do the rest as usual. But
because of efficiency issues, JavaCC constructs
new scanners as finite-state automata and no
symbol table is ever used. There is no way to
add new keywords to the scanner at runtime.
The suggested solutions to this problem is to
run JavaCC and compile a new compiler at run-
time (Viswanadha, 2004) (or simply implement
that part of the scanner by hand). I decided
to omit multicharacter symbol support in the
frontend.

The lexc notation includes regular expres-
sions, though they are not as frequently used
as the multicharacter symbols. The regular ex-
pressions forms a sublanguage by themselves
and while they play an important part in com-
pactly expressing complex parts of finite au-
tomata, I found the benefit of including sup-
port for them lower than the cost, since they
wouldn’t contribute significantly to the usabil-
ity of the prototype and yet require work corre-
sponding to that of implementing a whole new
frontend.

Listing 1 A simple lexc snippet
Multichar_Symbols +P1

LEXICON Root
dog Noun;

LEXICON Noun
+Pl:s #;
#;

Some pitfalls exists regarding the generation
of arcs and nodes from the lexc notation. As
listing (1l shows, an entry in a lexicon may have
no data and an end-of-word-token (“#7”). The
absence of data in an entry means that no arcs
will be generated. No arcs means no nodes
to mark as end nodes, which is a problem if
the end-of-word-token is encountered. The so-

68

lution is to always track the last node generated,
even if it originated in an other lexicon, and to
avoid generating nodes in advance, before it is
known whether they will be used. By storing
the first node each lexicon became connected
to, the problem of finding nodes from preceding
lexicon is solved along with another problem,
the detection of cycles in the transducer. The
first thing done when a lexicon is entered is to
store the previous node encountered, unless that
reference already points to a node, in which case
a cycle has been detected and the processing of
that particular lexicon should return (the lexi-
con has obviously been entered earlier).

5 Internal representation

The internal representation should as far as
possible reflect the transducer as mathematical
idea. In purifying it, the modularity of the com-
piler is preserved and the transducer becomes
available for optimizing algorithms. No such al-
gorithms have yet been implemented, but the
possibility to combine transducers for re-writing
rules with those handling lexicon is essential for
any practical use of a phonological compiler,
and a natural extension of the prototype pre-
sented would consist of algorithms for combin-
ing and optimizing transducers, together with a
frontend for re-write rules.

Figure 1 Abstract representation of a trans-
ducer

d:d 0:0 g:g +Pl:s
@ O O O
6 Backend

One backend has been implemented, produc-
ing Prolog predicates suitable for SWI-Prolog.
The intention is to load the predicates together
with a Prolog interface program bundled with
the compiler, but the external program could
have been included in the file with the pred-
icates without any problems. The predicates
consists of start node marker, arcs and end node
markers, more or less a pretty-printing of the in-
ternal representation. The node representation
has changed though, the interesting parts in the
transducers are the labeled arcs and very lit-
tle information is connected to the nodes, thus
there is no need to build predicates around the
nodes. These are instead represented by unique
non-negative integers.

When building a Prolog program from sev-
eral lexc files, it is convenient to allow several
different transducers in the same program, one
for each lexc file. To avoid mixing up the enu-
meration of the nodes, a Singleton pattern is
used, producing one single sequence of unique
integers during the run of the compiler. Alas,
this enumeration had been put in the internal
representation as mentioned above.

The backend simplifies the syntax of the out-
put to make it more readable. A general arc is
encoded as arc/4, with start node, end node,
lexical form and surface form being its argu-
ments. If an arc contains the same symbol in
both the lexical form and the surface form, it
is encoded as arc/3, where the two forms are
represented by one argument.

Note that multicharacter symbols is no issue
for the backend, if they exist in the internal
representation, they will show up in the Pro-
log predicates. On the other hand, the interface
program must be able to recognize these sym-
bols in the user input. A solution in this partic-
ular combination of frontend and backend would
be to store a list of the multicharacter sym-
bols in the internal representation or passing
them immediately to the backend, then encod-
ing them as predicates; multicharsymbol/1.
This would contaminate the internal abstract
model and break the modularity of the compiler.
A better solution would be to scan through all
arcs in the backend and construct the list of all
multicharacter symbols before encoding them
as before. This strains the Prolog interface;
it must find the longest match when tokeniz-
ing user input. It could be extended but that
would require unnecessary effort. Implementing
a new interface has its advantages, I am free to
choose whatever formalism I prefer, thus, I force
the user to surround each multicharacter sym-
bol with percentage signs, following the princi-
ple of KISS?. No need to encode any symbols as
predicates or juggle tokenization in Prolog, the
(relatively small) burden is laid upon the user
instead.

The user interface in Prolog provides three
predicates:

down(+Atom) finds all possible translations
of Atom from lexical (upper) form to sur-
face (lower) form and prints them.

up(+Atom) finds all possible translations of
Atom from surface (lower) form to lexical

?Keep It Simple, Stupid!

69

(upper) form and prints them.

listall lists all possible translations. It does not
work for transducers containing cycles, for
obvious reasons.

Listing 2 Prolog representation of a transducer

startnode(0).
arc(0, 1, °d’).

arc(1, 2, 0’).
arc(2, 3, g’).
arc(3, 4, ’+P1’, ’s’).

endnode(3).
endnode(4).

7 Conclusions

Starting with an optimistic idea about im-
plementing frontends for both lexc and twolc
(Karttunen and Beesley, 1992), I found out I
had to cut down on my ambition a bit.

The implementation of the backend and the
associated user interface turned out to be easy
to accomplish, mainly because I was able to
rely on Prolog’s backtracking instead of imple-
menting an engine on my own. The cost of
using backtracking is that speed is lost, even
if the transducer could be treated like a deter-
ministic machine, it will be treated like a non-
deterministic dito (which is slower).

The lexc formalism seemed straight-forward
to me, but as I soon discovered, it would have
been easier to implement a scanner of my own
rather than twisting and bending JavaCC for a
task it was not designed to handle. Needless
to say, I did not realize in the beginning that
regular expressions were a whole language on
their own.

It would have been interesting to test the ef-
ficiency of the compiler’s output by compiling
a huge database but that would require a new
frontend, I have not seen such a database in lexc
notation.

Some features which should be implemented
if the prototype is extended:

e Multicharacter symbol support in scanner.
e Regular expression support.
e Algorithms for combining transducers.

e Algorithms for optimizing transducers.

References

Torbjorn Ekman, Gorel Hedin, and Eva Mag-
nusson. 2005. Jastadd. http://jastadd.
cs.lth.sel

Lauri Karttunen and Kenneth R. Beesley.
1992. Two-level rule compiler. Tech-
nical Report ISTL-92-2, Xerox Palo
Alto Research Center, October. avail-
able at http://www.xrce.xerox.com/
competencies/content-analysis/fssoft/
docs/twolc-92/twolc92.htmll

Lauri Karttunen. 1993. Finite-state
lexicon compiler. Technical Report
ISTL-NLTT2993-04-02, Xerox Palo

Alto Research Center, April. avail-
able at http://www.xrce.xerox.com/
competencies/content-analysis/fssoft/
docs/lexc-93/1exc93.html.

Helmut Schmid. 2001. SFST. http:
//www.ims.uni-stuttgart.de/projekte/
gramotron/SOFTWARE/SFST.html.

Sreenivas Viswanadha. 2004. [javacc]
changing keywords at runtime. an-
swer in a support forum https:
//javacc.dev.java.net/servlets/
ReadMsg?list=users&msgNo=408.

Sreenivas Viswanadha. 2006. Javacc. https:
//javacc.dev.java.net/.

Jan Wielemaker. 2005. SWI-Prolog. http://

www.swi-prolog.org/.

70

http://jastadd.cs.lth.se�
http://jastadd.cs.lth.se�
http://www.xrce.xerox.com/competencies/content-analysis/fssoft/docs/twolc-92/twolc92.html�
http://www.xrce.xerox.com/competencies/content-analysis/fssoft/docs/twolc-92/twolc92.html�
http://www.xrce.xerox.com/competencies/content-analysis/fssoft/docs/twolc-92/twolc92.html�
http://www.xrce.xerox.com/competencies/content-analysis/fssoft/docs/lexc-93/lexc93.html�
http://www.xrce.xerox.com/competencies/content-analysis/fssoft/docs/lexc-93/lexc93.html�
http://www.xrce.xerox.com/competencies/content-analysis/fssoft/docs/lexc-93/lexc93.html�
http://www.ims.uni-stuttgart.de/projekte/gramotron/SOFTWARE/SFST.html�
http://www.ims.uni-stuttgart.de/projekte/gramotron/SOFTWARE/SFST.html�
http://www.ims.uni-stuttgart.de/projekte/gramotron/SOFTWARE/SFST.html�
https://javacc.dev.java.net/servlets/ReadMsg?list=users&msgNo=408�
https://javacc.dev.java.net/servlets/ReadMsg?list=users&msgNo=408�
https://javacc.dev.java.net/servlets/ReadMsg?list=users&msgNo=408�
https://javacc.dev.java.net/�
https://javacc.dev.java.net/�
http://www.swi-prolog.org/�
http://www.swi-prolog.org/�

Lemmatiserare for okianda ord

Boel MATTSSON
Lunds Tekniska Hogskola
Lund, Sverige

dO3bm@efd.Ith.se

Abstract

En lemmatiserare hittar grundformen for ett
bojt ord. Detta projekt har gar ut pd att gora en
lemmatiserare for okénda ord. En
klassificerare har anvéints for att Idsa
problemet.

Rapporten beskriver bakgrunden till problemet
och ger en kort beskrivning av hur en
klassificerare fungerar. Triningsméngder och
testméngder till klassificeraren har tagits fran
SUC-korpusen. Triningsméngder med olika
antal ord har anvénts.

Resultaten visar att fler ord i trdningsmingden
ger bittre resultat och att denna metod
fungerar bra.

1 Introduktion

Ibland stoter man pd ord som inte patréiffats
tidigare. I det svenska spréket kan man bilda
ménga nya ord genom t ex sammansittingar.
Orden krdm och bluffen kan sittas samman till
ordet krdmbluffen. Att hitta lemmat (grundformen)
till ordet bluffen &r enkelt eftersom bluffen &r ett
kdnt ord som finns i flera korpus. Detta géller
diremot inte for krdmbluffen.

Syftet med projektet dr att gdra ett program som
gissar lemmat for okédnda ord. Jag har begréinsat
mig till de 6ppna ordklasserna - substantiv, verb
och adjektiv — eftersom det &r i dessa ordklasser
nybildning av ord oftast sker.

Metoden for att ldsa lemmatiseringsproblemet
har wvarit att formulera det som ett
klassificeringsproblem. Det innebér att ett ord som
krdambluffen betraktas som ett ord som tillhér den
klass dédr man ska ta bort dndelsen "-en” for att fa
lemmat krdmbluff. Syftet har varit att undersoka
om detta angreppssitt dr lampligt.

Denna rapport ar upplagd pd foljande vis.
Avsnitt tva beskriver vilka hjdlpmedel jag anvint
mig av. Avsnitt tre gar igenom implementationen
och metoden jag anvént. Resultat och slutsatser
aterfinns i avsnitt fyra respektive fem.

2 Hjilpmedel

I projektet har jag anvént mig av en annoterad
korpus och en statistisk klassificerare.

2.1 Korpus

Den korpus jag anvénder d&r SUC (1), Stockholm
Umed Corpus, som bestar av 1 miljon ord. For
varje ord finns information om bojd form, ordklass
och lemma. (se Tabell 1).

Sarskilt ab sarskilt
smygrustningen nn.utr.sin.def.nom smygrustning
vad ha vad
giller vb.prs.akt gilla
missiler nn.utr.plu.ind.nom missil
oroar vb.prs.akt oroa

mad

71

Tabell 1: Utdrag ur SUC-korpus

Texterna i SUC &r skrivna under 1990-talet och
hidmtade frén olika genrer.

2.2 Klassificerare

En klassificerare dr en funktion som givet ett
antal inparametrar ger en klass t ex “en->0" i fallet
krdmbluffen. For att skapa en klassificerare har jag
anvint mig av programmet LIBSVM (2) och
hjélpprogrammet SimpleSVM (3). LIBSVM tar in
ett antal exempel, trdningsméingd, och anvénder sig
av en statistisk algoritm fOr att generera en
klassificeringsfunktion som passar sd bra som
mdjligt med en tréningsméngd. Hjélpprogrammet
SimpleSVM forenklar anvéndningen av LIBSVM.

3 Implementation

krdmbluffen

il

SuC- Statistisk ::> “en->0"
LIBSVM [— en

korpus klassificerare

Figur 1: Oversikt 6ver implementationen

Figur 1 visar hur SUC-korpusen, eller rittare
sagt delar av den, anvénds som trdningsméngd till
LIBSVM f{or att trdna en klassificerare. Déarefter
visas att en klassificerare skapas. Klassificeraren
kan sedan anvéndas for att klassificera ett valfritt
okdnt ord. SUC-korpusen har i projektet &ven
anviants som testméingd. I nedanstdende avsnitt gér
jag nérmare in pé varje steg.

3.1 Tréiningsmingder och Testmiangd

Som triningsmdngd och testméngd har jag
anvint ett blandat urval ur SUC bestdende av
substantiv, adjektiv och verb. Testmidngden bestér
av 50 000 ord. Traningsméngden har bestatt av
mellan 1000 och 10 000 ord. Féljande storlek pd
triningsmangden har anvénts:

e« 1000 ord

e 2000 ord

5000 ord

« 10000 ord
3.2 Inparametrar

For varje ord i triningsméngden behover
LIBSVM den korrekt klassificerade klassen — for
ordet smygrustningen dr den “en->(” — och ett
antal inparametrar. Jag har anvént foljande sex
inparametrar:

* Ordets suffix upp till fem bokstéver

* Ordets ordklass
P& formatet som hjélpprogrammet SimpleSVM
anvénder blir indata for ordet smygrustningen:
en>0|nlen|gen|ngen|ingen|nn.utr.si
n.def.nom

3.3 Tréina Kklassificeraren

Orden 1 triéningsméingden skrivs om pa
ovanstdende format och sparas i en fil data.txt.
Hjilpprogrammet ldser in textfilen och omvandlar
den till ett numeriskt format
(data.txt.processed). Dessutom skapas
ett kodningsobjekt (data.encoding). Jag har
tranat klassificeraren med anropet:

svm-train -c 256 -g 0.0025
data.txt.processed data.model

som skapar ett modellobjekt (data.model).
Kodningsobjektet och modellobjektet behdvs nir
man anvénder klassificeraren.

4 Resultat

For de fyra olika trdningsméngderna har jag métt
andelen korrekt klassificerade ord (se figur 2).

72

0.96

0951

0.94 1 °

093

0.92F

0.91F

081

089t

088

0.87 L L L L I I I L
1000 2000 3000 4000 5000 6000 7000 §O00 8000 10000

Figur 2: Andel korrekta klassificeringar som
funktion av antalet ord i trdningsméngden.

Jag har forsokt ta reda pd vilka grammatiska
former som var svarast att klassificera. Eftersom
inte alla former forekommer lika ofta i korpusen,
varifrén test- och trdningsméngderna &r tagna, &r
det svart att redovisa vilka ord som &r svarast att
klassificera. Jag har undersokt det fall da
traningsmingden bestod av 10 000 ord. I tabell 2
redovisar jag de fem former som fick hogst antal
klassificeringsfel —per antal forekomster i
testméngden. Jag tar inte med former som férekom
mindre dn 70 ganger i testmidngden eftersom jag
antar att de inte forekommit sd ofta i
triningsmangden heller.

ordklass andel
fel
nn.utr.plu.def.gen 38%
vb.prt.sfo 31%
nn.neu.sin.def.gen 29%
nn.utr.plu.def.nom 28%
nn.neu.sin.def.nom 13%

Tabell 2:
klassificera.

Ordklasser som var svéra att

Exempel pé ord i ordklassen nn.utr.plu.def.nom
som blev felklassificerade &r pojkarna och
gaffeltruckarna. Dessa ord skulle enligt
klassificeraren ha lemmorna pojkare respektive
gaffeltruckare medan de rétta lemmorna ar pojke
respektive gaffeltruck.

Ett annat exempel ar barkborrarnas
(nn.utr.plu.def.gen) som enligt klassificeraren
skulle ha lemmat barkborr men enligt korpusen
har lemmat barkborre. Dock skulle ju
klassificeringen kunna vara korrekt eftersom man
kan ténka sig att det finns ett redskap som anvinds
for att borra i bark, en barkborr.

Ett sista och positivt exempel &r ordet jag tog
som exempel i inledningen, krdmbluffen
(nn.utr.sin.def.nom). Detta ord blev korrekt

klassificerat. S& var dven fallet fér majoriteten av
orden i denna ordklass. Bara 4% blev felaktigt
klassificerade.

5 Slutsatser och diskussion

Slutsatsen man kan dra av resultaten i figur 2 ar
att ju fler ord triningsméangden har desto battre blir
klassificeraren. Med en trdningsméingd pa 10 000
ord blev 96% av orden i testmédngden korrekt
klassificerade. Kurvan ser ut att plana ut efter detta
antal. Jag har inte wundersokt resultaten for
traningsmangder med fler ord eftersom det tog for
l&ng tid att kora programmet da.

For att metoden ska ge ett helt korrekt resultat
skulle man antagligen behova fler inparametrar till
klassificeraren. =~ Ord som pojkarna och
gaffeltruckarna har ju samma dndelser i b6jd form
men ska klassificeras olika. Dock ar det svart att
sdga vilka ytterligare inparametrar som behovs.
Dessutom visar exemplet med barkborrarnas att
det inte dr mojligt att f4 en hundraprocentigt
korrekt klassificering eftersom det finns ord som
kan tolkas pé olika stt.

Slutligen kan man forstas tdnka sig andra sétt att
angripa problemet. Ett sitt hade kunnat vara att
dela upp det okinda ordet i kidnda ord.
Krimbluffen skulle d& delats upp i krdm och
bluffen. Lemmat for krdm-bluffen skulle antas ha
samma dndelse som lemmat for bluffen.

6 Tack

Tack till min handledare Richard Johansson och
min foreldsare Pierre Nugues.

Ocksd ettt tack till min vdn och
diskussionspartner Kajsa Lindén.

Referenser

1. Eva Ejerhed, Gunnel Killgren, Ola Wennstedt
och Magnus Astrém: "The Linguistic Annotation
System of the Stockholm-Umea Project", 1992.

2. Chih-Chung Chang and Chih-Jen Lin:
"LIBSVM: A Library for Support Vector
Machines", 2001.

3. Richard Johansson: "SimpleSVM: A Java-based
Wrapper Library for LibSVM". Software
available at
http://www.df Ith.se/~richardj/simplesvm.

73

74

Evaluation of the Tanaka-Iwasaki-algorithm
for word clustering

Mats Mattsson
p02mm@efd.1th.se

Abstract

We have implemented and tested the algorithm
described in (Tanaka-Ishii and Iwasaki, 1997).
It is about clustering words based on the co-
occurence graph by using transitivity.
We find similiar, but less exact, results. How-
ever we have been unable to test the algorithm
on a corpus of the same size.

1 Introduction
1.1 Equality relation

A relation can be represented as a graph where
vertices a and b are said to be related if there is
an edge from a to b. It can be written aRb.

An equality relation (R) is reflective
(aRa,¥a), symmetric (aRb = bRa) and
transitive (aRb, bRc = aRc).

1.2 Co-occurrence graph

A graph can be formed from words that co-
occur in a corpus. Words are represented as
vertices. An edge between two vertices indicate
that they co-occur.

This graph can be viewed as an equality rela-
tion. Partitioning the graph would give groups
of words connected to one topic. Such groups
can be used for construction and validation of a
thesaurus and clustering of documents.

Both reflectivity and symmetry are guaran-
teed in the co-occurence graph. Transitivity is
usually not present.

1.3 Loosening constraints for subgraph
extraction

We loosen the requirement of transitivity for the
subgraph. I.e it no longer needs to be a com-
plete graph. Instead of an edge between any
two vertices, we only require each vertex in the
subgraph to be a part of a complete graph of
four vertices. E.g. figure 1.

In (Tanaka-Ishii and Iwasaki, 1997) more the-
ory around the loosening of constraints is dis-
cussed.

Jonas Astrom
p02jas@efd.lth.se

Figure 1: To be a transitive graph an additional
edge between vertices a and e is required. Af-
ter loosening the constraints this graph will be
considered transitive.

1.4 Algorithm for clustering

We extract a subgraph A from the co-occurance
graph G.

Step 1 Starting from edge e. Put a triangle

graph including e into A.

Step 2 For a branch ¢ € A: If there exists
nodes v € G and v’ € G both forming a tri-
angle with ¢’ and connected to each other,
put v and all edges connected to v into A.

Step 3 Repeat step 2 until A cannot be ex-
tended any more.

By starting from every triangle in G we will
find all subgraphs.

By limiting our output to maximal subgraphs
we only have to start from edges not already in-
cluded in previously calculated subgraph. Some
extracted graphs may be parts of others so this
needs to be checked.

2 Co-occurance measure

We use the notion of mutual information simi-
lar to (Church and Hanks, 1990), which is used
in (Tanaka-Ishii and Iwasaki, 1997). Our co-

75 frequency measure is symmetrical and we also

006 Window

12 Natl Loan Release Call Avge Rate-X Level Price IV V Oats n
11 Field Jay Alabama Florida Columbus Daytona Melbourne Indianapolis Dallas Greensb... @
10 arrest foreign-exchange Wales fraud investigation Corporate Westpac CAC Kleinwort...

10 CWT sorghum HRS SRW SWW durum track Lubbock Lou Seattle

9 tape assistant researcher writer Archive Microamerica XL 5.25-inch automation

City Lake tempo airbag topaz Salt beryllium Mountains southwest

Casey chaos surgery removal brain pesticide herbicide lawn waste

JWT Ted Bates Worldwide Jacoby Adver(\smg Saatchi advertising AC

D a) g prog 0
Dlzpos t Gerald Sprlnkel Greenspan Comg:m Sei dman protege patron

Merrell Bendectin birth defect boy sickness lawsuit child

march Brussels pellet stone Saragossa Malaga citrus lemon 5
Scientific Micro Supermac View Program Real Estate Select v

9
9
9
8
8
8
8
8
springboard Technology designer programmer personnel assault developer Omega

Threshold: 6.78

Figure 2: Screenshot of the resuts presented by
our implementation. The graph displays the
number of clusters for different co-occurance
thresholds.

use a finite weighted window

w; = exp(—ali| — §i%).

As most texts change the subject between para-
graphs we add extra distance between them, i.e.
the distance between the last word of the previ-
ous paragraph and the first word of the current
is 7 instead of 1.

To form the graph we set a threshold for the
mutual information between two words and say
they co-occur when it is above the given thresh-
old.

3 Implementation

We have implemented the algorithm in
Objective-C++ as a Cocoa application for Mac
OS X. See figure 2 for a screenshot.

3.1 TreeTagger

We use TreeTagger (University of Stuttgart,
2005) to mark the part of speech each word has
and find the lemma (e.g. am — be) for words.

We only consider nouns when running the al-
gorithm.

4 Results

As corpora we have used different texts collected
from the internet and a part of Reuters-21578
from from the Reuters newswire 1987.

We have only been able to use the algorithm
on about 4% of the 15MByte Reuters corpus.
Example of the largest clusters:

12 Natl Loan Release Call Avge Rate-X Level
Price IV V Oats n

11 (Cities, States) Field Jay Alabama
Florida Columbus Daytona Melbourne In-
dianapolis Dallas Greensboro Jacksonville

10 (Economic crime) arrest foreign-
exchange Wales fraud investigation
Corporate Westpac CAC Kleinwort
Benson

10 CWT sorghum HRS SRW SWW durum
track Lubbock Lou Seattle

9 (Writing) tape assistant researcher writer
Archive Microamerica XL 5.25-inch au-
tomation

9 (Mining) City Lake tempo airbag topaz Salt
beryllium Mountains southwest

9 (Cultivation) Casey chaos surgery removal
brain pesticide herbicide lawn waste

9 JWT Ted Bates Worldwide Jacoby Advertis-
ing Saatchi advertising AC

8 (Designer) springboard Technology de-
signer programmer personnel assault
developer Omega

8 Deposit Gerald Sprinkel Greenspan Corrigan
Seidman protege patron

8 (Children’s disease Merrell Bendectin
birth defect boy sickness lawsuit child

8 march Brussels pellet stone Saragossa Malaga
citrus lemon

8 Scientific Micro Supermac View Program
Real Estate Select

8 Governor Exchequer Nigel Lawson Geoffrey
Howe Robin Leigh-Pemberton

8 (Iranian army) attack Iranian Army Revo-
lutionary guard Corps Third commander

About half of the groups have a possible topic,
even though there are some noise present.

5 Discussion

In (Tanaka-Ishii and Iwasaki, 1997) a 30MByte
corpus from Wall Street Journal is used. They
achieve good results for 39 clusters of sizes from
8 to 105 words. There are some noise present

76 but much less than we have encountered.

As the co-occurrence measure by mutual in-
formation is more noise resistant for large cor-
pora this may explain the difference between
our results and those in the original article.

The running time of our implementation is
between 5 and 30 seconds for one clustering of
800kBytes, depending on the mutual informa-
tion threshold for generating the co-occurance
graph.

We have not made much effort to analyze the
time complexity of the algorithm. The running
time growths worse than linear and probably at
least quadratic with the input size.

References

K.W. Church and P. Hanks. 1990. Word associ-
aton norms, mutual information, and lexicog-
raphy. Computational Linguistics, 16(1):22—
29.

Kumiko Tanaka-Ishii and Hideya Iwasaki. 1997.
Clustering co-occurrence graph based on
transitivity. 5th Workshop on Very Large
Corpora, pages 91-100.

Institute for Computational Linguis-
tics University of Stuttgart. 2005.
Treetagger. http: //www.ims.uni-
stuttgart.de/projekte/corplex/ Tree Tagger/
DecisionTreeTagger.html.

77

78

RoboLinguistics

Ett textforstaclseprogram

Henrik Palmér, dO1hp

79

80

Inledning

For att styra robotar ricker det inte att som i science-fictionfilmer bara siga till dem vad de ska
gora. De storsta kraftanstrdngningarna inom Al for industrirobotar har inte lagts pa att utveckla ett
begripligt anvindargrinssnitt gentemot dem, utan snarare pa deras funktion. Det har gjort att vi nu
sitter hir med flexibla robotar som fungerar mycket bra si linge de ska utféra sina
forprogrammerade arbetsmoment, men som ofta kréver en tekniker for att programmeras om.

RoboLinguistics ér ett forsok att komma forbi detta. Tanken med programmet &r att man ska
kunna instruera roboten pa naturlig engelska. For att géra detta mojligt maste programmet inte bara
kunna grammatiskt strukturera meningar med olika uppbyggnad, utan dven kunna 16sa koreferens
och slutligen forsta vad olika kommandon betyder rent praktiskt.

Programmoment

Programmet &r uppdelat i olika moment som &r ansvariga for olika delar av textbehandlingen. Forst
skapar Charniaks parser ett trdd av satsdelar som beskriver meningen grammatiskt. Detta &r
nddvéndigt for att det andra delmomentet ska fungera. Den semantiska modulen sdker upp agenter,
predikat och deras argument.

Slutligen bearbetar den del av RoboLinguistics som jag har skrivit denna lista och finner verb
roboten dr programmerad att kdnna igen. For verbgrupper dér dessa ingdr gar programmet igenom
alla argument och jaimfor dem med dem som tidigare ndmnts for att forsta vilka de éar.

Den semantiska modulen

Det den semantiska modulen finner de olika predikaten i utdatan fran charniakparsern. For varje
predikat soker den sedan efter agenten och argumenten. Nér den funnit argumenten maste den
dessutom klassificera dem, sa att agenter och direkta objekt far rétt etiketter. Till sin hjilp har den
PropBank, ett corpus pad ménga tusen ord, dér olika betydelser av verb och deras argument finns
utmaérkta.

Innan denna modul kan anvéndas méste den instrueras vilka predikat den ska soka efter. Darfor
kommer okdnda verb att helt ignoreras av RoboLinguistics.

Utdatan frdn den semantiska modulen &r ett meningstrdd. Detta innehéller element med en
klassificering, pekare till var i texten de forekommer samt signaturtrdd i1 de fall de 4r argument till
verb.

Detta program hanterar tva sorters signaturtrdd: substantivgrupper och prepositioner. En
substantivgrupp har som rot huvudordet i gruppen och dess satsdel: the red ball kommer till
exempel att ha NP/bal/NN som rot. Denna beteckning innebdr att signaturtridet ar en
substantivgrupp (NP) och ball ar ett substantiv i singular (NN).

Ett signaturtrdd kan ockséd vara en samling av flera signaturtrdd. Detta sker vid konjunktioner
som the red ball and the blue ball och relationer som the book on the shelf. 1 det senare fallet
kommer det andra undertradet vara av typen preposition. Dessa har som undertrad signaturtridet for
substantivet, i fallet frdn den foregdende meningen the shelf . Som rot kommer denna att ha
PP/on/IN.

Textforstaelsedelen

Trots att texten nu delats upp 1 sina verbgrupper och argumenten till verben till stor del har
identifierats dr datan &nnu inte redo for roboten. For det forsta dr datan i utdatastrukturen i princip
bara text, och for det andra &r ingen koreferens dnnu 16st. Utdata fran textforstaelsedelen ar en lista
av kommandon, som put, drill och remove, som alla har varierande antal argument och en lista pé
alla entiteter som nimnts i texten.

Det forsta programmet gor dr att ga igenom listan som den semantiska modulen skapat. Denna

81

kommer normalt att bestd av en rad argument foljd av ett verb.

Argument

Argument som RoboLinguistics forstir dr de som kallas 4n 1 PropBank (dér » &r ett nummer). Néir
dessa dyker upp laggs deras signaturtrdd i en hashtabell med argumentnamnet som nyckel. Denna
hashtabell dr unik for varje verb.

Verb

Textforstaelsedelen representerar all kommandon den kénner till med klasser. Till exempel
representeras verben gef och take av klassen Get. Innan ett kommando kan anvédndas av
programmet maste systemet fa reda pd att det existerar. Detta gors genom att ldgga till en referens
till deras klass tillsammans med namnet pd verbet i en hashtabell. Varje klass kan darfor kopplas till
flera verb.

RoboLinguistics soker upp vilken klass som dr kopplad till det aktuella verbet. Om ingen hittas
genereras ett felmeddelande och all vidare bearbetning av detta verb och dess argument avbryts,
annars skickas namnet pa verbet, hashtabellen med argument och listan pa tidigare ndmnda entiteter
till konstruktorn med hjélp av Java-reflektion.

Vad som sedan hinder beror pa vilket kommando det handlar om. De mest komplicerade som ar
med i RoboLinguistics for tillféllet 4r de som tar tva argument: direkta objekt och platser, som &r
prepositioner foljda av substantivgrupper. Kommandot remove tillsammans med ndgra andra gor
detta.

Forst tar kontruktorn reda pa signaturtridderna for det direkt objektet och for platsen. Om den
finner bada dessa innebir det att den semantiska modulen fungerat felfritt. Detta sker dock séllan
for mer komplicerade substantivgrupper med bade adjektiv och prepositioner, for vilka bade objekt
och plats hamnar som samma argument. I dessa fall forsoker kontruktorn bryta upp
objektargumentet i en del fore prepositionen och en med prepositionen och dess substantivgrupp.

Konstruktorn forsoker sedan 16sa koreferenser for att komma fram till vilka entiteter som ska
laggas 1 dess argumentlista. For argument som kan vara olika prepositioner, som till exempel put on
och put into skapas en instans av en underklass till Preposition, som innehédller en referens till en
entitet och en specifikation, men om prepositionen dr entydig ldggs bara entiteten till for enkelhets
skull. Vad som gors bestims entydigt av kommandot.

Koreferens

Att 16sa koreferenser dr RoboLinguistics storsta utmaning. Klassen som har hand om detta &r
EntityContainer. Denna uppratthéller en lista 6ver alla entiteter som nagonsin ndmnts. Entiteter
representeras av klassen Entity med attribut for med vilken signaturtrdd den introducerades, vid
vilka andra signaturtrdder den bendmnts och som vilket argumentnummer den senast forekom, eller
dess underklasser RelationalEntity, som &r substantivgrupper som the lid of the box eller the book
on the table med attribut for vilken entitet den ar relaterad till och hur, och MultipleEntities, som ar
upprédkningar av flera substantiv, som the small gerbil and the brown hamster.

Om alla substantiv 1 upprikningen har samma huvudord sitts signaturtraden for entiteten till
plural for detta. Vad plural av detta ord 4r bestdims genom att det forst jaimfors med ord som helt
fordndras, som index/indice. Om ordet inte finns 1 denna lista jimfors det med ord som far en
fordndrad dndelse, som cactus/cactii eller box/boxes. Om det inte dterfinns hir heller laggs helt
enkelt ett s till slutet.

For att komma runt problemet att den semantiska modulen inte alltid lyckas hitta platsargument
har en forenkling gjorts 1 MultipleEntities; om en upprdkning av entiteter slutar med en
RelationalEntity antas alla entiteter 1 upprdkningen vara av samma klass och med samma relation.
Detta innebdr att the lid and the contents of the box forstar som the lid of the box and the bottom of
the box, men ocksa att the lid of the box and book on the table forstas som the lid on the table and
the book on the table.

82

EntityContainer har en metod findEntity() som tar som parameter en signaturtrdd och vilket
argument till ett kommando denna har. Direfter skapas en lista av entiteter baserad pad denna. Om
signaturtrdden inte dr en konjunktion av substantivgrupper kommer listan bara att innehalla ett
element.

Dessa element jamfors sedan med de redan existerande entiteterna. Om signaturtrdden for
entiteten dr ett pronomen jamfors forst numerus for de olika entiteterna. Om dessa stimmer ges en
grundpodng som sedan Okas beroende pd om den existerande entiteten nagon gang tidigare
bendmnts vid detta pronomen och i sa fall hur linge sedan. Detta behdvs for meningar som den i
Exempel 1, dér det sista kommandot annars skulle ha blivit glue the screw to the small box.

Nar denna podng slutligen rdknats ut divideras den med ett tal i storleksordningen av det
argumentnummer den existerande entiteten tidigare varit. Detta gors eftersom programmet antar att
ett pronomen oftare refererar tillbaka till ett direkt objekt &n platsargument. Utan detta hade det
andra kommando 1 Exempel 1 blivit put a screw in the big box.

Om signaturtrdden istéllet 4r en substantivgrupp jimfors forst dess huvudord med dem for de
redan kénda entiteterna. Om dessa stimmer jimfors varje ord av typen substantiv och adjektiv i den
kortaste signaturtriden med alla ord i den lingre. For varje matchande ord 6kas den totala podngen,
medan den minskas for varje ord som inte aterfinns i den ldngre listan. Darefter delas podngen med
antalet jimforda ord.

Om bada entiteterna dr relationsentiteter jimfors dven dessa, och utfallet av denna jamforelse far
storre vikt dn den tidigare, eftersom programmet maste se skillnad pa the big red lid of the box och
the big red lid of the coffin. Slutligen delas poingen med ett tal i storleksordningen roten av
avstandet 1 entiteter mellan den nyskapade entiteten och den tidigare kdnda.

Om ingen tidigare entitets poang Overstiger ett troskelvdrde behalls den nyskapade entiteten och
laggs forst 1 listan pd kénda entiteter, annars liggs istillet den matchande entiteten forst. Pa sd sétt
ligger alltid den senast nimnda entiteten forst.

I de fall da den semantiska modulen inte funnit ett platsargument och istéllet slagit ithop det med
objektargumentet uppstdr ett problem; istéllet for att skapa en entitet och ett prepositionsobjekt
skapas istéllet en relationsentitet, och roboten kommer att tro att den ska ta “boken frdan hyllan” och
inte ta “"boken” frdan hyllan. For att rada bot pa detta finns mgjligheten att bryta upp en
relationsentitet till en enkel entitet och en signaturtrdd som beskriver relationen. Detta gors i
kontruktorerna till vissa kommandon om vissa villkor uppfylls.

For det forsta méste relationen vara den senast introducerade entiteten. Om the book on the shelf
redan ndmnts kan det inte handla om att ldgga boken pa hyllan. For det andra maste relationen vara
av en typ som dr vettig for kommandot. For kommandot open ir till exempel relationen the door
with the key vettig.

Framtida utvidgningar

Det stora felet med koreferenslosningen dr att konjunktionera av relationer begrénsas till att vara
relationer till samma entitet, och detta maste dtgéirdas i kommande versioner av programmet.

Jag har medvetet valt att gora programmet sé lite beroende av de underliggande modulerna som
mojligt. Det innebdr att forutom att dela upp relationer forsoker det inte att korrigera misstag frdn
charniakparsern eller den semantiska modulen. Det dr hédrifran i princip alla felaktiga tolkningar
kommer. Till exempel lyckas programmet inte se sambandet mellan the prickly cactus and the tall
cactus och the cactii eftersom charniakparsern tror att the cactii ér singular.

Programmet antar att varje verb som forekommer i texten dr en uppmaning. Detta anser jag vara
ett rimligt antagande, eftersom podngen med det dr just att finna kommandon i en 16pande text.
Alternativet vore att ignorera verb som inte d4r uppmaningar, men det skulle leda till att information
fran texten gick forlorad. Detta leder dock till fel som 1 Exempel 3.

De fel som stammar frén det sista steget beror till storsta delen pé att entiteterna bara minns hur
de bendmnts och vilka roller de spelat och inte till vilka verb de spelat dessa roller. Detta illustreras
av Exempel 4. For att 16sa detta méste den modularitet dér det ar 1étt att lagga till nya kommandon

83

ge vika for ett system dir kommandon kénner till varandra och vet hur de ska forhilla sig till
varandras argument. [denna overvigning prioriterar jag enkelhet.

Négot som ddremot méste ldggas till om programmet ska fa ndgon nytta dr en databas med
objekt tillgdngliga for roboten. I nuldget representeras kommandon av klasser som ar kopplade till
en handling, medan entiteterna bara beskrivs av strangar.

Appendix

Exempel 1
”Remove the lid from the big box and put a screw in it, and then glue it to the small box.”

remove the 1lid (E1l) from the big box (E2).
put a screw (E3) in the 1lid (E1l).
glue the 1id (E1) to the small box (E4).
Known entities:
the 1id (E1)
it
the 1lid
the small box (E4)
the small box
a screw (E3)
a screw
the big box (E2)
the big box

Exempel 2

”Open the big box and remove a screw from it. Put the screw in the center of the lid of the box and
place the lid on the box. Please glue a handle to the lid of the small box. Open the small box and put
an apple in it and then close the box.”

I detta exempel finns specificeraren in the center i den andra meningen. I det tredje kommandot har
darfor the center inte nagot ID; det existerar inte som en entitet. Den tredje meningen dyker inte upp
overhuvudtaget, vilket beror péd att charniakparsern felaktigt identifierat g/ue som ett substantiv:
”(S1 (S (NP (NN Glue)) (DT a) (VP (VB handle) (PP (TO to) (NP (NP (DT the) (NN lid)) (PP (IN
of) (NP (DT the) (JJ small) (NN box)))))) (. .))).”

open the big box (E1).
remove a screw (E2) from the big box (E1l).
put a screw (E2) in the center of the 1id (E3) of the big box (E1l).
put the 1lid (E3) of the big box (El) on the big box (E1).
open the small box (E4).
put an apple (E5) in the small box (E4).
close the small box (E4).
Known entities:
the small box (E4)
the box
it
the small box
an apple (E5)

84

an apple
the 1id (E3) of the big box (E1)
the 1id
the big box (E1)
the box
it
the big box
a screw (E2)
the screw

a screw

Exempel 3
”He opened the door.”

open the door (E1).
Known entities:
the door (E1)

the door

Exempel 4
”Open the box with the key and then open the door with it.”

I detta exempel illustreras hur programmet forvirras av grammatiska konstruktioner som en
minniska latt genomskadar. Eftersom systemet inte kénner till att man vanligtvis 6ppnar saker med
nycklar och inte lador sédger dess regler &t den att vélja 1adan som instrument for att 6ppna dorren.

open the box (E2) with the key (E1).
open the door (E3) with the box (E2).
Known entities:
the door (E3)

the door
the box (E2)

it

the box
the key (E1)

the key

85

86

A quick approach to Summarizing

Magnus Skog, Jacob Persson

23rd January 2006

87

Abstract

This project deals with the difficult problem of automatic text
summarization. This is an interesting and open-ended problem that
has a multitude of uses. We attack the problem by using both a Lin-
guistic Summarizer written in Prolog and a simpler sentence pruning
algorithm written in Perl. The basic idea is to first cut the unnec-
essary parts out of the sentences and then prune the less important
sentences creating a summary. The results were evaluated by a group
of testers that compared the original articles with the summaries. The
overall results were satisfying but there is more work to be done.

1 Introduction

Text summarizing is an interesting and difficult problem. In this project we
attempt to create good summaries of shorter texts of about 1000 characters.
We based this project on the work of Polanyi,Culy, van den Berg, Thione
and Ahn(2004) and the the work of Thione, van den Berg, Polanyi and
Culy(2004). We also use a parser created by Collins(1998). The system is
divided into two parts: A discourse parser and a sentence pruner.

2 Linguistic summarizing

This part of our system uses a linguistic approach to remove overflow infor-
mation inside sentences. The advantage of the linguistic models is that they
often rely on both syntactic and semantic knowledge.

A linguistic model for summarizing usually builds up a tree/structure of
the discourse to be summarized according to a discourse model. The actual
summarizing is then performed by pruning branches with less interesting
information.

2.1 Linguistic discourse models

A model we looked at was the linguistic discourse model(LDM) by Polanyi
and Scha (1984, 1988). It starts with segmenting the discourse into basic
discourse units (BDU) using a set of rules. Then a a tree of DCU’s(discourse
constituent unit) are build up from the BDU’s and according to the structure
of the discourse.

88

Between the DCU’s are relations that can be divided into three classes:
discourse coordination, discourse subordination and n-ary constructions. Dis-
course coordinations are relations where the parts have equal importance, like
"he shot the president and he got away with it”. Discourse subordination ex-
press relations where something is a elaboration of something, for example
“jurgen is the VD of Janco, which is a large company on Iceland”. N-ary
construction are lists or enumerations of things.

A similar model is that of the rhetorical structure theory(RST) by Mann
and Thompson (1988). There the discourse is segmented into nucleuses and
satellites, where the nucleus is the main segment and the satellites hold some
relation to it. Relations can for example be elaboration, cause, motivation
and concession.

2.2 A simplified linguistic discourse model

Our model starts from a tree created by the August parser, which output
a tree in the Penn tree-bank style. We don’t segment our discourse instead
segmenting is included into the rules.

Since we also use a statistical summarizer on a per sentence basis we
decided to let our LDM handle only one sentence at a time. This means of
course that it can’t solve co references or deal with any relationships that
span across sentences.

With these simplification made the difficulty in implementing this model
is to write the rules that find relations between discourse segments.

2.3 Implementation

We choose to implement our LDM in Prolog because its build in search
mechanism make rules easy to apply.

The output from the August parser is converted to a tree of Prolog lists.
On this tree we do a bottom up search and match rules. The relations we
are interested in are mostly those of the elaboration type and since this is
the last and only step we prune the tree at the same time.

A rule for identifying a elaboration can look like this. Here the elaboration
is identified by the cue word 'which’. You can also see how we prune the tree
by only saving what’s matched to X.

89

match(Tree, [’NP’, X]) :- [’NP’ | Y] = Tree, append(X, [[(’,?),
(C’,”)]1, [’SBAR’, [’WHNP’, [’WDT’, ([whichlll, -1, [C’,?), [C’,”)]1]1],
Y).

Taking the leafs of the pruned tree in a inorder walk results in the summa-
rized sentence. This is applied to every sentence in the discourse. A couple
of post processing steps are finally used to give a proper output.

3 Sentence Pruner

3.1 Introduction

Unlike the Prolog summarizer, the sentence pruner only works with whole
sentences. It prunes unwanted sentences using an algorithm that is based on
word frequency and the length of the sentences

3.2 The Algorithm

The algorithm starts by splitting the text into sentences. It also makes a
list of all the words in the text together with a score which is equivalent to
the number of times the word appears in the text. Each sentence is then
processed by adding the scores for all the words in the sentence. If the
sentence contains words that appear in the title of the text, then the score
of the sentence is improved. Also, the first sentence in the text is given a
bonus to it’s score due to the general importance of the very first sentence
after the title. When this has been done for all the sentence in the text, the
algorithm then prunes the unwanted sentences. Input to the algorithm is a
percentage. This is the amount of sentences that the algorithm won’t prune.
The top scoring sentences are kept while the rest are removed.

3.3 Implementation

We chose to implement the algorithm in Perl. Perl is the natural choice for
this kind of simple text manipulation.

90

3.4 Improvements

The algorithm does several passes through the text. It might be possible to
score the sentences and count the words at the same time, thus saving time
by doing less passes. Also, the implementation uses regular expressions to
prune the sentences. It does this one by one, thus doing several unnecessary
passes through the text. A good improvement would be to make one pass
during the text that prunes all unwanted sentences.

4 FEvaluation

4.1 Introduction

The program was evaluated using a test-set of the corpus. Five texts were
selected from the text-set and we ran the program on them. We pruned 75
percent of the sentences. The original text and the results were posted on
a website where a number of people read the texts and scored them. An
interesting result was that we accidentally forgot to mention that the texts
were not summarized by hand, so most testers believed that the summaries
were done by a human.

4.2 Expected Results

From the results of the training corpus we expected some trouble with co-
references. The program would prune sentences containing a name of a per-
son and then later on keep a sentence containing aHe went to the marketa
and no reference to what ahea was could be found in the summary. We found
this to be a major problem but we simply did not have the time to implement
a co-reference solver to fix

4.3 Results

As expected, most of the negative comments were that there were numerous
problems with co-references. Most texts contained these problems. Other
than that, most testers were fooled by the program and still believed that
the summaries had been written by hand. One tester commented, and I
quote: ’It looks like you have been a bit lazy when you summarized these
texts’. All testers thought that the readability of the texts were good to

91

excellent. Most of them, if not all, were very surprised when they later found
out that the summaries were actually made by a computer program

4.4 Comments

It seems as the expected results were indeed reasonable. A co-reference
solver would have remedied most of the problems and improved readability
significantly.

5 Conclusion

The overall performance of our system was very good. The summaries were
most of the time very easy to read and they often looked hand-made. In
order to create better summaries we would have to start by implementing
a co-reference solver. That is the beyond the scope of this short project.
Another problem is the extremely bad performance of the summarizer. This
is however caused by the parser. A faster parser would improve performance
but this could never be used in real-time application such as websites. This is
unfortunate because a website would have been a very interesting application
for this project. We could for example summarize news articles for quick and
easy reading. This would however require a much faster parser and most
likely a dedicated high-performance server.

92

6 References

Gian Lorenzo Thione, Martin van den berg, Livia Polanyi and Chris Culy.
2004. Hybrid Text Summarization: Combining External Relevance Measures
with Structural Analysis

Livia Polanyi, Chris Culy, Martin van den Berg, Gian Lorenzo Thione, David
Ahn. 2004. A rule based Approach to Discourse Parsing

Pierre Nugues. 2005. An introduction to Language Processing with Perl
and Prolog

93

7 Appendix A: Running Instructions

7.1 Requirements

The program requires SWI-Prolog and Perl to be able to run

7.2 Instructions

In the root directory of the program there is a Perl script called ”run.pl”.
The script runs the entire program, automizing most of the tedious longer
run scripts. The corpus is available in the corpus directory. The parser must
be available in the root directory of the program.

The usage is ”Perl run.pl text percentage ”title words””.

Example 1: Perl run.pl corpus/dev-set/prohibition 25 ”prohibition”
Example 2: Perl run.pl corpus/test-set/wikipedia 15 ”wikipedia”

You don’t have to put in any title words but the results will be better if
you do.

8 Appendix B: Links

The project files,including the parser and all of the articles used in the eval-
uation, are available at:
http://www.snakeeyes.nu/project/

94

Identification of time expressions, signals, events and temporal
relations in texts

Cyril Perrig

ETH Zurich,

Switzerland,
perrigc@student.ethz.ch

Abstract

In this project an approach to time and event
annotation is presented. First time expressions,
signals and events are identified in texts. Using
these extracted features temporal relations
between events are identified. Furthermore
the performance of event recognition with
increasing corpus size is investigated.

We use the widely accepted TimeML specifica-
tion language as an annotation scheme. The
identification tasks are solved by a machine
learning technique called Support Vector Ma-
chines (SVMs).

Finally we report the results we obtained and
discuss conclusions and open problems.

1 Introduction

The goal of this project is to detect all the
features needed to identify temporal relations
in texts and at last to identify these temporal
relations. In other words we want to determine
a temporal relation between two events. For
this we first have to detect time expressions,
then signals and finally events. Due to time
reasons the focus of this project is set on the
detection of events while the identification of
temporal relations itself is not fully explored.
The results of the event recognition is also
compared to a paper from IBM (Boguraev and
Ando, 2005).

The order of detection is important because
detections of a specific item might be used as
a feature input for another detection. Before
explaining these identifications in more details
a short overview of TimeML is highlighted.
Then the machine learning tool used for the
tasks and the experimental setup is reviewed.
In the next section all tasks are evaluated step
by step. Finally the results, conclusions and
open problems are discussed.

95

2 TimeML

TimeML 1.1 is a robust specification language
for events and temporal expressions in natu-
ral language. It is an XML-based language
and provides all tags needed for our analysis.
Amongst other things it is designed to address
the problem of ordering events with respect to
one another. Besides all these reasons for choos-
ing TimeML it is widely accepted and used in
the language processing research.

In the following subsections all the relevant tags
for this project are briefly explained and illus-
trated with an example. TimeML is by far more
complex and therefore the interested reader is
referred to the TimeML specifications 1.1 (Sauri
et al., 2004) for more details.

2.1 Time Expressions

Time expressions in TimeML are tagged with
TIMEX3 tags. This tag is primarily used to
mark up explicit time expressions, such as
times, dates, durations, etc.

An example TIMEX3-tag (if ”today” is the
2006-01-17):

<TIMEX3 type="time”
at 10 am</TIMEX3>

value="2005-01-16T10:00” >yesterday

2.2 Signals

The tag SIGNAL is used to annotate sections
of text, typically function words, that indicate
how temporal objects are to be related to each
other. This can either be an indicator of tem-
poral relations (e.g. during, when, etc.) or an
indicator of temporal quantification (e.g. twice,
three times, etc.).

2.3 Events

An EVENT is typically described by a verb,
although event nominals, such as ”crash” in
”..killed by the crash”, will also be anno-
tated as events. Further events have a tense,
an aspect (both optional), and a class. The

"http://www.timeml.org

class classifies the type of event, wheter it is
e.g. a state or an intentional action. All in
all TimeML distinguishes seven different event
types. The attributes tense and aspect can
each have four different values, past, present,
future, none and progressive, perfective, perfec-
tive_progressive, mone respectively. In Table 1
an example with tense value present is illus-
trated.

Verb group Aspect
teaches none

is teaching Progressive
has taught perfective

has been teaching perfective_progressive

Table 1: Example with tense value present

2.4 Temporal Relations

Temporal relations are marked with TLINK
tags. It represents the relation between two
temporal elements. Such links can connect
time expressions with events or pairs of events.
There are thirteen different temporal relation
types, e.g. before, after, includes etc.

Let’s consider the following sentence:

”Peter came home at ten o’clock and after
eating, he went to bed.”

Obviously there are three events and one time
expressions in this example. Between the first
event (came) and the time expression (ten
o’clock) the tlink tag is of type simultaneous.
The second temporal relation connects the
two events eating and went to bed with an
after-relation.

2.5 TimeBank

TimeBank 1.1 is an illustration and proof of
concept of the TimeML specifications 1.1. It is
a set of 186 news report documents annotated

with the 1.1 version of the TimeML standard
for temporal annotation. We use this freely

provided illustration as a corpus in this project.

With around 75’000 tokens one has to be aware
that this corpus is rather small.

To end this section an example sentence from
TimeBank 1.1 containing two events is pre-
sented:

On the other hand, it’s <EVENT eid="el” class="OCCURRENCE”
>turning</EVENT>out to be another <EVENT eid="e84”
class="STATE"” >very bad</EVENT >financial <TIMEX3

tid="t83" type="DURATION” >week</TIMEX3>for <ENAMEX
TYPE="LOCATION” >Asia</ENAMEX>.

96

3 YamCha

YamCha? (Yet Another Multpurpose CHunk
Annotator) is a generic, customizable, open
source text chunker oriented towards a lot of
NLP tasks. Further it provides a lot of useful
features which can easily be used by changing
the standard input parameters. If not stated
otherwise we use the standard input parame-
ters of YamCha. Concerning the feature sets
(window-size) the default setting is illustrated
in Figure 1.

YamCha is using a state-of-the-art machine
learning algorithm called Support Vector Ma-
chines (SVMs). This classification algorithm
provides a high generalization performance in-
dependent of feature dimension. Combinations
of multiple features can be trained by using a
Kernel Function. In YamCha only polynomial
kernels are supported.

CoL:0 COoL: TAG
PO5:-4 He PRP B-MP
POS:-3 reckons VBE B-wP
FO5:-2 the DT E-MP Featurae
POS:-1 current JT |-MF sets
POS: 0 | deficit HN Estimated
FOS+1 ||will Jull] E-F ThG
POS+2 ||narrow VB I-MP
POS:+3 to 0 E-FF

Figure 1: Default feature set (window-size) set-
ting in YamCha

4 Experimental Setup

First of all the corpus has to be tokenized to
get a ”YamCha-compatible” format. Addi-
tionally all relevant information belonging to a
token, such as e.g. tense, has to be extracted.
Unfortunately the POS (Part-of-Speech) of a
token is not provided in the TimeBank-corpus.
Therefore we used MXPOST? (Maximum
Entropy Part-of-Speech Tagger) to get the POS
of the tokens.

Another issue we have to be aware of is that
sometimes more than one token is inside an
entity (or tag). The first token of such an entity
is often not very relevant for the detection. An
example is illustrated in the time expression

http://chasen.org/ taku/software/yamcha/

http://www.cogsci.ed.ac.uk /jamesc/taggers/MXPOST.html

"the last twenty hours” where the determiner
the is certainly not an indicator for a time
expression. Therefore we use the IOB-model
(Inside Outside Beginning) which distinguishes
tokens that begin, are inside or are outside
an entity. In Table 2 the end of the previous
example sentence is presented.

To evaluate the results for the different tasks
the measures recall, precision and F-measure
are used. In the following subsection a short
recall of these measures is given. Furthermore
we use a 5-fold cross validation to get an ”av-
eraged” F-measure. First the corpus is divided
into 5 equally sized parts. Then each part is
once used as a test set (20% of corpus) and
the others as a training set (80% of corpus).
This means that each training set contains
around 60’000 tokens. At the end the average
F-measure of the 5 runs is taken as a reference
measure.

Token POS Event TimeExpr
turning VBG B-occurrence O
out RP (0] O
to TO (0] O
be VB (0] O
another DT 0O O
very RB B-state (0]
bad JJ I-state (0]
financial JJ 0O O
week NN O B-timex3
for IN (0] O
Asia NNP O O

(0) O

Table 2: Example illustrating the IOB-model
for the features POS, Event and Time Expres-
Stons

4.1 F-measure

As mentioned before the measures recall, preci-
sion and F-measure are used. They are common
when evaluating performance of algorithms in
computational linguistics. The definitions can
easily be explained with the Figure 2 where the
sets A, B and C are shown. Recall measures how
many of the relevant entities that were found.
It is defined as Relevant items retrieved / All
relevant items = LB' Precision is a measure
of how many of the retrieved entities are rele-
vant. It is defined as Relevant items retrieved
/ All retrieved items = %. Recall (R) and

precision (P) are combined into the F-measure

97

which is the harmonic mean of both numbers:
2x P+ R
F=—
P+ R

For more information about these measures the
reader is referred to (Nugues, 2005).

Belevamiset=A+B Pemisvedsst=B+C

Felevant items not remieved = A Drelevant items remieved = C

Falevant items reteved =B

Figure 2: Precision and Recall

5 Experiments
5.1

Extracting time expressions from texts comes at
the first place of our analysis tasks. The only
features used for training are the token itself,
the POS and of course the time expression. In
Table 3 the results for the 5 runs are listed. The
average F-measure is 0.791 which is quite high
considering that only approximately 2’200 time
expressions are contained in each training set.
This means that around 3.7% of all tokens of
each training set are tagged as time expressions.

Time Expressions

Recall Precision F-measure
0.590566 0.894286 0.711364
0.718033 0.914405 0.804408
0.723842 0.917391 0.809204
0.791878 0.921260 0.851683
0.770355 0.783439 0.776842

Table 3: Results for Time Expressions

5.2 Signals

For identifying Signals we even have less infor-
mation in the training sets (1’800 Signals per
set). As we already extracted time expressions
these entities are now of use for the next task.
Nevertheless we take all features used for a spe-
cific task from TimeBank and not from an out-
put of our own detection tasks. This fact holds

throughout this project.

The experiment using only the token itself
and the POS results in a F-measure of 0.576.
Adding the time expressions to the features im-
proves the F-measure to 0.616. One reason for
this moderate result is certainly the small cor-
pus size.

5.3 Events

As noted before TimeML provides 7 different
class types for events. Obviously this makes this
analysis task very difficult. On this account we
evaluate the experiment for two different cases.
Once events are recognized without considering

time reasons we disclaim the 5-fold cross valida-
tion and only evaluate one run per training set
size. In Figure 3 and 4 the F-measure is plot-
ted against the percentage of the corpus size for
both, the untyped and the typed, case. The
irregularity in Figure 4 is probably caused by
the fact that we do not use 5-fold cross valida-
tion. Apart from this and that the F-measure
is higher in the untyped case the two plots il-
lustrate the same logarithmic trend. They also
show that the point where the performance be-
gins to stagnate is not yet reached. Therefore a
larger corpus can still improve the performance
significantly.

the class type (untyped case) and once we want | typed untyped

0.551 0.734
0.735
0.754

0.751

to determine the events together with their class
type (typed case). Each training set contains
approximately 7’300 events with unequally dis-
tributed class types.

Token/POS
Token/POS/TimeExpr 0.557
Token/POS/TimeExpr/Signal | 0.573
larger window size -

In Table 4 the F-measure for 7 different exper-
iments are presented. The first 3 rows differ
only in the feature set. In the last row the win-
dow size parameter is increased while using the
same features as in the third row. This experi-
ment is only evaluated for the untyped case be-
cause of the long run-time for training. Further
the untyped case shows that increasing the win-
dow size doesn’t improve the performance. The
evaluation of the typed case using the features
token, POS, TimeExpr and Signal takes around
one hour per run on an Intel Mobile Pentium 4
with 1.7 GHz. Thus the real run-time for an
experiment, using a 5-fold cross validation, is
around 5 hours.

As expected the best results are obtained using
the features token, POS, TimeExpr and Signal
together with the standard settings in YamCha.
These results are only around 3% lower than
the results from (Boguraev and Ando, 2005).
Though their feature vector representation is
much more complex and contains a lot more
features, e.g. word uni- and bi-grams based on
subject-verb-object and preposition-noun con-
structions. Compared to our SVM-approach
they use a classification framework based on a
principle of empirical risk minimization called
Robust Risk Minimization (RRM).

Finally we investigated the performance of
event identification with increasing corpus size.
In the first step the training set size is only
20% of the corpus and therefore of the same
size as the test set. Then the training set size
is increased until it reaches 80% of the corpus
as in the experiments before. Because of run-

98

Table 4: Results for Events

performance of fmeasure with increasing corpus size (typed)
0.6 T T T T T

,//’/677//

o

1

1<
T

o
133
)

o
v
N

fmeasure (test set 20% of corpus
o
w
»

0.5p

0.48
20 30 40 50 60 70 80
size of corpus in percentage

Figure 3: Increasing corpus size (typed case)

5.4 Temporal Relations

Determining temporal relations is even a more
complex problem than event recognition. In
fact TimeML provides 13 different temporal
relation types. To simplify the problem we
focus only on six temporal relation types (be-
fore, after, includes, is_included, simultaneous
and identity). Furthermore we only consider
temporal relation between events.

We use a similar approach to the one in
(Berglund, 2004) that builds a feature row
considering two adjacent events. All in all 15
features are used for the temporal relations

performance of fmeasure with increasing corpus size
0.76 T T T T T

0.75- —

0.741F /
0.731 /

/
0.71 /
0.7F /
0.69 /
0.68} /

067(1 1 1 1 1
20 30 40 50 60 70 80
size of corpus in percentage

fmeasure (test set 20% of corpus

Figure 4: Increasing corpus size (untyped case)

analysis. In the following listing the features
are presented:

1. - 5. Token/POS/event/tense/aspect of
first event

6. - 10. Token/POS/event/tense/aspect of
second event

e 11. temporal signals between events: [sev-
eral, none, signal_token]

e 12. distance measured in tokens: [1, 2t3,
4t6, 7t10, gt10]

e 13. distance measured in sentences: [0, 1,

.., gt4]
e 14. distance measured in punctuation
signs: [0, 1, ..., gt5]

e 15. temporal relation

This feature representation is illustrated on the
following example:

The cat ate some cheese. Then, the dog saw
the cat and chased it. Cheese is good for you.
Three events (el:ate, e2:saw and e3:good) and
one signal (signal:then) are contained in this
example. This gives us three pairs of adjacent
events with the following representation:

1. ate VBD OCCURRENCE PAST NONE saw VBD OCCUR-
RENCE PAST NONE THEN 7t10 1 2 BEFORE

2. saw VBD OCCURRENCE PAST NONE chased VBD OCCUR-
RENCE PAST NONE NONE 4t6 0 0 BEFORE

3. chased VBD OCCURRENCE PAST NONE good JJ STATE
NONE NONE NONE 4t6 1 1 NONE

If we only consider adjacent events each
training set size contains around 6’650 pairs

99

of events where around 1’220 pairs possess a
temporal relation. To get more pairs of events
i-before and i_after (i for immediately) are
mapped to the temporal relations before and
after.

The results of the 5 runs are listed in Table 5
which gives us an average F-measure of 0.195.
The five runs show a quite poor performance
(especially the recall is very low) and a high
variance.

Recall Precision F-measure
0.087227 0.237288 0.127563
0.130159 0.284722 0.178649
0.219355 0.441558 0.293103
0.16 0.360902 0.221709
0.134752 0.183575 0.155419

Table 5: Results for Temporal Relations

6 Conclusions and Open Problems

We showed that SVM is a very powerful algo-
rithm for this kind of text analysis. With a
much easier feature representation we could al-
most reproduce the results from (Boguraev and
Ando, 2005).

The main bottleneck could easily been located
with the very small corpus size. Another prob-
lem is that the entity types are often unequally
distributed, e.g. the TimeBank 1.1 contains
4’452 events of type occurrence and only 51 of
type perception. In the future better results
could definitively be reached with a much larger
corpus.

In the last case of event ordering the results are
quite poor. The task of identifying temporal re-
lations is known to be very difficult, especially
if it is about domain-independent text. But the
results could be easily improved by creating a
larger corpus containing more event pairs. This
can be realized by considering a larger event
window size and not only considering adjacent
events. The best strategy is to take the transi-
tive closure to build event pairs. The number of
related pairs increases and therefore the train-
ing sets provide more training information.
Another approach to improve the results could
be realized by tuning the parameters for the
SVMs. Although in an experiment for the event
recognition task using the 3nd degree of polyno-
mial kernel no improvement could be observed.

7 Acknowledgements

First of all I would like to thank my supervi-
sor Richard Johansson for his patience, support
and good advices. Additionally, I would like to
thank Pierre Nugues for giving me the opportu-
nity to work on this project.

References

A. Berglund. 2004. Extracting temporal infor-
mation and ordering events for swedish.

B. Boguraev and R.K. Ando. 2005. Timeml-
compliant text analysis for temporal reason-
ing. IJCAI-05, pages 997-1003.

P. Nugues. 2005. An Introduction to Language
Processing with Perl and Prolog.

R. Sauri, J. Littmann, R. Gaizauskas, A. Set-
zer, and J. Pustejovsky. 2004. Timeml anno-
tation guidelines, version 1.1.

100

LUNDS UNIVERSITET

Institutionen fér Datavetenskap

http://www.cs.Ith.se

Produktion: Jonas Wisbrant ¢ 2006

	reports.pdf
	xavier_olle.pdf
	staffan_rasmus.pdf
	axel_ola.pdf
	ianick.pdf
	jakob_bobo.pdf
	johan.pdf
	Abstract
	Introduction
	Implementation
	
From ad to information
	Nature of ads
	regular expressions sub language
	Web interface

	Evaluation
	Scoring
	For rent ads
	Wanted ads
	Comment

	Conclusion
	References

	david_claire.pdf
	hugo_henning.pdf
	johan_ian.pdf
	jonas.pdf
	hans.pdf
	boel.pdf
	mats_jonas.pdf
	henrik.pdf
	Inledning
	Programmoment
	Den semantiska modulen
	Textförståelsedelen
	Argument
	Verb
	Koreferens

	Framtida utvidgningar
	Appendix
	Exempel 1
	Exempel 2
	Exempel 3
	Exempel 4

	jacob_magnus.pdf
	cyril.pdf

