
Dependency Parsing

Johan Hellström and Ian Kumlien

January 23, 2006

Abstract

This paper presents an implementation of a deterministic parsing al-

gorithm for dependency grammar in Swedish Natural Language. The pur-

sued implementation is based upon the Java programming language and

not Perl or Prolog commonly used in this �eld of research. This project

constitutes a part of the undergraduate course Language Processing and

Computational Linguistics by the department of Computer Science, Lund

University.

1 Introduction

An essential part of processing natural language is to properly understand and
determine the hierarchy of dependence. This means, given an arbitrary sentence,
to �nd the main word and how all the other words come to depend upon this
one word. The main word by convention or almost without exception turns out
to be the main verb or the most central proper noun, and the dependences to
this word naturally can be expressed as a tree structure. In this structure the
main word is elevated to the root of the tree allowing for two branches, left and
right, designed to express the dependencies of the words found on either side,
still maintaining the original order of words, creating sub-trees for dependencies.

2 The Model of Our Parser

The art of dependency parsing of Swedish texts has been expertly explored by
Joakim Nivre [2], and it was his work on parsing which inspired us to implement
a similar parser designed in Java, not Perl or Prolog which most often is selected
for natural text parsers today.

2.1 Nivre's Principal Parser

The principles of this kind of parser was developed by Joakim Nivre1, and has
many similarites to the basic shift-reduce algorithm for context-free grammars2

The principal parser make use of a rule set composed of suggested word class
pairs ordered in expected frequency and four methods; Right-arc (RA), Left-arc
(LA), Shift and Reduce as presented in table 1.

1principles and outline by Nivre [1].
2extensively de�ned by Aho et al [4].

1

Initialization hnil;W; ;i
Termination hS;nil; Ai
Left-Arc hnjS; n0jI; Ai ! hS; n0jI; A [f(n0; n)gi LEX(n) LEX(n0) 2 R

:9n00(n00; n) 2 A
Right-Arc hnjS; n0jI; Ai ! hn0jnjS; I; A [f(n0; n)gi LEX(n) ! LEX(n0) 2 R

:9n00(n00; n0) 2 A
Reduce hnjS; I; Ai ! hS; I; Ai 9n0(n0; n) 2 A
Shift hS; njI; Ai ! hnjS; I; Ai

Table 1: Formal description of Nivre's Parser [1]

3 Implementation Outline

For a matter of practicality, o�ering attractive possibilities of reuse and cus-
tomizing, the parser application is actually composed of three semi-independent
parts, intended to be executed in sequence. The source text, a fully annotated
collection of Swedish natural language called "Talbanken MALT" [6], �rst was
processed to determine the frequency of di�erent pairs of word groups appearing
in typical. The 100 most frequent, in ascending order, were selected as set of
rules, considered to well enough represent typical Swedish natural language in
general. Next, the parser principles of Joakim Nivre were consulted [1]. While
using an unaltered syntactic approach we introduced di�erent choices of classes,
native or optimized for Java performance. Our parser made use of the annota-
tion tagging o�ered in the text-source as far as word classes were concerned, but
ignored the sentence structure tagging during this phase. Finally, the outcome
of our parsing was compared with the previously neglected sentence structure
tagging available in the source text. Statistics were created based upon word
correctness and full sentence completeness.

3.1 Rule Extraction

The rules used in the parser are a list of pairs of word classes ordered by how
frequently they occur. By pre-parsing the entire source of natural text for every
single pair of words and keeping score of what combinations of word classes is
most frequent, the most proper account of how frequent word pairs in typical
Swedish language are is obtained. This list will control the order in which word
class combinations are considered as well as determine the time e�ectiveness of
parsing since the list will be consulted top-to-bottom until the speci�c pair is
matched or else the search will fail

3.2 Parsing Dependencies

The basic implementation consists of four di�erent operations, in order they
are: Left-Arc, Right-Arc, Reduce and Shift. In our implementation we added
a extra top priority shift operation that makes sure that there are elements on
the stack.

First construct a string from the word classes involved, elements: the �rst
element on the stack and current element.

Here is some documented pseudocode, this is all done in a iterative way, this
the continue statements below.

2

if stack.isEmpty then:

shift

Left-Arc:

if stack.peek.isDone is false then: /*if the element hasn't been handled*/

if tmp in rules_left then: /*if it's in the list of rules */

stack.peek.setDone_LeftArc /*the element is a left arc */

stack.pop /*remove the element from the stack */

continue /*continue the iteration */

else:

if element in rules_root then: /*if it's in the list of rules */

stack.peek.setDone_Root /*the element is a root element */

stack.pop /*remove the element from the stack */

continue /*continue the iteration */

Right-Arc:

if stack.peek.isDone is false then: /*if the element hasn't been handled*/

if tmp in rules_right then: /*if it's in the list of rules */

element.setDone_RightArc /*the element is a right arc */

stack.push element /*push the element to the stack */

continue /*continue the iteration */

else:

if element in rules_root then: /*if it's in the list of root rules */

element.setDone_Root /*the element is a root element */

stack.push element /*push the element to the stack */

continue /*continue the iteration */

Reduce:

if stack.peek.isDone is true then: /*If the element on the stack is done*/

stack.pop /*then remove it */

continue /*continue the iteration */

Shift:

stack.push element /*push current elementto the stack */

Each rule continues the iteration and thus terminates any additional parsing
done.

3.3 Correctness Evaluation

Since the source text is fully annotated, even when sentence structure is consid-
ered, the process of determining the correctness of the parsing is simply a matter
of processing the source text yet another time, comparing the parser's �ndings
with the tags of annotation. Since the annotation is available word-by-word,
the correctness statistics can be calculated by word as well as by sentence

3

4 Results and Conclusions

By parsing the corpora, keeping score of the occurrences of word class pairs,
we select the top 100 of these for rule set. This is then used in the Nivre style
(Left, Right, Reduce and Shift) dependency parser. When a correctness score
parse �nally is performed, our �ndings are that 70,515 words from the corpora
of 103,939 words are correctly determined. This would then give an average of
67.84%. For the completion of entire sentences, in essence a 100% correctness
of words per sentence, the result is the somewhat modest count of 546 out of
6,316 sentences, or 8.64%.

5 Comments and Future Improvements

We need to point out that no further guides or pre-processing steps were taken,
besides the general top 100 pair-of-word-classes statistics.
Further improvements, would surely be made by recognizing subclasses of cer-
tain word classes, say for instance making the parser sensitive to speci�c prepo-
sitions linked to certain verbs. But the path along this thinking is long and
by these steps the method is no longer as general as now is the case. Di�erent
language parsers would of course have all di�erent subclasses and the top-100
count would be even more dependent upon the nature of the training corpora.
By applying this subclass distinction, the results would improve at the cost of
narrowing the range of application.
Neither did the parse allow for di�erent context recognition. Certainly, one
would not consider the often short-and-to-the-point chapter headlines to be
as �uent and be composed of as colourful language as the rest as the text. By
adding methods to make this distinction, one would in fact have even more valid
statistics from the word class frequency parse and probably raise the score. But
once more, general application would be sacri�ced. The types of headline com-
position vary as the nature of the corpora does and also, most likely the trends
of headlining is di�erent in di�erent languages.
In our code there is a small race condition. If Right-Arc is triggered and we get
a Left-Arc right after, it can set the setDone_right element to be root as well,
while this is intended behavior it still wrong. Any given sentence should only
have one root element. This is easily �xed with some post processing or better
rules, but it was not one of our goals due to time constraints.

6 Acknowledgements

We would like to thank Pierre Nugues for his patience and guidence during this
project, which initally was a challenge due to some confusion about the details
of the algorithm development. It was by invaluable guidence and much e�ort
the completion of this project came to be.

4

References

[1] Joakim Nivre (2003), An E�cient Algorithm for Dependency Parsing,
School of Mathematics and Systems Engineering, Växjö University, 12 p.

[2] Joakim Nivre (2005), Inductive Dependency Parsing of Natural Language

Text, School of Mathematics and Systems Engineering, Växjö University,
209 p.

[3] Pierre Nugues (August 2005), An Introduction to Language Processing with

Perl and Prolog, Department of Computer Science, Lund University, 544 p.

[4] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman (1986), Compilers: Prin-

ciples, Techniques and Tools, Addison Wesley.

[5] (1997), Stockholm Umeå Corpus, Produced by Department of Linguistics,
Umeå University and Department of Linguistics, Stockholm University.

[6] (1997), Talbanken MALT,
Available at Nivre's website; http://w3.msi.vxu.se/ nivre/research/maltDT.html
(Certi�ed jan 2006)

This paper was printed using LATEX2".

5

