
Information extraction for classified advertisements

A project in the course
EDA171/DAT171 Language Processing and Computational Linguistics

Johan Eriksson

Abstract
This paper presents work done in project
form in the course Language Processing and
Computational Linguistics given at Lund
School of Technology during the fall of
2005. The goal of the project has been to
implement a simple information extraction
tool from the domain of classified
advertisments about apartments.

Introduction
The desire to find things on the web has lead
to the development of search engines like
Altavista, yahoo! and many more. The basic
idea of these is to allow the user to find
pages that contain certain words and do not
attempt to understand or make sense of any
web pages. Whenever they do take steps
towards understanding web pages they risk
losing their generality. Google, for instance,
did not support stemming in the beginning
but does so now and it is described here:
http://www.google.com/help/basics.html#ste
mming . Searching for ”google stemming”
currently, 2006-01-11, gives 716,000 results
and browsing through the results one can see
that there are a lot of discussions
surrounding the peculiarities of Google
stemming.

Another category of search engines is the
shopping agents who index web shops.
These are specialized to index the
semistructured data of web shops where
product data and prices usually are displayed
in table-like structures. A technology that
can be used for such applications is
described in ”A Scalable Comparison-
Shopping Agent for the World-Wide
Web”[3]
 Examples of sites using this technology
include Froogle(http://froogle.google.com)

and Pricerunner (http://pricerunner.com).

A third category, which index text that is
unstructured, is what this paper is about. An
example of this is http://eniro.jobsafari.se
which indexes job ads. I have chosen to
work with apartment ads from the site
www.blocket.se which is a Swedish
categorized ad site. I have implemented
a simple information extraction engine
using hand crafted patterns.

Implementation
I chose to split my system into three
different logic parts: the robot that gathers
ads from the site blocket.se, the web
interface where a user can make queries and
the information extraction engine.

From ad to information

Figure 1 shows how the information from
an ad in a web page becomes extracted. The
differrent steps are then described in detail.

http://froogle.google.com/
http://www.google.com/help/basics.html#stemming
http://www.google.com/help/basics.html#stemming
http://pricerunner.com/
http://www.blocket.se/
http://eniro.jobsafari.se/

Figure 1: From ad to information

Web harvesting
An ad starts out being a web page that is
gathered by the robot.

Ad extraction
The actual ad is extracted from the markup
of the web page.

Text normalization
Ad text is split into chunks that are well
fitted for running patterns against. I choose
to split the text at the sentence level.

Information extraction
Regular expressions are run against the
sentences in an ad to retreive the desired
information.

Nature of ads
Sometimes the data of interest have what I
would like to call labels while other times
context is used to tell the reader about the
data. To exemplify we can look at apartment
rental ads. My translations of the examples

appear in paranthesis after each sample and
might not be exact, but they suffice for the
point I am trying to make.

For "Hyran ligger på 3207" (The rent is
3207) or "pris 4136 Kr/mån" (Price 4136
crowns/month), the labels are "Hyra" and
"pris" respectively.
In other cases the data is described by
context like
"2100:-/månad (förstahandskontrakt) inflytt
1/10" (2100 crowns/month (first hand lease)
available 1/10) where the fact that it is a
price/month and the mentioning of type of
lease tells us that it is about rent.
Another example is the very short:
"900kr/mån" (900 crowns/month) which
really only consists of a measure and a unit.
The available information, out of context,
only tells us that it is a price, but in the
context of an ad for an apartment
an unlabeled price is likely to be
the price of the apartment.

In my observations it seams like if a price
refers to something other than what one
would expect for a typical item of this kind
it usually carries a label: "Jag kommer börja
arbeta i Köpenhamn och kommer ha en
månadslön på ca 25 000 danska" (I will start
working in Copenhagen and I´ll have a
monthly salary of about 25000
danish[crowns]), which carries the label
“månadslön” or “Hyra 4828:- Deposition
7500:-” (rent 4828 crowns deposit 7500
crowns) which uses the labels ”hyra”
”deposition”.

It seems like for different kinds of ads, or
maybe texts to be more general, there exist
some kind of defaults which tell us what
unlabled data is about. If you look at ads for
bikes, it seems like the only time you would
find any mentioning of the number of
wheels is when it is different from the
default 2-wheel. It would be interresting to
examine to what extent an information
extraction system needs to have knowledge
about such defaults and what influence
cultural differences have on this matter, but

Ad extraction

Text normalization

Information extraction

Web harvesting

Ad on web page

Extracted attributes

there was no time to dwell deeper into this
area.

regular expressions sub language
In an attempt to maintain some order in the
chaos that emerged from testing a lot of
regular expressions and having cleanup or
transformation code that should be run after
a successful match I experimented with
creating a new regular expression definition
language. The main features are that such a
regular expression can

• inherit from another regular
expression

• define cleanup/transformation
• add things that must match

Example. Price pattern:

base pattern 'number_free'
'number_free' => {
 'pattern' => q{\b(\d+[\d.,]*)},
 postprocessing' => [q{=~s/(\s|\.)+//g}]
}

pattern 'rent' which inherits from
'number_free'
'rent' => {
 'ISA' => 'number_free',
 'preceeded_by'=>q{hyra.*?}
}

pattern 'price' which also inherits
from 'number_free'
'price' => {
 'ISA' => 'number_free',
 'followed_by'=>q{ ?(kr\b|:-|\/[md])}
}

First I define the pattern 'number_free'
which matches a wide range of numbers
including “2 000” and “2.000”. I also define
a some post processing which removes
space or dot characters turning both “2 000”
and “2.000” into ”2000”.

Then I create two sub patterns of
'number_free'. The first sub pattern is able
to match the kind of prices that are
preceeded by a label, as mentioned in
'Nature of ads'. It is called 'rent' and is a
'number_free' preceeded by the label 'hyra'.
The second pattern can match a price. It is
called 'price' and also inherits from

'number_free' and narrows the matching by
saying that 'price' is a 'number_free'
followed by a (Swedish) money unit.

Web interface
The web interface consists of a text box in

the left side where the user can enter a query
and then press 'Submit Query' after which
the results will be displayed in the right part
of the browser. It is shown in figure 2.
The results page starts with displaying the
values that have been extracted from the
query and continues with displaying
information from the 'For rent' ads that
match the query. The web application was
created using the Catalyst[4] web
framework.

Evaluation

Scoring
I have used a simple way of scoring, namely
for each attribute to be extracted:
 +1 for correct value
 0 for incorrect value
The learning set has not been included in
these test runs.

For rent ads
The following table show the results for the
'for rent' ads.

attribute correct/
total

percentage
correct

price 114/133 85%
number of
rooms

91/133 68%

size 113/133 85%

Figure 2 The web interface

Wanted ads
The following table show the results for the
'wanted' ads

attribute correct/
total

percentage
correct

price 109/115 95%
wanted
rooms range

71/115 62%

”Price” here is maximum price, ”wanted
rooms range” is the number of rooms the
advertiser wants expressed as a range like ”2
to 4”.

Comment
The closer you desire to come to
being able to extract all information
correctly using this method the more domain
and language knowledge you have to add to
the system.
This fact makes it not feasible to use this
method on a larger scale(across many
different domains). When building this
system I came up with the idea that it
would be nice to have a system which
discovers the patterns itself and that
maybe something like n-grams and manual
tagging could be used to find the
kind of labels I mentioned before.
This might be a
bit naive and would not solve the problem
for data that does not carry labels, but it
could be a starting point for diving into
this problem.
A simple example would be "The rent is
$500" and "The rent, including electricity,
is $1500". Having a corpus of such

sentences and the price tagged, you would
probably get "the" and "rent" as candidate
labels. The system could then try "the",
which would probably get too many false
hits since it is such a common word and
"rent" which would prove to be a good
candidate.

Something similar had already been done
and one example I found was the
AutoSlog[1] system which ”automatically
builds dictionaries of extraction patterns"
and "uses an annotated corpus and simple
linguistic rules". Another would be the
TIMES[2] system.

Conclusion
For a simple information extraction task
within one or few domains, handcrafting
patterns might be the right way to go. But as
the task grows larger and the domains
increase the need for more sophisticated
tools emerges like the aforementioned
AutoSlog and TIMES.

References
[1] Ellen Riloff:Automatically Constructing
a Dictionary for Information Extraction
Tasks(http://citeseer.ist.psu.edu/riloff93auto
matically.html)
[2] AMIT BAGGA, JOYCE CHAI and
ALAN BIERMANN: Extracting
Information from Text
(http://citeseer.ist.psu.edu/588088.html)
[3] Robert B. Doorenbos, Oren Etzioni,
Daniel S. Weld: A Scalable Comparison-
Shopping Agent for the World-Wide Web
(http://citeseer.ist.psu.edu/doorenbos97scala
ble.html)
[4]Catalyst web framework
http://catalyst.perl.org/

http://citeseer.ist.psu.edu/doorenbos97scalable.html
http://citeseer.ist.psu.edu/doorenbos97scalable.html
http://citeseer.ist.psu.edu/588088.html
http://citeseer.ist.psu.edu/588088.html
http://citeseer.ist.psu.edu/riloff93automatically.html
http://citeseer.ist.psu.edu/riloff93automatically.html

	Abstract
	Introduction
	Implementation
	
From ad to information
	Nature of ads
	regular expressions sub language
	Web interface

	Evaluation
	Scoring
	For rent ads
	Wanted ads
	Comment

	Conclusion
	References

