Automatic Identification

of Participants in Discussion Groups

Jakob Carlsson
Vipplingv 7
227 38 Lund
Sweden
dat04jca@student.lu.se

Bobo Wieland
Transtigen 39
262 41 Angelholm

Sweden
bobo@bitbob.biz

January 23, 2006

Abstract

The idea behind this project was to see if you could
create a system that could tell you who wrote a
certain piece of text. The method that we used for
this was to encode the text as numerical data with
an id for each word followed by it’s frequency in
the text. The numerical data was then fed to an
SVM that predicted the author of the text. This
report briefly discusses information extraction from
the internet and describes the thoughts behind the
java application RUU.

1 Introduction

The project idea was to see if there was any pos-
sibility to create a system that could tell you who
wrote a certain piece of text. It was an interesting
area that not too many people had thought of. We
early decided that the best way to get data to test
the system was to download it from discussion fo-
rums on the internet. We also thought about how
to implement the system and found that the easi-
est way would be to use Support Vector Machines
(SVM) for the classification of the text.

At this point we started collecting test and train-
ing data for the project from discussion forums on
the internet. At an early stage we decided that our
first goal would be to have a system that could see
the difference of two people in a discussion between
only these two; our second, and final goal to see the
difference between several people in a discussion be-

tween these and other people as well. At this point
we also started writing our system and we needed
a name for it, after a while the system was named
RUU (pronounced: Are You You) because it can
tell if a text realy is written by a certain person.

1.1 Support Vector Machines

SVM is a method to classify data using vectors and
mathematical models. We downloaded LIBSVM [1]
and used it in the project because it is quite big to
write your own SVM. Since we are beginners on
using SVM for data classification we had to read
through the beginners guide [3] to get a good grip
of how to use SVM.

2 Application Structure

In the following section we will first briefly explain
how we gathered and formated our test data (Sec-
tion 2.1). We will then move on to explain in more
detail how our main application - RUU - works
(Section 2.2).

2.1 Information Gathering

We had some different web forums in mind when we
started to work on this project but soon decided to
use the swedish spoken forum on dvdforum.nu [2].
dvdforum.nu is a web site for movie enthusiasts and
has many active members in their forums. It’s been
online since 1996 and is to some extent a closed

=fuml wersion="1.0" encoding="is0-8859-1" 7>
- <thread xmins="http:/ fdvdforum._nu" title="Den
ultimata Criterion-traden!!":
- =entry length="470">
<trueauthor name="d-boy" type="Medlem"
posts="2000+" />
Ar det ndgon som skulle kunna beriatta
lite om Carnes Children of paradise, samt
hur utgdvan ar?Samtidigt skulle jag

</entry >
</thread>

Figure 1: Example of Criterion.xml

domain since most discussions concerns movie re-
lated subjects. It suited our needs perfectly since
we needed a long forum thread with many posts for
our tests and as many posts as possible from forum
members active in that particular thread.

After finding a suitable test thread, Den ulti-
mata Criterion-traden!! (The ultimate Criterion!
thread!!) with >1100 posts over a period of four
years, we created a simple PHP script to parse
the thread data. The script simply looked at the
HTML source and split the text by the tag pattern
of the code. After stripping out all HTML tags the
script saved the data in a convenient XML format
as Criterion.xml (Figure 1).

By counting the number of posts from different
users in Criterion.xml we could easily single out
our test subjects. We will reference our four test
subjects in the remaining of this rapport by their
screen names - d-boy, JLI, ola-t and von Krolock.

When we knew the screen names of our test sub-
jects it was easy to modify our existing PHP script
to loop through the threads at dvdforum.nu, catch-
ing all posts by either subject and append the post
to a specified XML file; one for each of our five
subjects with their screen names as file names (Fig-
ure 2). At this point we also decided not to use
posts consisting of fewer than 250 characters.

While being an easy and simple way of gathering
data it wasn’t the most efficient one. We started
our loop counter at the then most recent thread
id and went backwards in time from that point
on, looping through each thread, existing or non-

I The Criterion Collection is a line of authoritative con-
sumer versions of "classic and important contemporary
films" on DVD (and on Laser Disc pre DVD era). The qual-
ity of these releases - from picture and sound to packageing
and included extras - are always top-notch.

<7uml version="1.0" encoding="iso-8859-1" 7>
- <author xmins="http:/ /dvdforum.nu" name="JLI">
<zentry length="705"=Det &r vél inte sa
konstigt om ett par av 160 (eller hur
manga det nu exakt ar) filmer mer eller
mindre behandlar lite mer vdgade d&mnen?

Jag hade snarare hojt pa 6gonbrynen om
saken varit den motsatta.</entry=

<zentry length="418"=Ja, Lemming l4ter ju lite
spdnnande. Kanske svanger forbi den

som finns recenserad har.</entry:
</authors

Figure 2: Example of JLI.xml

existing, and each page of each thread (in case it
was spread out over many pages due to it’s number
of posts). After letting the script run for 24-hours
straight and looping through approximately 50.000
threads we hoped that we had gathered enough
data and aborted the information gathering.

After doing some labour-some manual edits to
our test files, removing the signature each subject
put last in all of their posts that unfortunately was
impossible to remove automatically (at least with
our simple PHP script), our information gathering
was complete.

2.2 RUU

RUU is our main java application that converts our
XML files to files that can be used with SVM. It
does not, however, simply convert from one format
to the other but tries to format the text in the XML
files to maximize the final svm prediction rate by
apllaying some simple rules.

RUU does two passes over the supplied data, first
building a dictionary of tokens and the in the sec-
ond pass generating the output.

We will now explain in more detail four parts
of the application; The Sink (Section 2.2.1), The
Tokenizer (Section 2.2.2), the Dictionary (Section
2.2.3) and the svmFileCreator (Section 2.2.4).

2.2.1 Sink

RUU uses a SAX parser to parse the XML files.
We choose to use a SAX parser rather than a DOM
parser since we, at the time of the decision, didn’t
know how large our XML files where to be and if

they would be well-formed or not. In contrast to a
DOM parser a SAX parser reads the XML files a
bit at the time. This means that the whole XML
document will never be in the computers memory
(which could cause problems if the documents are
huge) and it also guaranties that until the parser
encounters an error in the XML syntax it will parse
the data. A DOM parser would abort the attempt
to read the XML document immediately.

The second reason to use SAX rather than DOM
was the simplicity of our XML files and the knowl-
edge that we would only use the parser to read the
data - not to manipulate it.

The Sinks main purpose in our application is to
handle the data sent from the SAX parser. In it’s
basic form it had three important methods for han-
dling XML data; one for handling data sent when
a XML tag is opened, one for handle data when a
tag is closed and one for handling character data.

The actions the Sink takes is different depend-
ing upon what stage of the process RUU are in. In
the first pass that RUU does over the files the Sink
sends the data from all the documents to the Dic-
tionary. In the second pass it sends the data to the
svmFileCreator instead. In both cases all character
data is processed by the Tokenizer.

2.2.2 Tokenizer

A regular tokenizer breaks a character stream into
tokens - separate words - and sentences [4]. Our to-
kenizer breaks the string of words supplied by the
Sink into tokens, but sentences are not generally
taken into account. Before storing a token our to-
kenizer turns all regular characters into lower case
and on top of this scans the input string for spe-
cific patterns and possibly add some of three special
tokens;

1. #SMILEY# - Some regular ascii smilies - i.e.
1) or ;-(- are recognized and are replaced with
this token.

2. #NET SHORT# - The most regular internet
short forms for different expressions - such as
lol (laughing out loud) or isf (swedish for i s&
fall (in that case)) - adds this token to the list.
It does not, as with #SMILEY#, replace the
old token.

3. #NON-CAPITAL# - While sentences are of
no interest to us in general, the Tokenizer does
check ff the first character of a sentence is in
lower case and if that is the case adds this to-
ken to the list.

This special treatment of the input string is done
since it will, supposedly, help SVM to predict who
is who more accurate. To explain our thoughts be-
hind this we have to see ourselves as long users of
the internet. We’ve grown accustom to the way
people express themselves and it feels naturally to
categorize peoples use of words and symbols.

Some users use a lot of smilies in their post - some
use non. Some use a lot of internet abbreviations -
some, again, use non.

Also, to abuse the use of capitalized letters
means, in net-language, to shout. And excessive
shouting is often followed by excessive amounts of
angry replays to the point where the original poster
learns to fear Caps-Lock. This is why we treat
the few capitalized words as a non-capitalized word
since it won’t be a net users regular way of writing.

Finally, many - but far from all - regular forum
posters have the bad habit to, more often than not,
forget to start sentences with a capitalized letter.
If this is because of laziness or fear of Caps-Lock,
we won’t elaborate further on #SMILEY#.

2.2.3 Dictionary

In the first pass that RUU does over the XML
files all tokens returned by the Tokenizer is sent
to the Dictionary. The Dictionary gives each token
a unique label - starting with 1 for the first token,
2 for the second and so on - and keeps track of the
total number of times - it’s frequency - a token is
used throughout the XML documents.

We’ve also added the functionality to store bi-
grams (word pairs) instead of unigrams (single to-
kens), or to store both bigrams and unigrams at the
same time, in the Dictionary. Since bigram and n-
gram predictions themselves can be used to check
authorship of texts this seemed a resonable thing
to do. However - later tests showed us that using
bigrams instead of unigrams gave a great (huge!)
performance hit and a much worse final results, so
we won’t say much more on this matter.

Number of Correct/
subjects Method used | T-limit C / g(e-5) | CV rate | Tot(Valid)
2 Unigrams 1 128 / 12.21 94.84 71/83
2 Bigrams 1 32 / 12.21 92.46 42/83
2 Uni+Bi 1 32 / 12.21 94.05 42/83
2 Unigrams 2 32 /48.83 | 94.84 | 70/110(83)
3 Unigrams 2 512 / 03.05 87.09 80/110
4 Unigrams 2 512 / 03.05 81.10 101/242
4 Unigrams 2 512 /03.05 | 81.10 | 118/1090(242)
Table 1: Final results
2.2.4 svmFileCreator With the two files created - the train file for

After the Dictionary is populated RUU parses the
XML files a second time. This time the Sink keeps
track of the author of the entries (forum posts) in
our test files giving them unique labels, once again
starting at 1 for the first author, 2 for the second
(and so on and so forth)...

After character data has been tokenized the to-
kens for that particular user and entry is stored
along with the frequency for each of the tokens. In
this case the frequency is the number of times the
token has appeared in the current entry and not
the total frequency stored in the Dictionary.

When the Sink encounters the end element of an
entry the svmFileGenerator is used to generate an
SVM suitable representation of the stored data for
the entry in question. This data is appended to
a train file, later to be used by SVM to build a
prediction model.

When all test files are parsed and the train file
is completed, the procedure is repeated once more
for the XML file that should be used to test our
SVM model. When the Sink encounters a entry in
this file that has not been written by one of our
test subjects it - depending on what we’ve chosen
- either completely discards the entry or generates
a new unique label for it (the Sink does not keep
track of other authors of our test files so two entries
posted by he user bitbob will not get the same label
- in fact we increment the label value by one each
time we come across a post that is not from one of
our test authors)).

As before, when encountering the end element
of an entry the svmFileGenerator comes into play;
generating an SVM suitable representation of the
data that gets saved to disc.

building the SVM model and the test file to test
the model on - RUU is done and it is time to let
easy.py give the CPU a run for it’s money.

2.3 easy.py

Throughout the project we’ve followed the guide
lines given in the paper A Practical Guide to Sup-
port Vector Classification [3] and their suggestion
to use easy.py for fast and easy, as well as good,
results.

easy.py is a python script that comes with the
LIBSVM package. It simplifies the use of SVM by
automatically fine tune your files and finding suit-
able values for constants used by the RBF kernel
function. It creates the SVM model and and runs
the model on a test file, if specified.

All of our result data is data given by easy.py

3 Results

While generating train and test files in RUU, we’ve
tried some different approaches, just to see what
gave the best result. In most of our early tests
we’ve used only two of our test subjects; JLI and
von Krolock (since we had most data from these
two). After getting some initially poor final results
we decided to skip the test on Criterion.xml and
use a subset of JLI’s and von_ Krolock’s test files
instead. We’d gotten a fairly good CV rating? on
them (between 80- and 95%) so it felt like a good

2CV stands for Cross Validation and the CV rating is the
probability that SVM guesses right when it uses parts of the
training file as test data (used when easy.py tries to find the
optimal constants)

place to start. We cut out 25% of each file and put
randomly each entry of the data in a new test file.

After sorting out a small error (causing a major
drop i prediction accuracy) in our code we could
see a fairly good result with a prediction rate ap-
proximately 10% lower than our CV value.

From this point we concentrated on tweaking our
variables in RUU for best results. As mentioned be-
fore we had an idea that maybe using bigrams in-
stead of unigrams would give a better result. This
wasn’t the case at all and we noticed a huge per-
formance hit as well as really poor results.

We also, at one point, tried to raise the frequency
of each token by a power of 2 or even 3. While not
taking SVM much longer to process it gave a small
decrease in prediction accuracy (minus 1- or 2%).
So, as the with the case with bigrams, we soon
discarded this idea.

The final modification we tried was to put a lower
limit on how many times, in total a token had to be
used in the text to be considered. Trying different
values we decided to use 2 as the lower limit, mak-
ing RUU discard all tokens that was only mentioned
once in the text. This will include non-standard
miss-spellings, unusual names and other rare char-
acter combinations.

Table 1 shows some of our test results. The left
side of the tables is values we’ve decided in RUU
(T-limit being the lower limit of tokens mentioned
in the previous paragraph) and the right hand side
is the values easy.py calculated for us; C and g be-
ing the constants used by the RBF kernel function
and CV being the cross validation accuracy. The
last column is the final result of applying the train
model on the test file. Correct is the number of cor-
rectly predictions and Tot being the total number
of predictions made (or total number of rows in the
test file). However, when supplied with a test file
that had entries from others than our test subjects
SVM allways predict each row as one of the known
subjects. In these cases the number of valid entries
(entries written by any of our test subjects used in
the test) is written in parenthesis.

4 Conclusion
One of the most important things that came up

during the project was that it wouldn’t be possi-
ble to use this implementation in a real-time sys-

tem, but that was never our intention with RUU.
To have this in a real-time system we must have
a model created before and a direct link between
RUU and the SVM so that we don’t need to create
any files or run an external program in any part of
the process. Another thing is that it takes a lot of
CPU and time to create the model and when fin-
ished the model is quite large so you don’t want to
create a new model to often.

Finally; our test results show us that the more
people that are involved in a disscusion the more
our final results will suffer. Trying to separate and
keeping track of hundreds of people at once proba-
bly will prove to be impossible simply using SVM.

Acknowledgements

We would like to thank Richard Johansson for all
the support and help with the project. Special
thanks to Chih-Jen Lin for fast response and in-
valuable help and advice.

References

[1] Chih-Chung Chang and Chih-Jen Lin. LIB-
SVM: a library for support vector machines,
2001. Software available at http://wuw.csie.
ntu.edu.tw/~cjlin/libsvm.

[2] dvdforum.nu. www.dvdforum.nu. A swedish
discussion forum on http://www.dvdforum.nu.

[3] Chih-Wei Hsu, Chih-Chung Chang, and Chih-
Jen Lin. A Practical Guide to Support Vector
Classification. http://wuw.csie.ntu.edu.tw/
“cjlin/papers/guide/guide.pdf.

[4] Pierre Nugues. An Introduction to Language
Processing with Perl and Prolog. Springer, 2005.

