
A compiler for phonological rules

Hans Jansson
Department of Computer Science, Lund University

Box 118
221 00 Lund,

Sweden,
hans.jansson.667@student.lu.se

Abstract

This is a report of an implementation of a com-
piler for phonological rules. The implementa-
tion processes files written in lexc (Karttunen,
1993) annotation and produces data suitable
for processing with SWI-Prolog (Wielemaker,
2005). The output is a transducer (a Mealy
machine, to be more precise), a finite-state ma-
chine which not only accepts but also translates
its input. Such machines can be used to per-
form spell checking, morphological analysis etc.
The project resembles the lexicon compiler from
Xerox1.

1 Introduction

Implementation of a compiler for phonologi-
cal rules is nothing new. Xerox has already
a set of adequate tools for working with such
rules, these are, however, not open source and
the free of charge copy is limited and for non-
commercial use only. Yet, they have gained
popularity and thusly, their formalisms have
too. Other formalisms and tools for phonolog-
ical facts and rules (e.g., XML-annotated cor-
pora) exists alongside those from Xerox, even
some GPL-licensed ones such as SFST (Schmid,
2001), but many suffer from a common mistake:
everyone likes standards, and thus a new such
is borned. This project aims to be a prototype
for a generic tool, able to generate descriptions
of transducers provided phonological rules and
easy to attach new front- and backends to.

2 Design

To achieve a modular, easily extendable com-
piler, I chose to build front- and backends
around a abstract model of a transducer con-
sisting of start node marker, nodes, labeled arcs
and end node markers. Unfortunately, I have al-
ready found a design flaw in the representation
of the nodes; they are objects, and as such exist

1lexc

uniquely in memory and are therefore already
easily distinguishable, but I added a unique non-
negative integer to each of them, usable only
in the final output. Such details are backend-
specific and should of course be implemented in
the appropriate backends. The needed correc-
tion is however quite small and has no impact
on the design as a whole.

3 Tools

The JastAdd (Ekman et al., 2005) package was
used in the implementation, simply because I
was already familiar with it. It was used on
top of JavaCC (Viswanadha, 2006), a Java com-
piler compiler, and it added advanced features
of which I only used the parts providing as-
pect orientation and abstract grammar. By
using aspect oriented code, no Visitor pattern
was needed to traverse the AST. The choice of
JavaCC turned up to be sinister; when I was
about to implement the lexc frontend I discov-
ered that JavaCC simply couldn’t tokenize cer-
tain parts correctly.

4 Frontend

There is only one frontend in the prototype ap-
plication, for lexc source files. The lexc for-
malism is fairly easy to parse, there is a catch
though: sometimes a string of characters should
be interpreted as one token and sometimes each
character alone should be considered a token.
This can be solved in two ways, by means of
scanner/parser co-operation, where the scanner
asks the parser for the correct interpretation, or
using a stateful scanner, where the interpreta-
tion depends on the current state of the scan-
ner. The first alternative gives no reliable re-
sult within JavaCC, because the scanner may
be several tokens ahead of the parser, and thus
a stateful scanner was made.

There are more quirks though. A normal
lexc file (see listing 1) declares multicharac-
ter symbols before the lexicon part begins, i.e.,

strings of characters intended to be interpreted
together as a single token within the context
where these characters normally should be con-
sidered as several one-character tokens. Since
there are no characters reserved for marking
the start and end of such multicharacter sym-
bols, the only solution is to rely on the scanner’s
feature of choosing the longest possible match
when tokenizing the character stream. All you
have to do is to modify the symbol table of the
scanner by adding the new symbols as soon as
they are defined at the top of the source file,
and the scanner will do the rest as usual. But
because of efficiency issues, JavaCC constructs
new scanners as finite-state automata and no
symbol table is ever used. There is no way to
add new keywords to the scanner at runtime.
The suggested solutions to this problem is to
run JavaCC and compile a new compiler at run-
time (Viswanadha, 2004) (or simply implement
that part of the scanner by hand). I decided
to omit multicharacter symbol support in the
frontend.

The lexc notation includes regular expres-
sions, though they are not as frequently used
as the multicharacter symbols. The regular ex-
pressions forms a sublanguage by themselves
and while they play an important part in com-
pactly expressing complex parts of finite au-
tomata, I found the benefit of including sup-
port for them lower than the cost, since they
wouldn’t contribute significantly to the usabil-
ity of the prototype and yet require work corre-
sponding to that of implementing a whole new
frontend.

Listing 1 A simple lexc snippet
Multichar_Symbols +Pl

LEXICON Root
dog Noun;

LEXICON Noun
+Pl:s #;
#;

Some pitfalls exists regarding the generation
of arcs and nodes from the lexc notation. As
listing 1 shows, an entry in a lexicon may have
no data and an end-of-word-token (“#”). The
absence of data in an entry means that no arcs
will be generated. No arcs means no nodes
to mark as end nodes, which is a problem if
the end-of-word-token is encountered. The so-

lution is to always track the last node generated,
even if it originated in an other lexicon, and to
avoid generating nodes in advance, before it is
known whether they will be used. By storing
the first node each lexicon became connected
to, the problem of finding nodes from preceding
lexicon is solved along with another problem,
the detection of cycles in the transducer. The
first thing done when a lexicon is entered is to
store the previous node encountered, unless that
reference already points to a node, in which case
a cycle has been detected and the processing of
that particular lexicon should return (the lexi-
con has obviously been entered earlier).

5 Internal representation

The internal representation should as far as
possible reflect the transducer as mathematical
idea. In purifying it, the modularity of the com-
piler is preserved and the transducer becomes
available for optimizing algorithms. No such al-
gorithms have yet been implemented, but the
possibility to combine transducers for re-writing
rules with those handling lexicon is essential for
any practical use of a phonological compiler,
and a natural extension of the prototype pre-
sented would consist of algorithms for combin-
ing and optimizing transducers, together with a
frontend for re-write rules.

Figure 1 Abstract representation of a trans-
ducer

6 Backend

One backend has been implemented, produc-
ing Prolog predicates suitable for SWI-Prolog.
The intention is to load the predicates together
with a Prolog interface program bundled with
the compiler, but the external program could
have been included in the file with the pred-
icates without any problems. The predicates
consists of start node marker, arcs and end node
markers, more or less a pretty-printing of the in-
ternal representation. The node representation
has changed though, the interesting parts in the
transducers are the labeled arcs and very lit-
tle information is connected to the nodes, thus
there is no need to build predicates around the
nodes. These are instead represented by unique
non-negative integers.

When building a Prolog program from sev-
eral lexc files, it is convenient to allow several
different transducers in the same program, one
for each lexc file. To avoid mixing up the enu-
meration of the nodes, a Singleton pattern is
used, producing one single sequence of unique
integers during the run of the compiler. Alas,
this enumeration had been put in the internal
representation as mentioned above.

The backend simplifies the syntax of the out-
put to make it more readable. A general arc is
encoded as arc/4, with start node, end node,
lexical form and surface form being its argu-
ments. If an arc contains the same symbol in
both the lexical form and the surface form, it
is encoded as arc/3, where the two forms are
represented by one argument.

Note that multicharacter symbols is no issue
for the backend, if they exist in the internal
representation, they will show up in the Pro-
log predicates. On the other hand, the interface
program must be able to recognize these sym-
bols in the user input. A solution in this partic-
ular combination of frontend and backend would
be to store a list of the multicharacter sym-
bols in the internal representation or passing
them immediately to the backend, then encod-
ing them as predicates; multicharsymbol/1.
This would contaminate the internal abstract
model and break the modularity of the compiler.
A better solution would be to scan through all
arcs in the backend and construct the list of all
multicharacter symbols before encoding them
as before. This strains the Prolog interface;
it must find the longest match when tokeniz-
ing user input. It could be extended but that
would require unnecessary effort. Implementing
a new interface has its advantages, I am free to
choose whatever formalism I prefer, thus, I force
the user to surround each multicharacter sym-
bol with percentage signs, following the princi-
ple of KISS2. No need to encode any symbols as
predicates or juggle tokenization in Prolog, the
(relatively small) burden is laid upon the user
instead.

The user interface in Prolog provides three
predicates:

down(+Atom) finds all possible translations
of Atom from lexical (upper) form to sur-
face (lower) form and prints them.

up(+Atom) finds all possible translations of
Atom from surface (lower) form to lexical

2Keep It Simple, Stupid!

(upper) form and prints them.

listall lists all possible translations. It does not
work for transducers containing cycles, for
obvious reasons.

Listing 2 Prolog representation of a transducer
startnode(0).
arc(0, 1, ’d’).
arc(1, 2, ’o’).
arc(2, 3, ’g’).
arc(3, 4, ’+Pl’, ’s’).
endnode(3).
endnode(4).

7 Conclusions

Starting with an optimistic idea about im-
plementing frontends for both lexc and twolc
(Karttunen and Beesley, 1992), I found out I
had to cut down on my ambition a bit.

The implementation of the backend and the
associated user interface turned out to be easy
to accomplish, mainly because I was able to
rely on Prolog’s backtracking instead of imple-
menting an engine on my own. The cost of
using backtracking is that speed is lost, even
if the transducer could be treated like a deter-
ministic machine, it will be treated like a non-
deterministic dito (which is slower).

The lexc formalism seemed straight-forward
to me, but as I soon discovered, it would have
been easier to implement a scanner of my own
rather than twisting and bending JavaCC for a
task it was not designed to handle. Needless
to say, I did not realize in the beginning that
regular expressions were a whole language on
their own.

It would have been interesting to test the ef-
ficiency of the compiler’s output by compiling
a huge database but that would require a new
frontend, I have not seen such a database in lexc
notation.

Some features which should be implemented
if the prototype is extended:

• Multicharacter symbol support in scanner.

• Regular expression support.

• Algorithms for combining transducers.

• Algorithms for optimizing transducers.

References

Torbjörn Ekman, Görel Hedin, and Eva Mag-
nusson. 2005. Jastadd. http://jastadd.
cs.lth.se.

Lauri Karttunen and Kenneth R. Beesley.
1992. Two-level rule compiler. Tech-
nical Report ISTL-92-2, Xerox Palo
Alto Research Center, October. avail-
able at http://www.xrce.xerox.com/
competencies/content-analysis/fssoft/
docs/twolc-92/twolc92.html.

Lauri Karttunen. 1993. Finite-state
lexicon compiler. Technical Report
ISTL-NLTT2993-04-02, Xerox Palo
Alto Research Center, April. avail-
able at http://www.xrce.xerox.com/
competencies/content-analysis/fssoft/
docs/lexc-93/lexc93.html.

Helmut Schmid. 2001. SFST. http:
//www.ims.uni-stuttgart.de/projekte/
gramotron/SOFTWARE/SFST.html.

Sreenivas Viswanadha. 2004. [javacc]
changing keywords at runtime. an-
swer in a support forum https:
//javacc.dev.java.net/servlets/
ReadMsg?list=users&msgNo=408.

Sreenivas Viswanadha. 2006. Javacc. https:
//javacc.dev.java.net/.

Jan Wielemaker. 2005. SWI-Prolog. http://
www.swi-prolog.org/.

http://jastadd.cs.lth.se�
http://jastadd.cs.lth.se�
http://www.xrce.xerox.com/competencies/content-analysis/fssoft/docs/twolc-92/twolc92.html�
http://www.xrce.xerox.com/competencies/content-analysis/fssoft/docs/twolc-92/twolc92.html�
http://www.xrce.xerox.com/competencies/content-analysis/fssoft/docs/twolc-92/twolc92.html�
http://www.xrce.xerox.com/competencies/content-analysis/fssoft/docs/lexc-93/lexc93.html�
http://www.xrce.xerox.com/competencies/content-analysis/fssoft/docs/lexc-93/lexc93.html�
http://www.xrce.xerox.com/competencies/content-analysis/fssoft/docs/lexc-93/lexc93.html�
http://www.ims.uni-stuttgart.de/projekte/gramotron/SOFTWARE/SFST.html�
http://www.ims.uni-stuttgart.de/projekte/gramotron/SOFTWARE/SFST.html�
http://www.ims.uni-stuttgart.de/projekte/gramotron/SOFTWARE/SFST.html�
https://javacc.dev.java.net/servlets/ReadMsg?list=users&msgNo=408�
https://javacc.dev.java.net/servlets/ReadMsg?list=users&msgNo=408�
https://javacc.dev.java.net/servlets/ReadMsg?list=users&msgNo=408�
https://javacc.dev.java.net/�
https://javacc.dev.java.net/�
http://www.swi-prolog.org/�
http://www.swi-prolog.org/�

