
Information extraction for classified advertisements

David FAURE
david.faure.401@student.lu.se

Claire MORLON
claire.morlon.612@student.lu.se

1. Abstract
This report describes our work on the
project part of the course Language
Processing and Computational
Linguistics. It presents a java written
program that extracts six important
pieces of information from French job
advertisements. The inputs of the
system are advertisements taken from
the internet and converted as text files.
The results presented in this paper
show that the extraction mechanism is
reliable and robust.

2. Introduction
Everyone entering the job market knows
how time consuming the search for a job
is. The main contribution of this waste of
time is the time spent while reading the
advertisements in order to see if the
proposed job can fit with one’s
competences and requirements. From this
observation, we guess how useful a
program that extracts automatically the
interesting information from these job
advertisements could be.
This paper will present a java written
program whose role is to extract six pieces
of information from some internship
advertisements found on the Internet. The
six characteristics of interest for the
internships are: its subject (subject), its
duration (duration), the required study
level (studylevel), the company
(firm) and the place (city) where it
takes place and finally the date when it
starts (beginning).

This paper is organized as follows: After
this short introduction, section 3 presents
the source texts that can be used with the
program, section 4 deals with the
functioning of the written java program.
The results obtained with this program as
well as its evaluation are presented in
section 5.

3. Source texts
The program was developed to extract
information from French advertisements.
The advertisements used throughout the
project were taken from the internet: at
first, we took them on some companies’
web sites. As some information were not
explicit in this case (the name of the
company was for example supposed to be
known), we finally chose to work with
“general” web sites for job advertisements.
The advertisements, chosen such that they
had at least two pieces of interesting
information, where then converted into text
files (.txt) in order to get rid of all web
formats (tables, headers …). These files
were finally used as inputs for the java
program.
We used 15 advertisements as a working
set during the development of the program.
We then applied the final version on 14
other unread texts in order to evaluate the
program more objectively, and to measure
how independent from the texts the results
were. All these 29 texts were hand marked
to make easier the comparison between the
theoretical words of interest and those
found by the program.

4. The information
extraction program

1. Mechanism

The information extraction mechanism in
our program works in two steps:

• Division of the text into blocks
The first task consists in dividing the

text into smaller blocks corresponding
to the different pieces of information
(subject, beginning…), to make the
search of useful information easier and
quicker.

In order to do that, we first look for
keywords in the text, which will
delimit the different blocks. The
program runs through a list of
keywords, and performs pattern
matching for each of them.

For instance, let’s consider a text
composed by the sentence:

Nous recherchons deux futurs
ingénieurs pour une durée de
<duration>6 mois</duration> sur
notre site de production dans le centre
ville de <city>Quimper</city>.

Three key words are found in this
text : durée (duration), site (site) and
ville (city). The first one will thus
introduce a block where there is a high
probability to find an information of
duration. The two other ones are both
related to the city information; they
will thus delimit two blocks
corresponding to city. The blocks
obtained for this example are finally:

1. durée de 6 mois sur notre
2. site de production dans le centre
3.ville de Quimper.

Since several keywords can be found
for the same piece of information (such
as city in the example), all the blocks
corresponding to a same information
are stored into a table. Finally, we store

all these tables into a hashtable whose
keys are the different kind of
information that are looked for. The
final hashtable corresponding to the
example is represented in Table 1.

information blocks

duration durée de 6 mois sur notre
site de production dans le

centre city
ville de Quimper

The idea behind this system is to try

to isolate the relevant information to
avoid searching the whole text. But it is
also a good way to chose the better
solutions in a list of several
propositions, which leads to a better
accuracy. For example, if several
names of cities are present in the whole
text, a global search would normally
detect all of them. But then, how to
choose the one where the internship
really takes place? With our solution,
only the names detected in the blocks
related to city will be kept, as it’s
very likely that the relevant city is
mentioned in those blocks.

• Pattern matching
Secondly, the useful information has to
be detected in the relevant blocks. This
is done with pattern matching. The first
step of this stage consists in removing
the keywords at the very beginning of
the blocks. Then, for each piece of
information, we look for patterns inside
the corresponding block(s). If one
pattern matches, we keep it and store it
in a hashtable. The next section
presents some of the patterns used in
the program. If no pattern is found in
any of the blocks, the same pattern
matching is applied in the whole text,
in case the block division would be
inappropriate. It’s however good to

Table 1: Hashtable listing the different blocks
found in the example and the pieces of

information they are related to

keep in mind that the patterns found in
the blocks give in general a better
accuracy than the ones found after a
search in the whole text.
Since several patterns can be found for
one piece of information, only the first
matched pattern is stored in the
hashtable. Indeed, the useful and
relevant information are often present
at the beginning of the advertisement.

The resulting hashtable
corresponding to the example is
represented in Table 2.

Information Result

duration 6 mois

city Quimper

2. Some patterns used
Here are some examples of the patterns we
used to find the relevant information in the
blocks or in the text.

• In order to find the location of the
internship, we used an alphabetical
list of all the French cities. The
program runs through this list and
for each city, looks in the block or
in the text if it can find it.

• To find the beginning
information, one of the pattern we
used was “month 200[0-9]” where
month was one of the twelve
months of the year.

• For the studylevel information,
we took advantage of the French
system of qualification which has
the type {bac +number between 0
and 7} (Ex.: bac +5). We thus used
as pattern : “bac.{1,5}[0-9]”

• We noticed that the subject
information corresponds often to a
complete sentence introduced by a
subject keyword (“sujet : “,

“intitulé : “, …). Therefore, we
took the first sentence of the
subject block if there is such a
block, or the first sentence of the
whole text in the opposite case.

• To find the duration
information, we used the pattern
“[0-9].mois” (where “mois” means
month in French).

• To find the name of the company,
we took the first line of the firm
block, the name included in the
email address (pattern: "@(.*?)\\."),
or in the web address (pattern:
"(www\\.)(.+)(\\.com|\\.fr)").

5. Results
In order to have a quantitative evaluation
of the performance of our program, we
computed two parameters (precision and
recall) for each of the six desired pieces of
information.
The precision gives an evaluation of the
correctness of the proposed instances; it is
defined by:

nbr of instances proposed correctly
Precision

nbr of proposed instances
=

The recall measures how well the program
finds what was expected; it is defined by:

nbr of instances proposed correctly
Recall

nbr of instances possible to find
=

1. Results for the working set
of texts

The precision and recall average values for
each piece of information obtained with
the 15 texts of the working set are
presented on Fig. 1 and Fig. 2.
We can notice that the city and the firm
information get good results (precisions
over 80% and largest recalls). For the firm
information, this can be explained by the
fact that the name of the company is often
well isolated in the advertisement and
introduced by regular keywords; thus our
system of blocks works quite well for this

Table 2: Hashtable listing the final
results for the example

information. For the city information, this
shows that the use of the city list is very
efficient.

Precision

0,00
0,10
0,20
0,30
0,40
0,50
0,60
0,70
0,80
0,90
1,00

stu
dyle

ve
l

su
bje

ct firm

du
rat

ion cit
y

be
gin

nin
g

Recall

0,00
0,10
0,20
0,30
0,40
0,50
0,60
0,70
0,80
0,90

stu
dyle

ve
l

su
bje

ct firm

du
rat

ion cit
y

be
gin

nin
g

The other parameters get less good results
mainly because of the difficulty to isolate
and delimit very precisely the correct
answers. Indeed, when we have a look to
the proposed instances, we notice that the
program sometimes proposes either only a
part of the correct answer or a bit more
than it.
Fig. 3 and Fig. 4 represent two lightly
modified versions of the precision in order
to quantify more precisely the amount of
“inexact” answers.
In the case of precision 1, an answer is
considered as correct if the instance
proposed by the program contains the
theoretical value. We see on the graph that
only the subject information is concerned
by this case. Indeed, it’s easy to find the

beginning of the subject (with
keywords) but difficult to know where it
ends. Consequently, the program
sometimes takes more words that needed.
At the opposite, precision 2 is obtained by
considering an answer as correct if the
instance proposed by the program is
included in the theoretical value. In this
case, the information studylevel,
duration and beginning are
concerned, especially because the pattern
matching system is too rigid.

Precision 1

0,00
0,10
0,20
0,30
0,40
0,50
0,60
0,70
0,80
0,90
1,00

stu
dyle

ve
l

su
bje

ct firm

du
rat

ion cit
y

be
gin

nin
g

Precision 2

0,00
0,10
0,20
0,30
0,40
0,50
0,60
0,70
0,80
0,90
1,00

stu
dyle

ve
l

su
bje

ct firm

du
rat

ion cit
y

be
gin

nin
g

For instance, for the beginning
information, the program finds “janvier
2006” when the expected answer was “fin
janvier 2006”. Likewise, the study levels
Bac +4/+5 are partially detected (we only
obtain Bac +4). However, a more precise
pattern matching system which could have
improved the results and detected those
kind of missed words would have be too
“hard wired”. It was indeed very difficult

Fig. 3: Precisions obtained if “unprecise”
solutions are accepted

Fig. 4: Precisions obtained if partial solutions are
accepted

Fig. 1: Precisions obtained with the 15
working texts for the 6 parameters of interest

Fig. 2: Recalls obtained with the 15 working
texts for the 6 parameters of interest

to find general rules that could have taken
into account those exceptional cases.

2. Results with new texts
When applied on unread texts, the program
gives the results on Fig.5 and Fig. 6. The
results obtained with the new texts are
plotted in green on the graphs, while those
considered previously are still in blue.

Precision

0,00
0,10
0,20
0,30
0,40
0,50
0,60
0,70
0,80
0,90
1,00

stu
dyle

ve
l

su
bje

ct firm

du
rat

ion cit
y

be
gin

nin
g

Recall

0,00
0,10
0,20
0,30
0,40
0,50
0,60
0,70
0,80
0,90

stu
dyle

ve
l

su
bje

ct firm

du
rat

ion cit
y

be
gin

nin
g

We can notice that the results are very
similar, at least on average: some pieces of
information obtain larger precision and
recall with the working texts, whereas
others have better results with the new
texts. This shows that the results are quite
independent on the texts, and this can
prove than our program is robust enough to
be applied on unknown texts.

The small differences in the results for the
two sets of texts are probably due to the
fact that we used in fact a small amount of
texts, for both development and evaluation.
The results would consequently be much
more reliable if a larger amount of
advertisements was used.�

6. Conclusion
According to the results, the program that
we implemented is reliable enough to get a
good overview of a French job
advertisement. However, all the useful
pieces of information are not always found,
especially because each advertisement has
its own format. It’s therefore very difficult
to establish general rules for pattern
matching. Some improvements, such as
taking advantage of the HTML format
(exploiting the tables to delimit easier the
blocks, using headers to find the most
important information such as subject and
company,…), could have been done if we
had more time.

References

Hugo Etiévant 2004. Expressions
régulières en Java avec l’API Regex
http://cyberzoide.developpez.com

Fig. 5: Precisions obtained with the working
texts (blue) and the unread texts (green) for the

6 parameters of interest

Fig. 6: Recalls obtained with the working texts
(blue) and the unread texts (green) for the 6

parameters of interest

