
Identification of time expressions, signals, events and temporal
relations in texts

Cyril Perrig
ETH Zurich,
Switzerland,

perrigc@student.ethz.ch

Abstract

In this project an approach to time and event
annotation is presented. First time expressions,
signals and events are identified in texts. Using
these extracted features temporal relations
between events are identified. Furthermore
the performance of event recognition with
increasing corpus size is investigated.
We use the widely accepted TimeML specifica-
tion language as an annotation scheme. The
identification tasks are solved by a machine
learning technique called Support Vector Ma-
chines (SVMs).
Finally we report the results we obtained and
discuss conclusions and open problems.

1 Introduction

The goal of this project is to detect all the
features needed to identify temporal relations
in texts and at last to identify these temporal
relations. In other words we want to determine
a temporal relation between two events. For
this we first have to detect time expressions,
then signals and finally events. Due to time
reasons the focus of this project is set on the
detection of events while the identification of
temporal relations itself is not fully explored.
The results of the event recognition is also
compared to a paper from IBM (Boguraev and
Ando, 2005).
The order of detection is important because
detections of a specific item might be used as
a feature input for another detection. Before
explaining these identifications in more details
a short overview of TimeML is highlighted.
Then the machine learning tool used for the
tasks and the experimental setup is reviewed.
In the next section all tasks are evaluated step
by step. Finally the results, conclusions and
open problems are discussed.

2 TimeML

TimeML 1.11 is a robust specification language
for events and temporal expressions in natu-
ral language. It is an XML-based language
and provides all tags needed for our analysis.
Amongst other things it is designed to address
the problem of ordering events with respect to
one another. Besides all these reasons for choos-
ing TimeML it is widely accepted and used in
the language processing research.
In the following subsections all the relevant tags
for this project are briefly explained and illus-
trated with an example. TimeML is by far more
complex and therefore the interested reader is
referred to the TimeML specifications 1.1 (Sauri
et al., 2004) for more details.

2.1 Time Expressions

Time expressions in TimeML are tagged with
TIMEX3 tags. This tag is primarily used to
mark up explicit time expressions, such as
times, dates, durations, etc.
An example TIMEX3-tag (if ”today” is the
2006-01-17):

<TIMEX3 type=”time” value=”2005-01-16T10:00”>yesterday
at 10 am</TIMEX3>

2.2 Signals

The tag SIGNAL is used to annotate sections
of text, typically function words, that indicate
how temporal objects are to be related to each
other. This can either be an indicator of tem-
poral relations (e.g. during, when, etc.) or an
indicator of temporal quantification (e.g. twice,
three times, etc.).

2.3 Events

An EVENT is typically described by a verb,
although event nominals, such as ”crash” in
”...killed by the crash”, will also be anno-
tated as events. Further events have a tense,
an aspect (both optional), and a class. The

1http://www.timeml.org



class classifies the type of event, wheter it is
e.g. a state or an intentional action. All in
all TimeML distinguishes seven different event
types. The attributes tense and aspect can
each have four different values, past, present,
future, none and progressive, perfective, perfec-
tive progressive, none respectively. In Table 1
an example with tense value present is illus-
trated.

Verb group Aspect

teaches none
is teaching progressive
has taught perfective
has been teaching perfective progressive

Table 1: Example with tense value present

2.4 Temporal Relations

Temporal relations are marked with TLINK
tags. It represents the relation between two
temporal elements. Such links can connect
time expressions with events or pairs of events.
There are thirteen different temporal relation
types, e.g. before, after, includes etc.
Let’s consider the following sentence:
”Peter came home at ten o’clock and after
eating, he went to bed.”
Obviously there are three events and one time
expressions in this example. Between the first
event (came) and the time expression (ten
o’clock) the tlink tag is of type simultaneous.
The second temporal relation connects the
two events eating and went to bed with an
after-relation.

2.5 TimeBank

TimeBank 1.1 is an illustration and proof of
concept of the TimeML specifications 1.1. It is
a set of 186 news report documents annotated
with the 1.1 version of the TimeML standard
for temporal annotation. We use this freely
provided illustration as a corpus in this project.
With around 75’000 tokens one has to be aware
that this corpus is rather small.
To end this section an example sentence from
TimeBank 1.1 containing two events is pre-
sented:

On the other hand, it’s <EVENT eid=”e1” class=”OCCURRENCE”
>turning</EVENT>out to be another <EVENT eid=”e84”
class=”STATE” >very bad</EVENT>financial <TIMEX3
tid=”t83” type=”DURATION” >week</TIMEX3>for <ENAMEX
TYPE=”LOCATION”>Asia</ENAMEX>.

3 YamCha

YamCha2 (Yet Another Multpurpose CHunk
Annotator) is a generic, customizable, open
source text chunker oriented towards a lot of
NLP tasks. Further it provides a lot of useful
features which can easily be used by changing
the standard input parameters. If not stated
otherwise we use the standard input parame-
ters of YamCha. Concerning the feature sets
(window-size) the default setting is illustrated
in Figure 1.
YamCha is using a state-of-the-art machine
learning algorithm called Support Vector Ma-
chines (SVMs). This classification algorithm
provides a high generalization performance in-
dependent of feature dimension. Combinations
of multiple features can be trained by using a
Kernel Function. In YamCha only polynomial
kernels are supported.

Figure 1: Default feature set (window-size) set-
ting in YamCha

4 Experimental Setup

First of all the corpus has to be tokenized to
get a ”YamCha-compatible” format. Addi-
tionally all relevant information belonging to a
token, such as e.g. tense, has to be extracted.
Unfortunately the POS (Part-of-Speech) of a
token is not provided in the TimeBank-corpus.
Therefore we used MXPOST3 (Maximum
Entropy Part-of-Speech Tagger) to get the POS
of the tokens.
Another issue we have to be aware of is that
sometimes more than one token is inside an
entity (or tag). The first token of such an entity
is often not very relevant for the detection. An
example is illustrated in the time expression

2http://chasen.org/ taku/software/yamcha/
3http://www.cogsci.ed.ac.uk/̃jamesc/taggers/MXPOST.html



”the last twenty hours” where the determiner
the is certainly not an indicator for a time
expression. Therefore we use the IOB-model
(Inside Outside Beginning) which distinguishes
tokens that begin, are inside or are outside
an entity. In Table 2 the end of the previous
example sentence is presented.
To evaluate the results for the different tasks
the measures recall, precision and F-measure
are used. In the following subsection a short
recall of these measures is given. Furthermore
we use a 5-fold cross validation to get an ”av-
eraged” F-measure. First the corpus is divided
into 5 equally sized parts. Then each part is
once used as a test set (20% of corpus) and
the others as a training set (80% of corpus).
This means that each training set contains
around 60’000 tokens. At the end the average
F-measure of the 5 runs is taken as a reference
measure.

Token POS Event TimeExpr

turning VBG B-occurrence O
out RP O O
to TO O O
be VB O O
another DT O O
very RB B-state O
bad JJ I-state O
financial JJ O O
week NN O B-timex3
for IN O O
Asia NNP O O
. . O O

Table 2: Example illustrating the IOB-model
for the features POS, Event and Time Expres-
sions

4.1 F-measure

As mentioned before the measures recall, preci-
sion and F-measure are used. They are common
when evaluating performance of algorithms in
computational linguistics. The definitions can
easily be explained with the Figure 2 where the
sets A, B and C are shown. Recall measures how
many of the relevant entities that were found.
It is defined as Relevant items retrieved / All
relevant items = B

A+B
. Precision is a measure

of how many of the retrieved entities are rele-
vant. It is defined as Relevant items retrieved
/ All retrieved items = B

B+C
. Recall (R) and

precision (P) are combined into the F-measure

which is the harmonic mean of both numbers:

F =
2 ∗ P ∗ R

P + R

For more information about these measures the
reader is referred to (Nugues, 2005).

Figure 2: Precision and Recall

5 Experiments

5.1 Time Expressions

Extracting time expressions from texts comes at
the first place of our analysis tasks. The only
features used for training are the token itself,
the POS and of course the time expression. In
Table 3 the results for the 5 runs are listed. The
average F-measure is 0.791 which is quite high
considering that only approximately 2’200 time
expressions are contained in each training set.
This means that around 3.7% of all tokens of
each training set are tagged as time expressions.

Recall Precision F-measure

0.590566 0.894286 0.711364
0.718033 0.914405 0.804408
0.723842 0.917391 0.809204
0.791878 0.921260 0.851683
0.770355 0.783439 0.776842

Table 3: Results for Time Expressions

5.2 Signals

For identifying Signals we even have less infor-
mation in the training sets (1’800 Signals per
set). As we already extracted time expressions
these entities are now of use for the next task.
Nevertheless we take all features used for a spe-
cific task from TimeBank and not from an out-
put of our own detection tasks. This fact holds



throughout this project.
The experiment using only the token itself
and the POS results in a F-measure of 0.576.
Adding the time expressions to the features im-
proves the F-measure to 0.616. One reason for
this moderate result is certainly the small cor-
pus size.

5.3 Events

As noted before TimeML provides 7 different
class types for events. Obviously this makes this
analysis task very difficult. On this account we
evaluate the experiment for two different cases.
Once events are recognized without considering
the class type (untyped case) and once we want
to determine the events together with their class
type (typed case). Each training set contains
approximately 7’300 events with unequally dis-
tributed class types.
In Table 4 the F-measure for 7 different exper-
iments are presented. The first 3 rows differ
only in the feature set. In the last row the win-
dow size parameter is increased while using the
same features as in the third row. This experi-
ment is only evaluated for the untyped case be-
cause of the long run-time for training. Further
the untyped case shows that increasing the win-
dow size doesn’t improve the performance. The
evaluation of the typed case using the features
token, POS, TimeExpr and Signal takes around
one hour per run on an Intel Mobile Pentium 4
with 1.7 GHz. Thus the real run-time for an
experiment, using a 5-fold cross validation, is
around 5 hours.
As expected the best results are obtained using
the features token, POS, TimeExpr and Signal
together with the standard settings in YamCha.
These results are only around 3% lower than
the results from (Boguraev and Ando, 2005).
Though their feature vector representation is
much more complex and contains a lot more
features, e.g. word uni- and bi-grams based on
subject-verb-object and preposition-noun con-
structions. Compared to our SVM-approach
they use a classification framework based on a
principle of empirical risk minimization called
Robust Risk Minimization (RRM).
Finally we investigated the performance of
event identification with increasing corpus size.
In the first step the training set size is only
20% of the corpus and therefore of the same
size as the test set. Then the training set size
is increased until it reaches 80% of the corpus
as in the experiments before. Because of run-

time reasons we disclaim the 5-fold cross valida-
tion and only evaluate one run per training set
size. In Figure 3 and 4 the F-measure is plot-
ted against the percentage of the corpus size for
both, the untyped and the typed, case. The
irregularity in Figure 4 is probably caused by
the fact that we do not use 5-fold cross valida-
tion. Apart from this and that the F-measure
is higher in the untyped case the two plots il-
lustrate the same logarithmic trend. They also
show that the point where the performance be-
gins to stagnate is not yet reached. Therefore a
larger corpus can still improve the performance
significantly.

typed untyped
Token/POS 0.551 0.734
Token/POS/TimeExpr 0.557 0.735
Token/POS/TimeExpr/Signal 0.573 0.754
larger window size - 0.751

Table 4: Results for Events

20 30 40 50 60 70 80
0.48

0.5

0.52

0.54

0.56

0.58

0.6

size of corpus in percentage

fm
ea

su
re

 (
te

st
 s

et
 2

0%
 o

f c
or

pu
s

performance of fmeasure with increasing corpus size (typed)

Figure 3: Increasing corpus size (typed case)

5.4 Temporal Relations

Determining temporal relations is even a more
complex problem than event recognition. In
fact TimeML provides 13 different temporal
relation types. To simplify the problem we
focus only on six temporal relation types (be-
fore, after, includes, is included, simultaneous
and identity). Furthermore we only consider
temporal relation between events.
We use a similar approach to the one in
(Berglund, 2004) that builds a feature row
considering two adjacent events. All in all 15
features are used for the temporal relations



20 30 40 50 60 70 80
0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

size of corpus in percentage

fm
ea

su
re

 (
te

st
 s

et
 2

0%
 o

f c
or

pu
s

performance of fmeasure with increasing corpus size

Figure 4: Increasing corpus size (untyped case)

analysis. In the following listing the features
are presented:

• 1. - 5. Token/POS/event/tense/aspect of
first event

• 6. - 10. Token/POS/event/tense/aspect of
second event

• 11. temporal signals between events: [sev-
eral, none, signal token]

• 12. distance measured in tokens: [1, 2t3,
4t6, 7t10, gt10]

• 13. distance measured in sentences: [0, 1,
. . . , gt4]

• 14. distance measured in punctuation
signs: [0, 1, . . . , gt5]

• 15. temporal relation

This feature representation is illustrated on the
following example:
The cat ate some cheese. Then, the dog saw
the cat and chased it. Cheese is good for you.
Three events (e1:ate, e2:saw and e3:good) and
one signal (signal:then) are contained in this
example. This gives us three pairs of adjacent
events with the following representation:

1. ate VBD OCCURRENCE PAST NONE saw VBD OCCUR-
RENCE PAST NONE THEN 7t10 1 2 BEFORE

2. saw VBD OCCURRENCE PAST NONE chased VBD OCCUR-
RENCE PAST NONE NONE 4t6 0 0 BEFORE

3. chased VBD OCCURRENCE PAST NONE good JJ STATE
NONE NONE NONE 4t6 1 1 NONE

If we only consider adjacent events each
training set size contains around 6’650 pairs

of events where around 1’220 pairs possess a
temporal relation. To get more pairs of events
i before and i after (i for immediately) are
mapped to the temporal relations before and
after.
The results of the 5 runs are listed in Table 5
which gives us an average F-measure of 0.195.
The five runs show a quite poor performance
(especially the recall is very low) and a high
variance.

Recall Precision F-measure

0.087227 0.237288 0.127563
0.130159 0.284722 0.178649
0.219355 0.441558 0.293103
0.16 0.360902 0.221709
0.134752 0.183575 0.155419

Table 5: Results for Temporal Relations

6 Conclusions and Open Problems

We showed that SVM is a very powerful algo-
rithm for this kind of text analysis. With a
much easier feature representation we could al-
most reproduce the results from (Boguraev and
Ando, 2005).
The main bottleneck could easily been located
with the very small corpus size. Another prob-
lem is that the entity types are often unequally
distributed, e.g. the TimeBank 1.1 contains
4’452 events of type occurrence and only 51 of
type perception. In the future better results
could definitively be reached with a much larger
corpus.
In the last case of event ordering the results are
quite poor. The task of identifying temporal re-
lations is known to be very difficult, especially
if it is about domain-independent text. But the
results could be easily improved by creating a
larger corpus containing more event pairs. This
can be realized by considering a larger event
window size and not only considering adjacent
events. The best strategy is to take the transi-
tive closure to build event pairs. The number of
related pairs increases and therefore the train-
ing sets provide more training information.
Another approach to improve the results could
be realized by tuning the parameters for the
SVMs. Although in an experiment for the event
recognition task using the 3nd degree of polyno-
mial kernel no improvement could be observed.



7 Acknowledgements

First of all I would like to thank my supervi-
sor Richard Johansson for his patience, support
and good advices. Additionally, I would like to
thank Pierre Nugues for giving me the opportu-
nity to work on this project.

References

A. Berglund. 2004. Extracting temporal infor-
mation and ordering events for swedish.

B. Boguraev and R.K. Ando. 2005. Timeml-
compliant text analysis for temporal reason-
ing. IJCAI-05, pages 997–1003.

P. Nugues. 2005. An Introduction to Language
Processing with Perl and Prolog.

R. Sauri, J. Littmann, R. Gaizauskas, A. Set-
zer, and J. Pustejovsky. 2004. Timeml anno-
tation guidelines, version 1.1.


