
Detection of similarity between documents

Axel Bengtsson
Department of Computer Science

University of Lund
axel.bengtsson@gmail.com

Ola Olsson
Department of Computer Science

University of Lund
ola@matematik.nu

Abstract
This document describes an implemented GUI ap-
plication for detection of syntactic similarities be-
tween documents.

1 Introduction
Similarities between documents is interesting in
many different kind of areas. The purpose can
stretch from different kind of areas such as:� Let the application choose articles such that we

don’t read the same kind of article twice.� Easily detect cheating at assignments.� Easily detect changes between two revisions of
papers, source code etc.

2 How to detect syntactic similarities
between documents

To detect similarities, we choose to implement a
vector based algorithm called the cosine similarity.
This algorithm lets all document represent a vector
in the space. To see if two texts are equal or near
equal, they should have a cosine similarity as near 1
as possible.

3 The program
Our program consists of three modules, Topic de-
tection and tracking, TDT which is a module that
counts the document vectors, LCS, the longest com-
mon subsequence counter and the third module
which is the GUI.

The first module TDT, reads the articles and
counts the word frequency. Then it calculates the
weights of the words and counts the cosine simi-
larity described above. All the words are included
in this calculation except words described in ”sto-
plist.txt”. It returns an ordered list with all the pairs
of articles in descending order of the rank. 1 A
XML-file will be created at this time with all the

1This is the vector analysis number, where 1 is very close to
each other and 0 is not.

weights and word frequency that the document con-
tains. The name of the XML-file is the same as the
filename and then the suffix ”.XML” is added.

The GUI starts up and calls the LCS with the
two documents with highest rank. Every time the
up/down button is pushed, a new call to LCS will be
made.

3.1 Class diagram

Figure 1: Representation of the classes.

3.2 TF-IDF
To give every word in the text a weight, we imple-
mented the TF-IDF term frequency, inverted docu-
ment frequency algorithm. This is seen as (Downie,
1997)

Weight
�
wi j ��� fwi j � log2

�
N

nwi �
Term Meaning
wi j i:th word in document j
fwi j Frequency for word wi j
N Total number of documents
nwi Number of documents wi occurs in

This is trivial math but does explain some effects
of the formula:� If a word occur in every text, the weight for

that word will be zero in every document.� Two words can have different weights, it de-
pends on which document it is in. The log term
is constant in this sense but the frequency of the
word in the document may differ.� If a word only occur in one text that certain
word will (of course) get fi j � log

�
N � which is

the biggest weight a word can get.

This means that, the more a word appears in all
the texts, the less weight it will get. To get a high
weight, the word should appear very often in as few
texts as possible. When the TF-IDS has selected
the two articles which is most equal, we are run-
ning these articles through a LCS algorithm. This
algorithm detects which words are the same in both
articles and paints these red in the GUI. Observe
that the words found in the algorithm doesn’t have
to be consecutive. We have slightly modified the
well known recursive algorithm in two ways, first
we have made it iterative and secondly, we are run-
ning it through words instead of single characters.

3.2.1 Cosine similarity rate
After the TF-IDF algorithm, every word in every
document has got a weight. Now we define the sim-
ilarity between two documents as:

Rate
�
X � Y ��� ∑wi 	�
 X � Y
 xwi � ywi�

X
� � �

Y
�

Term Meaning
wi j i:th word in document j
X A document
Y A document
xwi The weight of word wi in X
ywi The weight of word wi in Y�
X

� �
x2

w1 � x2
w2 ��������

Y
� �

y2
w1 � y2

w2 �������
First, the program looks up all words which ap-

pears in both documents. The word weights are
multiplied together and sums up for each word. This
sum is divided by the product of both document
norms. This formula will run through all � n

2 � pairs
of documents.

3.2.2 LCS
The LCS is often based upon a recursive algorithm.
Imagine two strings, X ��� x1 � ����� � xi � and Y ���
y1 � ����� � y j � . The recursive solution is based on the
fact that if xi and y j is the same character, then the
LCS of the two strings is the same as the LCS of
x1 � ����� � xi � 1 and y1 � ����� � y j � 1 and then add xi to the so-
lution.
If xi �� y j , we say that the LCS of X and Y is the
maximum length of one of the two subproblems
LCS

�
X � y1 � ����� � yi � 1 � and LCS

�
x1 � ����� � xi � 1 � Y � . This

means that if the last two characters are not equal,
the problem can be reduced to two subproblems,
one subproblem that runs LCS with whole Y and
deletes the last character from X and the other sub-
problem runs LCS with whole X and deletes the
last character from Y . This follows cause we are
comparing two strings and if their characters don’t
match, then one of the characters is worthless.

The base of the recursion is when the argument to
the algorithm is the empty string, then the algorithm
returns the empty string.

LCS � i � j � �"!# $ ”” i f i � 0 or j � 0
LCS � i % 1 � j % 1 �'& xi i f xi � x j
max � LCS � i % 1 � j �(� LCS � i � j % 1 � � otherwise

2

However, this method is really slow because of the
recursive steps. The worst case happens when i � j
and when the strings doesn’ t have a common char-
acter at all. Of course, in this case the strings can
have a maximum length of the number of characters
in the alphabet. Anyway, the worst case calls the
last row in (3.2.2) all the time which splits the prob-
lem in two parts. In the worst case, this call will be
made i times. This means that the time complexity
of the solution is O

�
2n � 3 which is totally unaccept-

able in our program. Of course some of these sub-
problems are the same and can easily be treated by
memoization (probably using a hash) but we agreed
on implement it iteratively. To find out how to make
an iterative solution we can gain information from
the recursive solution. If we think of the problem as
a matrix:

The recursive solution starts at the right-bottom
corner of the matrix and checks whether the charac-

2In this document and context the operator plus is over-
loaded as concatenation of strings, and the function max returns
the argument which has the longest string.

3Here, n is the length which is equal to i and j

ters are the same or not. If they are the same, the
celli) j is equal to celli * 1) j * 1 + whats in celli) j . Else,
the celli) j will be equal to max(i * 1) j i) j * 1).

If we make a matrix of the two strings and follow
the recursive solution of this matrix, then we simply
see that the recursive solution can be written as two
for-loops which starts in the right-bottom corner and
works its way up to the left-upper corner where the
solution will be stated.

for(int x=i;x>=0;++x)
{
for(int y=j;y>0;++y)
{
if (X[x]==0 || Y[y]==0) ResultMatrix[x][y]="";
if (X[x]==Y[y])
ResultMatrix[x][y] = ResultMatrix[x+1][y+1] + X[x];
else
ResultMatrix[x][y] = max(ResultMatrix[x][y+1],ResultMatrix[x+1][y]);

}
}

This means that a certain cell in the matrix is ei-
ther a 0 which means that the letters are not equal,
or the letter itself + the letter (or string) in the cell
down one step and then one step to the right. This
makes the solution a O

�
n2 � in time which is much

better than O
�
2n � . An example of how our algo-

rithm calculates the LCS of the strings ”HOUSE-
BOT” and ”COMPUTER”.

Figure 2: Note that the result from this algorithm
does not provide us a valid result for substrings of
these strings. To get that, we should run the algo-
rithm forward instead of backward.

4 Screen shots and test runs
The program requires Java 2 Standard Edition 5.0
and can be started as follows:

java CheckArticles

A file chooser window will appear. You choose
your multiple articles by pressing the control key
(or shift). 4 The program reads and calculates data
and a progress bar will guide you through this step.

4Files have to be chosen from the same directory.

After this, a GUI will appear where the words ap-
pearing in both articles in same order are marked
red. The articles that will be shown at the start of
the GUI are the 2 articles of � n

2 � 5 that got the high-
est rating with our TF-IDF algorithm. When using
the up/down buttons you will go through the docu-
ments in ascending/descending rank order.

Figure 3: Two documents are shown and the red
marked text is the LCS.

5 Quality assurance
To see whether our functions are work as they
should we made some test cases and predicted the
result before running them on our program. The
main items we wanted to test is the cosine similarity
function and the LCS.

To test them, we made three files containing this
information 6

File1

Hello everybody. this is a test Ola and Axel.

File2

Hello anyone. What may be the deal.

File3

Hello anybody. Great program Ola and Axel.

Before we ran these files in the program we ex-
pected four things.

1. The word ”Hello” must get word weight 0 in
every document because log21 � 0.

2. File1 and File3 is the pair of files which should
get the highest cosine similarity rate. This is
because of the words ”Ola and Axel”.

3. File1 to File2 and File2 to File3 are the rest of
pairs and these pairs are worth nothing.

5If n is the total number of documents, this will be the num-
ber of pairs

6Dont care about the semantics of the sentences, it is just
test cases.

4. The LCS of File1 and File3 should be ”Hello
Ola and Axel” because the other words isnt
contained by the other string respectively.

We ran all the tests and the predicted results were
correct.

Another test to run through the LCS is at text
which contains a word only one, against the same
text but reversed. The LCS algorithm should dis-
play one word in red. Imagine the text:

This is a test.

If we run this text against the reverse

.test a is This

, the red marked word could be any of the words
in the two sentences depending on how one has im-
plemented the max function. The important thing is
to understand that not two words will be red. This
is because of the reversing text. Suppose that the
strings are build like X ��� x1 � x2 � ����� � xn � , the other
string Y will look like � xn � xn � 1 � ��� � x1 � . Suppose
we find a word which must be in our LCS. Say xk
where k + 1 , n. Then, this word must be the word
yn � k in Y. After some iteration we find a new word
to be in our LCS, say xl where l � k. This means
that this word is found in yn � l where l � k. Because
l � k, it means that the second word is before the
first word which is not possible in LCS.
The word which got red in our program was: ”a”
This is because we didnt implement a max function
ourselves.

6 Statistics
To get a good understanding of how good our appli-
cation is, we tried it on several documents, some
of them were intended to give some result while
other documents were copied directly from news-
papers. We chose two subjects from the newspapers
that have been pretty large in the last weeks, namely
”wilma” and ”the bird disease”. 10 documents from
each subject were collected from DN, Aftonbladet,
Expressen, Sydsvenskan, TT.se and other big news
sources. First, both of us, independently of each
other ranked all the pairs of documents based upon
the LCS and give the pairs a grade between 1-5.
After that we compared our ratings and they were
exactly the same but one or two pairs. We ran
the articles through the program and the result was
that almost every document got a TDT rating very
good compared to our LCS rating except those pairs
where one of the document was much larger than the
other one.

7 Conclusions
We think that the assignment was perfect in time
measure. We also liked the subject and we had ab-
solutely no problem with coding whatsoever. The
problem was to get the idea of how the TF-IDF
works but Pierre explained it very good.

What we could conclude from the statistics is that
the program is very good at finding similar doc-
uments when the papers are approximately in the
same length. Otherwise, if one of the documents are
a proper subset of the other but far more smaller, the
TDT will be very low. Maybe it is good, maybe not,
it depends on the purposes. It is now possible for a
student to copy another students paper and keep on
writing without the notice of the TDT, but the LCS
will cover it, if the teacher will search through all
the pairs graphically.

Something notable is also that it was the first time
we used CVS and that worked very good as well.

8 Acknowledgments
We would like to thank Pierre for the help and
for assistance with books and Rolf Karlsson who
sent us the lecture notes of Dynamic Programming
(Karlsson, 2005).

References
J. Stephen Downie. 1997. Term weight-

ing: tf*idf. Webpage, September24 .
http://instruct.uwo.ca/gplis/601/week3/tfidf.html.

R. Karlsson. 2005. Lecture 5: Dynami program-
ming.

