
Requirements Analysis

Stephane Clinchant
ENSEEIHT

Lund University
stephane.clinchant@netcourrier.com

Abstract

This paper presents the attempts to adapt the
minimal edit cost algorithm for sentences in or-
der to compare two requirements. These re-
quirements are two short texts strongly related
we want to compare. What is similar ? What
is new ? are the questions we want to answer.

1 Introduction

One of the first and fundamental activities in
a software process is requirement analysis. The
system’s services constraints and goals are es-
tablished by consultation with system users and
defined in a manner which is understanbled by
boh users and developpement staff. Domain un-
derstanding , Requirement collection , Classifi-
cation , Conflict Resolution , Prioritization and
requirement validation are main activities in re-
quirement analysis. This project is related to
classification: this activity takes the unstruc-
tured collection of requirement and organized
them into coherent clusters. In market driven
software development there is a strong need for
support to handle congestion in the require-
ment enginneereing process. To meet the mar-
ket demands it is important to have an effective
and efficient requirement engineereing process
to deal with a numerous flow of incoming re-
quirements.

2 Aim of the project

This project was suggested by Obigo a mobile
phone software company. An analyst work on 2
sets of requirements: the old requirements and
the new requirements, which could be for exam-
ple :

Old: SMS messages may contain up
to 140 characters
New: SMS messages must contain
240 characters including ISO charac-
ters.

A part of the analysts’ work is spent on
matching pairs of old and new requirements and
identifying changes. His first task is to link sim-
ilar requirements, to detect requirements refer-
ring to the same need , functionnality. It is a
classification activity to find the structure and
the relations between the requirements. The
second task is to find the change , the new
constraints , the difference between the related
requirements. In the example, the important
changes here are may → must, 140 → 240 and
a new constraint: including ISO characters.

This project aims at improving requirement
analysis and saving time of Obigo’s analysts.
We focused on sequential sets of requirements
and compare the new and the old ones. To
streamline analysis , the following process was
proposed :

• Use the tool of Johan Natt och
Dag, ReqSimile to find the similar
requirements

• Find the difference, the change
between the pair of requirements
:this is the aim of this project.

The language processing project was to im-
plement an algorithm to detect and quantify
the changes between two similar requirements.
Thus, the analysts would be able to explore
quicly the sets of requirements, find relations
and detect the changes.

3 Minimun Edit Cost Algorithm and
Alignments

The idea to explore in order to compare two
short texts was to try to adapt the minimun
edit cost algorithm for sentences and provide
an alignment to compare them. Alignments
and the minimun edit cost algorithm (MCA)
are strongly related since the minimun edit cost
produce an alignment. A definition of an aligne-
ment could be a sequence of operation which

transforms a sequence of symbols (the source)
into an other (the target). Operations acts on
symbols , can be copy (of symbols), insertion,
deletion, substitution and have a cost. Letters
are the symbol type for the classical minimun
edit cost algorithm. A sequence of symbols is
a word and the algorithm measure the distance
between two words. Symbols can also be ADN
bases in order to compare genomes. In this
project symbols are words in the same language.
But what is important to keep in mind is that
an alignment is a way of matching elements of
the source with the target. Here is an example
of a possible alignment for the previous require-
ments

[copy(sms),copy(messages),subs(may,must),
del(up),del(to),subs(140,240),
copy(characters),ins(including),ins(iso),
ins(characters)]

The MCA is part of dynamic programming and
gives alignments with the minimal cost. It is
significant to underline the fact that there ex-
ists most of the time several possible align-
ments for one source and one target.The MCA
equations stand for the possibilities a sequence
source can be transformed into the sequence
target. Basically there are 3 ways to do this.
Suppose we have two sequences [a1, . . . , an] and
[b1, . . . , bn]. First we can suppress an and trans-
form [a1, . . . , an−1] into [b1, . . . , bn]. A sec-
ond way to proceed is : if an = bn or if we
substitute an by bn we only need to trans-
form [a1, . . . , an−1] into [b1, . . . , bn−1]. Lastly ,
if we know how to transform [a1, . . . , an] into
[b1, . . . , bn−1], we just need to insert bn.

More formally, if E is the edit cost of two
sequence and c(.) the cost of an operation The
minimun edit cost algorithm is defined by these
equations:

E([a1, , an], [b1, , bn]) =

min





E([a1, , an−1], [b1, , bn]) + c(del(an))
E([a1, , an−1], [b1, , bn−1]) + c(subs(an, bn))

E([a1, , an−1], [b1, , bn−1]) + c(ins(bn))

E([a1, , ak], []) = k E([], [b1, , bk]) = k

The costs of operation in the classical algorithm
are

cost(ins) = 1 cost(del) = 1
cost(copy) = 0 cost(subs) = 2

To get the alignment , a matrix is filled with
the cost of intermediary transformed sequences.

Then , an alignment is obtained by a path in
this matrix.

4 Hypothesis

To investigate the adaptation of MCA , I first
limit my approach by not doing any linguistic
process but just to use and apply the the basic
algorithm to observe basic results. For exam-
ple, we could say that the insertion of the word
”and” costs zero because it does not bring sig-
nificant information in the new requirement.So
I did not try to tune this algorithm linguisti-
cally. One of the most important observation, is
that there are several possible alignments.When
I developped my algorithm, my goal was to con-
struct all the possible alignments and to choose
the best one with an heuristic.There is one sim-
ple reason for multiple alignment. In the ex-
ample of requirements, the word ”characters”
occurs two times in the new requirement. So
the ”character” from the old requirement can
be linked in two different places in the new re-
quirement.

5 Factorization

Another reason is if we use the classical MCA
we will obtain similar alignments which leads
to the same matching of words. If x and y are
two symbols, inserting x then deleting y is the
same than deleting y then inserting x which is
the same than substituting y by x.

ins(x), del(y) ∼ del(y), ins(x) ∼ subs(y, x)

We get the same matching of words but we are
only intereted in a reduced form, the short-
est alignment among its similarity class. So
I decided to suppress the substitution opera-
tion from the algorithm so that it produces
sequences of operations which are only inser-
tion, deletion or copy. The next step was to
factorize , to reduce the alignment in order to
find the set of possible and interesting align-
ment. copy(x), subs(y, w) is the same than
copy(x), ins(w), del(y) but the first form is the
best to keep. If we want to reduce an aligne-
ment, we have to consider more complicated
similarity forms. As I suppressed the substitu-
tion operation, I can obtain alignement whose
parts are such that:

ins(x1), del(y1), ins(x2), del(y2), . . . , ins(xk), del(yk)

I need to factorize it and the problem was there
was several way to do it. For example if we

have:

ins(x1), del(y1), ins(x2), del(y2)

This can be factorized in two ways:

subs(y1, x1), subs(y2, x2)

ins(x1), subs(y1, x2), del(y2

and we can not know which form is the best. If
F is the Factorization function, the simple case
are

F (Copy :: tail) = Copy :: F (tail)

F (Ins :: Ins :: tail = Ins :: F (Ins :: tail)

F (Del :: Del :: tail = Del :: F (Del :: tail)

F (Del :: Ins :: a :: tail = Subs :: F (a :: q)

where a = Copy or Ins

F (Ins :: Del :: a :: tail = Subs :: F (a :: q)

where a = Del or Copy
The complicated case is whenever there is a
sequence of ins, del or a sequence of del,ins.
Wether the number of couple ins,del be pair or
not , there is always two possibilities to under-
stand and to factorize this sequence:

• Take the first pair of ins,del (or
del,ins) and group the other pairs
after. If the number of sequence is
unpair there is one operation left.

• Take the first operation and form
the first pair with the second and
the thrid operation. If the num-
ber of sequence is pair there is one
operation left.

6 Results

So I developped a component for reducing align-
ment and I obtained 18 factorized alignment for
the requirement example. I should have worked
on heuristic at this time but I developped a sim-
ple GUI to display alignment and the matching
of words with color codes. I had one idea about
a heuristic at this time: alignments wih inser-
tions at the end are more likely to be better
than the others because people tend to add new
elements at the end of a requirement when they
rewrite them.

Then, I ran my algorithm on real require-
ments from Obigo which were much longer and I
obtained something like 8 thousands alignments

! It was a exponential and combinatorial prob-
lem. To face this, I had to think to new ways
to proceed:

• The first idea is to ”to divide and conquer”
and split the requirement in sentences and
align sentences first and then align words.

• Drop the idea of finding the ”best” align-
ment among the set of all possible align-
ment but just take one alignment with an
heuristic.

I only had time to explore the second idea:
my heuristic was to favorize insertion at the end.
I had also a new idea : highlight the new words
in the new requirement. New words in the re-
quirement show the analyst which part of the
requirement has been changed and need to be
read. All the copy operation in the alignment
show what is identical in the requirements.

7 Conclusion

Aligning two sentences is a very difficullt task if
we do not take into acccount linguistic informa-
tion. In translation where they also align sen-
tences they exploit the structure of the sentence
and linguistic information to find an alignment.
But what the analyst is interested in , is to see
what part of the requirement are identical and
what is new. Taking one alignment is a sim-
ple and effective solution but there is work to
do on how to display graphically the difference
and the similarity of two text so that it is easy
to see for the human eye.

8 Acknowledgements

I would like to thank Pierre Nugues, Johann
Natt och Dag from Departement of Computer
Science at Lund Universoty and Sven Olof
Karlsson from Obigo for their help and advices
during this project.

References

K.Yamada C.Goutte and E.Gaussier. Aligning
words using matrix factorisation. Xerox Re-
search Centre Europe.

C.Brockett C.Quirk and W.Dolan. Monolingual
machine translation for paraphrase genera-
tion. Natural Language Processing group Mi-
crosoft Research.

S.Brinkkemper J. Natt och Dag, V.Gervasi and
B. Regnell. Speeding up requirements man-
agement in a product software company.

Pierre Nugues. An Introduction to Language
Processing with Perl and Prolog.

H.Garcia-Molina S.Chawathe, A.Rajaraman
and J.Widom. Change detection in hierarchi-
cally structured information. Departement of
Computer SCience Stanford University.

