
Grammar Checker

Markus Malmsten
Department of Computer Science

Lund Institute of Technology
Sweden,

e99mm@efd.lth.se

Simon Klasén
Department of Computer Science

Lund Institute of Technology
Sweden,

e99sk@efd.lth.se

Abstract

The goal with our project was to implement a
grammar checker prototype. The work was in-
fluenced by the paper intelligent writing assis-
tance (Heidorn, 2000), which describes the Mi-
crosoft word grammar checking technique. Our
implementation uses a Perl script for text for-
matting and the Charniak parser for part of
speech and syntactic tagging. The analyzing
part was implemented in java.

1 Introduction

The goal with our project was to implement a
grammar checker prototype. The purpose with
a grammar checker is to check a text for gram-
matical errors that a grammar book would dis-
cuss. A grammar Checker can also include sup-
port for style checking (good writing style), but
this is not part of our system.

One of the first widely used grammar checker
was Writers Workbench (Macdonald et al.,
1982) which was developed for Unix systems
about 25 years ago. Today the built-in grammar
checker in Microsoft Word probably is the most
widely used one. It is based on the work that
was started by the natural language process-
ing (NLP) group at Microsoft Research in 1992.
Our work was influenced by the paper intelli-
gent writing assistance (Heidorn, 2000) which
describes the Microsoft Word grammar check-
ing technique.

The biggest difference between the Microsoft
Word and our solution is that Microsoft Word
is a total solution where all the necessary parts
for grammar checking are all built in, while in
contrast our solution is divided into three main
steps. The steps are text formatting, parsing
and analyze, which is taken care of by different
tools.

To start with we must tag the input data(the
text that should be analyzed); this is done by
a simple Perl script that just delimits the sen-

tences with a tag which makes the text ready
for parsing by the Charniak Parser.

The Charniak parser takes the tagged input
data and performs part of speech and syntactic
tagging based on the Penn Treebank (Marcus
et al., 1993) tagset. The result is a parse-tree
delimited by parenthesis.

Finally is the rule-based analyzing part im-
plemented in Java. We also developed a simple
GUI which simplifies the usage of the system.
Basically there is one input area for a Charniak
parse-tree and an output area that displays the
original text including suggested corrections.

2 Implementation

2.1 Overview
We have used three programs in our project;
one Perl-script for formatting the original text,
one parser that produces a tagged tree and our
own Java program which reads the output from
the parser, builds a tree and applies the imple-
mented rules and presents the result in a GUI.

2.2 Perl-script
The Perl-script delimits each sentence by adding
the <s> ... </s> tags. This format is required
by the Charniak parser.

2.3 Charniak parser
We chose the Charniak parser to do the part-of-
speech and syntactic tagging. Collins was the
other suggested parser but that was neglected
due to its much longer running time and the
fact that it was 10 times larger. The Charniak
parser takes the delimited sentences supplied by
the Perl-script and produces a tree in text form
where the branches and nodes are enclosed by
parentheses.
2.3.1 Penn Treebank style
The tagset used by the Charniak parser is the
one constructed by the Penn Treebank project
(Marcus et al., 1993), which is a large annotated
English corpus. The Penn Treebank tagset is

based on the pioneering Brown Corpus which
consists of 87 tags. Other tagsets uses up to
around 200 tags. The Brown tagset was how-
ever pared down considerably. A key strategy
in reducing the tagset was to eliminate redun-
dancy by taking into account both lexical and
syntactic information. The resulting tagset con-
sists of 48 part-of-speech (see Appendix A, table
1) tags and 14 syntactic tags (see Appendix A,
table 2).

2.4 Grammar Checker
2.4.1 System
Our program consists of 3 classes and one main-
method. The main-method creates an instance
of a GUI-object which includes two event han-
dlers. The event handlers are bound to buttons,
one for choosing a file and the other for execut-
ing the implemented rules.

It is also in this event handler that the tree is
constructed through the method buildTree() in
the class CorpusHandler. This function returns
a PennNode-object which is the root of the tree.
By invoking methods on this root node different
rules can be applied and the modified content
can be requested which is then displayed.
2.4.2 Building the tree
The program starts with storing the text pro-
duced by the Charniak parser in a string. The
parentheses structure of the string is then used
to decide when new nodes should be created and
what they should contain. When a left paren-
thesis encountered, a new child is created and
it becomes the current node. The tag type for
the new node is the following word. There are
now three possibilities; if the next character is
a left parenthesis then a new node is created as
above, if its a right parenthesis then this closes
the node and the parent node is set to be cur-
rent node and if its neither of these then the
word is the content of the node i.e. a word in
the input sentence. In each node we also store
which depth in the tree it is in. This can then
be used in the search algorithms.
2.4.3 Rules
The rules are applied on each sentence and are
recursive. A finite state machine is used to
keep track of what to search for and when a
correction should be suggested. A special self-
constructed node type, FLAG, is inserted if an
error is found and it contains a text explaining
to the user what can be corrected. Our rules
are applied sequentially but they do not affect
each other. However the inserted FLAG-nodes

must be taken into consideration during the im-
plementation of further rules.

2.4.4 GUI
There are two events that can be triggered in
our program. First a file can be chosen by click-
ing the File-button and secondly the Submit-
button which creates tree, runs the algorithms
on it and finally prints the resulting tree and
text to the lower window. You can chose which
rules you want to apply by using the checkboxes
at the top. There is also an option to hide the
tree structure. See Apendix B for a screenshot
of the GUI when the system analyzes a simple
sentence.

3 Evaluation

3.1 Testing

Testing of the rules was done in parallel with
program construction, one rule at a time. Our
initial test samples were just single sentences
which had the errors that a specific rule should
trig on. After some modifications of the rules,
the system was behaving as expected for the
single sentences. Everything seemed to work
fine.

The real problems started when we tried a
larger test corpus. It turned out our rules were
to general and was trigged not only when there
was an error, but also when the sentences were
grammatically correct. The main reason for the
behavior was that we were analyzing too small
parts of the sentences; we focused at the part of
speech tags. This was solved by adding a depth
value to all nodes in our parse tree, which en-
abled us to adjust the rules in respect to bigger
text blocks, e.g. subordinate clauses.

The size of the test data was not large enough
to make any statistic analyses of the system ac-
curacy. A randomly chosen corpus downloaded
from internet indicated the system to work cor-
rect, finding the errors and in the same time not
trigging on any correct sentence.

4 Conclusions

Even though our grammar checker was inspired
by the one found in Microsoft Word, the meth-
ods are not the same. The one found in Mi-
crosoft Word utilizes a recursive algorithm ap-
plied to top nodes. Depending on the type of
the node, it applies the subset of rules that are
applicable for that type of top node. Our ap-
proach on the other hand uses a finite state ma-
chine that steps through the text word by word,

in order. To determine whether we still are in-
side the same clause we use the depth attribute.
We check one rule at a time, sequentially, which
means we keep one object containing the current
state of our search. This object differ depend-
ing on the rule, and the type of node we search
for depend on the current state. When the final
state is reached and the requirements are met,
a ”FLAG”-node is inserted and the state ma-
chine is reset, or set to a specific state, depend-
ing on the rule. Our approach is of course more
expensive, but for our purpose if was sufficient
and resulted in code that is easier to understand
and maintain.

A problem we encountered that would have
made it even more difficult to utilize the Mi-
crosoft Word approach was that for incorrect
sentences the whole structure of the tree pro-
duced by the Charniak parser was altered. This
means that it is not sufficient to look at a cor-
rect sentence for patterns to which to look for.
We got around some of those issues by looking
at the text in order.

References

George E Heidorn. 2000. Intelligent writing as-
sistance.

NH Macdonald, LH Frase, P Gingrich, and
SA Keenan. 1982. The writer’s workbench:
Computer aids for text analysis.

Mitchell P. Marcus, Mary Ann Marcinkiewicz,
and Beatrice Santorini. 1993. Building a
large annotated corpus of english: The penn
treebank.

Appendix A

1. CC Coordinating conjunction 25. TO to
2. CD Cardinal number 26. UH Interjection
3. DT Determiner 27. VB Verb, base form
4. EX Existential there 28. VBD Verb, past tense
5. FW Foreign word 29. VBG Verb, gerund/present perticiple
6. IN Preposition/subord. conjunction 30. VBN Ver, past participle
7. JJ Adjective 31. VBP Verb, non-3rd ps. sing. present
8. JJR Adjective, comparative 32. VBZ Verb, 3rd ps. sing. present
9. JJS Adjective, superlative 33. WDT wh-determiner

10. LS List item marker 34. WP wh-pronoun
11. MD Modal 35. WP$ Possessive wh-pronoun
12. NN Noun, singular or mass 36. WRB wh-adverb
13. NNS Noun, plural 37. # Pound sign
14. NNP Proper noun, singular 38. $ Dollar sign
15. NNPS Proper noun, plural 39. . Sentence-final punctuation
16. PDT Predeterminer 40. , Comma
17. POS Possessive ending 41. : Colon, semi-colon
18. PRP Personal pronoun 42. (Left bracket character
19. PP$ Possessive pronoun 43.) Right bracket character
20. RB Adverb 44. ” Straight double quote
21. RBR Adverb, comparative 45. ‘ Left open single quote
22. RBS Adverb, superlative 46. “ Left open double quote
23. RP Particle 47. ’ Right close single quote
24. SYM Symbol (mathematical or scientific) 48. ” Right close double quote

Table 1: The Penn Treebank POS tagset

Tags

1. ADJP Adjective phrase
2. ADVP Adverb phrase
3. NP Noun phrase
4. PP Prepositional phrase
5. S Simple declarative clause
6. SBAR Clause introduced by subordinating conjunction or 0 (see below)
7. SBARQ Direct question introduced by wh-phrase
8. SINV Declarative sentence with subject-aux inversion
9. SQ Subconstituent of SBARQ excluding wh-word or wh-phrase

10. VP Verb phrase
11. WHADVP Wh-adverb phrase
12. WHNP Wh-noun phrase
13. WHPP Wh-prepositional phrase
14. X Constituent of unknown or uncertain category

Null elements

1. * ”Understood” subject of infinitive or imperative
2. 0 Zero variant of that in subordinate clauses
3. T Trace-marks position where moved whconstituent is interpreted
4. NIL Marks position where preposition is interpreted in pied-piping context

Table 2: The Penn Treebank syntactic tagset

Image 1: Screenshot from the Java GUI.

