
Part-of-Speech Tagger for Swedish

Simon STÅHL
Computer Science, Lund University

sys03sis@ludat.lth.se

Abstract

A Part-of-Speech (POS) tagger is a tool that
automatically resolves the ambiguities that
would occur if a text was tagged with the help
of a dictionary. Automatic tagging of texts is
used in many applications (grammar checkers,
etc.), and quite high accuracy can be achieved.
This document describes a stochastic POS
tagger that uses a unigram version of the
Viterbi algorithm. The overall idea behind the
stochastic POS tagger and the Viterbi
algorithm is also described.
The unigram tagger is evaluated using a small
corpus of just below 100 000 words, and the
results indicate that a larger corpus would
have yielded greatly improved accuracy.

1 Introduction

There are many applications that needs a text to
be tagged with Parts-of-Speech (POS), the lexical
categories of words and symbols in a text, and
there are several ways to do this tagging. The most
primitive approach is to determine the POS of a
word by looking it up in a dictionary. This
unfortunately leaves us with a lot of ambiguities,
since many words have more than one possible
POS.

Early POS taggers resolved these ambiguities by
using hand coded rules, but writing these rules is
both time demanding and complex. Newer rule
based taggers derives rules automatically from a
hand annotated corpus.

Other POS taggers uses stochastic models. The
ambiguities is resolved using statistics, derived
from a hand annotated corpus. The probabilities of
the possible tag sequences of a given word
sequence is calculated, and the one with the
highest probability is chosen. This is approximated
using N-grams (bigrams and trigrams mainly),
since statistics of long sequences is impossible to
obtain.

The Viterbi algorithm can be used to optimize
the probability calculation of the tag sequences by
discarding sub-sequences that can not be part of
the tag sequence with the highest probability. This
makes the stochastic POS tagger less time and

memory consuming than if it would have to
calculate all possible paths.

This document describes a stochastic POS
tagger, using the Viterbi algorithm. The current
implementation uses only unigrams, which makes
the result noticeably less correct than a bigram or
trigram implementation.

Chapter two describes the POS tagger with its
statistics and probabilities. In the third chapter the
Viterbi algorithm is described, and in chapter four
the results are discussed.

2 The POS tagger

2.1 Statistics

All statistics are derived automatically from a
hand annotated corpus. This training of the POS
tagger only needs to be done once, since the
statistics is saved to file to be used when tagging.
The statistics derived is:

Cn – The number word tokens.
C(w,t) – Occurences of word w tagged with t.
C(t) – Occurences of the tag t.
C(t1,t2) – Occurences of the tag bigram t1,t2.
C(t1,t2,t3) – Occurences of the tag trigram t1,t2,t3.

Since the current implementation only uses
unigrams, no bigram or trigram statistics is saved,
as would be the case in a more advanced
implementation.

2.2 Probabilities

The probability of a tag sequence T for a given
word sequence is:

P T P W∣T 

That is, the probability of the tag sequence in it
self multiplied with the probability of the word
sequence knowing the tag sequence. The tag
sequence with the highest probability is chosen to
tag the word sequence with.

The probabilities P(T) and P(W|T) are
approximated using N-grams, most often trigrams,
backing off to bigrams (and unigrams) in the case

of missing data. The trigram approximations of the
probabilities are:

P T ≈P t1P t2∣t1∏
i=3

n

P t i∣t i−2 , t i−1

P W∣T ≈∏
i=1

n

P wi∣t i

These probabilities are estimated with the
statistics from the hand annotated corpus:

P t i=
C t i

C n

P t i∣t i−1=
C t i−1 , t i
C t i−1

P t i∣t i−2 , t i−1=
C t i−2 , t i−1 , t i
C t i−2 , t i−1

P wi∣t i=
C wi , t i
C t i

Since the current implementation only uses
unigrams, the probability P(T) is approximated
further, on the expense of less correct tagging. The
unigram approximation of P(T) is:

P T ≈∏
i=1

n

P t i

The resulting unigram approximation of a tag
sequence is:

P T P W∣T ≈∏
i=1

n

P t iP wi∣t i

The unigram approximation only selects the
most common tag of a word, and does not take any
previous tags into consideration when selecting
tags.

3 The Viterbi algorithm

The Viterbi algorithm is a dynamic
programming algorithm that optimizes the tagging
of a sequence, making the tagging much more
efficient in both time and memory consumption.

In a naïve implementation we would calculate
the probability of every possible path through the
sequence of possible word-tag pairs, and then
select the one with the highest probability. Since
the number of possible paths through a sequence
with a lot of ambiguities can be quite large, this
will consume a lot more memory and time than
neccesary.

Since the path with highest probability will be a
path that only includes optimal subpaths, there is
no need to keep subpaths that are not optimal.
Thus the Viterbi algorithm only keeps the optimal
subpath of each node at each position in the
sequence, discarding the others.

4 Results

The tagger was tested with a corpus of just
below 100 000 Swedish words. The original idea
was to test it with the full corpus (with
approximately 1.2 million words), but this
unfortunately proved to be too time demanding,
both when training the tagger and when the
statistics was loaded before tagging.

A test set of just below 25 000 words was
tagged by the tagger, that had been trained on the
small (100 000 words) corpus, and the results were
compared with a copy of the test set that was hand
annotated. The tagger was able to tag 74.6% of the
words correctly, which is way below what could
be expected. As a comparison, Sjöbergh (2003)
report an 87.3% accuracy when using an unigram
tagger trained on a corpus of 1.1 million words.

The reason for this difference in accuracy is
probably mainly because of sparse data, many
words in the test set are not found in the small
corpus, and this is not handled by the tagger.
71.6% of the erroneous taggings were, as a matter
of fact, tagged with the tag UKN, which means
that the tagger was not able to find any possible
tags for that word. This indicates that a larger
corpus would have given a result closer to that of
Sjöbergh (2003).

5 Conclusion

The implemented POS tagger only uses unigram
probabilities, which means that it never takes any
sequence of tags into consideration, only selects
the most common tag of a word. It does not try to
tag unknown words in any way, it just tags them as
UKN, unknown, and it was trained on a small
corpus of just below 100 000 Swedish words. But
with the limitations of both the tagger and the
small corpus in mind, it gave relatively good
results, 74.6% correct tagged words.

The large percentage, 71.6%, of the erroneous
taggings, that were tagged with the tag for unseen
word, indicates that a larger corpus would give a
higher percentage of correctly tagged words. A
faster version of the tagger would have been able
to be trained on the larger corpus, but the current
version would have taken days to process it.

Extending the tagger to use bigrams and
trigrams would also improve the correctness, and
would be the next natural step. This would take
sequences of tags into consideration, which is

important in natural languages.
The handling of unseen words is non-existent in

the current implementation, and even a naïve
algorithm to handle this would improve the results.

References

Pierre Nugues. 2004. An Introduction to Language
Processing with Perl and Prolog. Lund
University, Lund, Sweden.

Johan Carlberger and Viggo Kann. 1999.
Implementing an efficient part-of-speech tagger.
Royal Institute of Technology, Stockholm,
Sweden.

Jonas Sjöbergh. 2003. Combining POS-taggers for
improved accuracy on Swedish text. KTH Nada,
Stockholm, Sweden.

University of Leeds, Viterbi algorithm:
http://www.comp.leeds.ac.uk/roger/HiddenMark
ovModels/html_dev/viterbi_algorithm/s1_pg1.ht
ml

Wikipedia, Viterbi algorithm:
http://en.wikipedia.org/wiki/Viterbi_algorithm

Luz Abril Torres Méndez. 2000. Viterbi Algorithm
in Text Recognition. McGill University,
Montreal, Quebec, Canada:
http://www.cim.mcgill.ca/~latorres/Viterbi/va_
main.html

