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Abstract

A Part-of-Speech (POS) tagger is a tool that
automatically  resolves  the  ambiguities  that
would occur if a text was tagged with the help
of a dictionary. Automatic tagging of texts is
used in many applications (grammar checkers,
etc.), and quite high accuracy can be achieved.
This  document  describes  a  stochastic  POS
tagger  that  uses  a  unigram  version  of  the
Viterbi algorithm. The overall idea behind the
stochastic  POS  tagger  and  the  Viterbi
algorithm is also described.
The unigram tagger is evaluated using a small
corpus of just below 100 000 words, and the
results  indicate  that  a  larger  corpus  would
have yielded greatly improved accuracy.

1 Introduction

There are many applications that needs a text to
be tagged with Parts-of-Speech (POS), the lexical
categories  of  words  and  symbols  in  a  text,  and
there are several ways to do this tagging. The most
primitive  approach is  to determine the  POS of a
word  by  looking  it  up  in  a  dictionary.  This
unfortunately leaves us with a lot of ambiguities,
since  many  words  have  more  than  one  possible
POS.

Early POS taggers resolved these ambiguities by
using hand coded rules, but writing these rules is
both  time  demanding  and  complex.  Newer  rule
based  taggers  derives  rules  automatically  from a
hand annotated corpus.

Other POS taggers uses stochastic models. The
ambiguities  is  resolved  using  statistics,  derived
from a hand annotated corpus. The probabilities of
the  possible  tag  sequences  of  a  given  word
sequence  is  calculated,  and  the  one  with  the
highest probability is chosen. This is approximated
using  N-grams  (bigrams  and  trigrams  mainly),
since statistics of long sequences is impossible to
obtain.

The Viterbi  algorithm can be used to optimize
the probability calculation of the tag sequences by
discarding sub-sequences  that  can  not  be  part  of
the tag sequence with the highest probability. This
makes  the  stochastic  POS  tagger  less  time  and

memory  consuming  than  if  it  would  have  to
calculate all possible paths.

This  document  describes  a  stochastic  POS
tagger,  using  the  Viterbi  algorithm.  The  current
implementation uses only unigrams, which makes
the result noticeably less correct than a bigram or
trigram implementation.

Chapter  two describes  the POS tagger with its
statistics and probabilities. In the third chapter the
Viterbi algorithm is described, and in chapter four
the results are discussed.

2 The POS tagger

2.1 Statistics

All  statistics  are  derived  automatically  from a
hand annotated corpus.  This  training of the  POS
tagger  only  needs  to  be  done  once,  since  the
statistics is saved to file to be used when tagging.
The statistics derived is:

Cn – The number word tokens.
C(w,t) – Occurences of word w tagged with t.
C(t) – Occurences of the tag t.
C(t1,t2) – Occurences of the tag bigram t1,t2.
C(t1,t2,t3) – Occurences of the tag trigram t1,t2,t3.

Since  the  current  implementation  only  uses
unigrams, no bigram or trigram statistics is saved,
as  would  be  the  case  in  a  more  advanced
implementation.

2.2 Probabilities

The probability of a tag sequence  T for a given
word sequence is:

P T P W∣T 

That is, the probability of the tag sequence in it
self  multiplied  with  the  probability  of  the  word
sequence  knowing  the  tag  sequence.  The  tag
sequence with the highest probability is chosen to
tag the word sequence with.

The  probabilities  P(T) and  P(W|T) are
approximated using N-grams, most often trigrams,
backing off to bigrams (and unigrams) in the case



of missing data. The trigram approximations of the
probabilities are:

P T ≈P t1P t2∣t1∏
i=3

n

P t i∣t i−2 , t i−1

P W∣T ≈∏
i=1

n

P wi∣t i

These  probabilities  are  estimated  with  the
statistics from the hand annotated corpus:

P t i=
C t i

C n

P t i∣t i−1=
C t i−1 , t i
C t i−1

P t i∣t i−2 , t i−1=
C t i−2 , t i−1 , t i
C t i−2 , t i−1

P wi∣t i=
C wi , t i
C t i

Since  the  current  implementation  only  uses
unigrams,  the  probability  P(T) is  approximated
further, on the expense of less correct tagging. The
unigram approximation of P(T) is:

P T ≈∏
i=1

n

P t i

The  resulting  unigram  approximation  of  a  tag
sequence is:

P T P W∣T ≈∏
i=1

n

P t iP wi∣t i

The  unigram  approximation  only  selects  the
most common tag of a word, and does not take any
previous  tags  into  consideration  when  selecting
tags.

3 The Viterbi algorithm

The  Viterbi  algorithm  is  a  dynamic
programming algorithm that optimizes the tagging
of  a  sequence,  making  the  tagging  much  more
efficient in both time and memory consumption.

In a  naïve  implementation  we would calculate
the probability of every possible path through the
sequence  of  possible  word-tag  pairs,  and  then
select the one with the highest probability.  Since
the number of possible paths through a sequence
with a lot of  ambiguities can be quite  large, this
will  consume  a  lot  more  memory  and  time than
neccesary.

Since the path with highest probability will be a
path that only includes optimal subpaths, there is
no  need  to  keep  subpaths  that  are  not  optimal.
Thus the Viterbi algorithm only keeps the optimal
subpath  of  each  node  at  each  position  in  the
sequence, discarding the others.

4 Results

The  tagger  was  tested  with  a  corpus  of  just
below 100 000 Swedish words. The original idea
was  to  test  it  with  the  full  corpus  (with
approximately  1.2  million  words),  but  this
unfortunately  proved  to  be  too  time  demanding,
both  when  training  the  tagger  and  when  the
statistics was loaded before tagging.

A  test  set  of  just  below  25  000  words  was
tagged by the tagger, that had been trained on the
small (100 000 words) corpus, and the results were
compared with a copy of the test set that was hand
annotated. The tagger was able to tag 74.6% of the
words correctly, which is  way below what could
be  expected.  As  a  comparison,  Sjöbergh  (2003)
report an 87.3% accuracy when using an unigram
tagger trained on a corpus of 1.1 million words.

The  reason  for  this  difference  in  accuracy  is
probably  mainly  because  of  sparse  data,  many
words  in  the  test  set  are  not  found in  the  small
corpus,  and  this  is  not  handled  by  the  tagger.
71.6% of the erroneous taggings were, as a matter
of  fact,  tagged  with  the  tag  UKN, which  means
that  the tagger was not able  to find any possible
tags  for  that  word.  This  indicates  that  a  larger
corpus would have given a result closer to that of
Sjöbergh (2003).

5 Conclusion

The implemented POS tagger only uses unigram
probabilities, which means that it never takes any
sequence  of  tags  into  consideration,  only  selects
the most common tag of a word. It does not try to
tag unknown words in any way, it just tags them as
UKN,  unknown,  and  it  was  trained  on  a  small
corpus of just below 100 000 Swedish words. But
with  the  limitations  of  both  the  tagger  and  the
small  corpus  in  mind,  it  gave  relatively  good
results, 74.6% correct tagged words.

The large  percentage,  71.6%,  of  the  erroneous
taggings, that were tagged with the tag for unseen
word, indicates that a larger corpus would give a
higher  percentage  of  correctly  tagged  words.  A
faster version of the tagger would have been able
to be trained on the larger corpus, but the current
version would have taken days to process it.

Extending  the  tagger  to  use  bigrams  and
trigrams would also improve the correctness, and
would  be the  next  natural  step.  This  would  take
sequences  of  tags  into  consideration,  which  is



important in natural languages.
The handling of unseen words is non-existent in

the  current  implementation,  and  even  a  naïve
algorithm to handle this would improve the results.
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