
Institutionen för Datavetenskap

http://www.cs.lth.se

Språkbehandling och datalingvistik

Projektarbeten 2004

Handledare: Pierre Nugues och Richard Johansson

Printed in Sweden
Lund 2005

Institutionen för Datavetenskap

http://www.cs.lth.se

Petter Bergman: Identification of rhetorical words in Swedish.	 5

Antonio Calzada: Statistical noun group detector. 	 9

Stéphane Clinchant: Requirement analysis. 	 13

Jonas Ekedahl and Koraljka Golub:
Word sense disambiguation using WordNet and the Lesk algorithm. 	 17

Myrtille Dedianne and Robert Nilsson: HMS2005: Predictive text entry using bigrams. 	 23

Stefan Ekenberg: Named entity recognition using statistical methods. 	 31

Jörgen Hartman: Investigating an implementation of Joakim Nivre’s algorithm
for projective dependency parsing of Swedish text.	 39

Johan Hovold: Naive Bayes spam filtering using word position attributes. 	 43

Björn Johnsson: Hidden Markov Models in Spoken Language Processing. 	 51

Simon Klassén and Markus Malmsten: Grammar checker. 	 55

Johan Larsson, Tomas Rutegård and Bibi Sandberg:
Automatic learning of dependency rules from corpora.	 61

Maria Larsson and Måns Norelius: Part-of-speech tagging using the Brill method. 	 69

Alexander Malmberg: Morphological parser for Latin. 	 79

Carlos Miguel Gomez-Gracia and Hector Yela : Reneses: POS tagger for Spanish.	 83

Simon Ståhl: Part-of-speech tagger for Swedish. 	 89

Tomasz Wysocki: Collocations computed from the web. 	 93

Innehåll

4

�����������	� 	
 ����	����
 �	��� �� �������

������ �������	
��
������������

������� ��	 ����

� ���������	��

��� ���� ����� �	
�������
�� ���
�	�
 ����� ��

��	� ��	 �� ���	� ����� ���
�	�
�	��� �	
�� �������	� ��	
�	����
�� ����� �� ����� ������� ��� ���

�	
�	 �
������

��
���
 �� �������	
 ������ ��� �	��� �����	

�� �� ��
 ������ ������ ���� ��� ��

�� ��� �� �� ����� ���

 � �� ������ ��� �! ��
 ��� ���
� ��	��

�	
�	��� � �	� � �"�����#�� ���
 �� ����� ���� $	�����% ��� ��
��
������
��� ��� �� �����	�& ���	 �� ���� $������
%
�������
�	
�	��� �
�	� ��	
��	 � ��'���	
 ����
�� ���� �	 (���
��	 �� ���� ���� �� � ������
)�
�
��
 �	 ��	
�	��� � �	� �� ������	�
�� ����� ���
��

�� ��	
�	����
*	 ��	
�	��� � �	� �
�� ������� ��
�� ����� ���� �����
�� ���	�	� ��
��
��	
�	�� �	
��
�

���� �����
�� ��� �	 ��	
�	��� � �	� � �� ������ $������
����%� �	�
��
�	� �	 � �	� $���
������%� +�	 �� �������&
�� ����� ��
���
�����& ����
�"���	�	� �
� ��	
�"
 �	 � ��	
�	��,

��� ��������	
���

*	 ��	
�	�� �� $������% �� � ��	��	�
��	� �	 ��	
�	�� � �
 �� �	 ������- *	
��	
�	�� �� $
&�% �� � 	��	� �	 ��	
�	�� �
 �� �	 ������.�/�

0��	�
��� �	�����
��	 �� ����� �������&
�� ������ ��

��	 �� �����
����
� �	�� �
1� 2��
3��3
������

4��
��� �� �������&�	�
�� ����� ��	 �� ���	 �� � ���
��� �� ����������
3
�	� �	 � 2��
3��3
�����
������

�

5

��� 	
���� �� ������� ��������

5��
������ ����� ����� �����
 �"��������& �	 �����	 ��	������ �	� �
 ����

������
���� $������%-� ����� �����
 �"��������& �	 ���

�	 ��	������
� ���
�� ���
 ����������
�	� ��
���	 ���

�	 �	� �����	 ��	����� 6�� ��
����
�����	 ��	�����
��	���
�� �	
� ���

�	 ��	������ ����� ��� �
1� ��	 ����3
����7,

 ��
 �
����

4� #	�
�� ��� �� � ���� �	 �
�"
 ��
� #	�
�� u ����� ��"���8��-

P (u|W1,W2)

u ∈ {Grammatical,Rhetorical}
�������-

P (A|B)P (B) = P (B|A)P (A)

�� ��	 �	�
��� ��"���8�-

P (u)P (W1,W2|u)

�� ���
�	�
��
 P (Grammatical) = P (Rhetorical) �	�
��
 ����� �����
�	����	��	
�&-

�����"
∏

(w1,w2)∈W1,W2

P (w1, w2|u)

9� ��
���
� P (w1, w2|r) �& ���	
�	� ����� ���� � ��	����&
����� ���3
���� 9� ����� ��
 � ��
 �� 8��� ���	
� �� �� ��� ������� ��
���
��
� ����
��
�
�� ������ ��
��

� ����
�
����	��

4�� �������	
�
��	 ��	���
� ��
����
���� ���

�	 �	 :1+���-

������� ���	
� ������	��� �� � ���� �	 �
1� ������
����;���
������ ��� ����
� ��	�3�		�
�
�� #���

���
��� ������	��� �� � ���� ���	� ������
�� ��
�

���� ������
��
�� ��
��
 �& �������	� �

� � #�� ��	�3�		�
�
�� ��
�
��
������
 ����

�

6

 50

 55

 60

 65

 70

 75

 80

 1 1.5 2 2.5 3 3.5 4 4.5 5

A
cc

ur
ac

y
(%

)

Context Size

"data"

 50

 55

 60

 65

 70

 75

 80

 1 1.5 2 2.5 3 3.5 4 4.5 5

A
cc

ur
ac

y
(%

)

Context Size

"data"

������ �- 5����
� ��
��
��
3��	

� �
�����

��� ������
��	� �
���	�	� ��
 ��� �������� ���� . / �	� .�/ �	 ���� � ��&

��
 �
 ��	
��	�� <= ������	��� �� ������� ��	� �		�
�
��� >�
� ���
��	
������
�� ����
���
�"
� ���	� ��'���	
 ��	
�"
 ��8���

*	 � �������� ��&�
�� 6	�
 �		�
�
��7
��
 ��
 ��� ��������� 4�� �����
�
�� ��		�	�
��
����� �	
��
��
 ��
 ��� ��'���	
 ��	
�"
 ��8�� �� ����	 �	
#���� ��

4�� ��������� �� �� �"���
��� ��
����� �����
�& ��

��
��	 �"���
�� ���
���� ������ ��
��

� �	��� ����
���

*	 ���
� ��
�� �����
 ����
��
��
 ��	
���� ��� ���� ��	���	��
9� ����
�� �����
��	
��
 $������% ������ �	 �(��� 	����� ��
����

�	
�� ���
������ ��� �� �	
�� ������
���� ���� ��
��	 �������
� ������

�
��
 �	�
���	�	� ��
 ����	�
���
���� 9��
 �� � ����	��� ������ �	
���
����, �
 ������ �� � ������ ��
�� ���& �� ��� �������� ���

�	 �� �����	�

����	 ������� �� �� ����
� ������� �� �� ���	 ��� �

���	��� ���� ����
�	 �������, �� ���
 ��	
�������& �������,

9� ����� ���� �

�� 2:
 ��
�� ��	
�"
 �	�
��� ��
�� �����
���������

�

7

�	� ������
�� ������3��
� �������� ?�
 �� �� �	��
�� 2:
 �� ����& ����
�	
��
�"
� �� ���� �	�� �� ��� �"���	�� ���� �� ���
������ �� 	�
�

�
�
�
��
�

.�/ >�	��� @���� �	� A��������� B�������� $A	 0	���������� A�������

� 5����	�8�	� >�������� 5���
��	�% *	�����
��	
���	��� *	�
�
�
� �	�
>����
��	
 �� +����
��
���	��� 0	������
& ��
��
���	 +������	��

.�/ $)����
��
�
��	��� :�����%)����
��
� ������ �CC=

.�/ A������ D�� ?���	���� @�� E��	(���
 ��� A���F	 B�� :

���� +� $4��

����	 ��	����� +����� �

�� ��	����
��� >����
��	
% E�
�����
0	������
& �	 ����� G����
�
���
����� 5�������� ��� �� 	� � 3 >�� �===

. / 2������ H���	 $B�������- A @��
���	���� +����� ��� B�����
��	 ��
@����	� 4��	���
��	% >���
� 0	���������

8

Statistical Noun Group Detector

Antonio CALZADA
Department of Computer Science

Lund University
dat95jca@hotmail.com

Abstract

Statistical noun group detectors and chunkers
provide powerful means of detecting
syntactically correlated non-overlapping parts
of sentences.
This report describes discoveries made
exploring statistical noun group detection
based on Support Vector Machines (SVM)
applied on data from the CoNLL-2000 shared
task.

1 Introduction

Text chunking consists of dividing a text in
syntactically correlated parts of words. For
example, the sentence He reckons the current
account deficit will narrow to only # 1.8 billion in
September . can be divided as follows:

[NP He] [VP reckons] [NP the current account
deficit] [VP will narrow] [PP to] [NP only # 1.8
billion] [PP in] [NP September] .

The shared tasks of CoNLL provide excellent
reference material and results.

In the shared task of CoNLL-2000 full phrase
part chunking is explored.

In shared task of CoNLL-1999 NP bracketing is
explored. This consists in identification of all
noun-phrase structures allowing multiple levelled
groups where a for example a noun-phrase may
be identified as being decomposable into smaller
noun-phrases.

Noun group detection. Also known as noun
phrase (NP) chunking is a simple and robust
alternative to full parsing for segmenting a text
into syntactically correlated parts.

While this report specifically explores detection
of noun groups, many times the same methods can
be applied to other group detection problems like
full phrase part detection and identification of
names of companies and people in texts.

Because statistical methods and learning
algorithms are used instead of for example hand
made rules, the implementation can easily be

adapted to different languages and types of text.

2 Segmentation and labelling

Segmentation and labelling are two of the most
common operations in natural language
processing. These two operations are strongly
related. While segmentation divides a stream of
characters into linguistically meaningful pieces,
labelling classifies those pieces.

There are many different ways a text can be
segmented, most notably: bulletins, pages,
sections, sentences, phrase parts, words and word
stems.

Segmentation might be done at more than one
level. When classifying news bulletins it might
suffice to have two levels of segmentation. First
the text would be segmented into bulletins and
then into sub-segments of keywords and non-
keywords. This would contrast full parsing, where
text is segmented into hierarchical structures of
unlimited depth.

Labelling is characterized by the set of labels
used and their meaning. It may range from
sentence identification by enumeration to tagging
using an extensive set of part-of-speech (POS)
tags.

3 SVM

Support Vector Machines (SVMs) are used for
solving classification and regression problems,
very much like neural networks.

They are trained using data sets of attributes
(features) and corresponding target value (class
label). A trained SVM model can then be fed sets
of features that it will attempt to classify correctly.

The SVM model training works by mapping the
training vectors into a higher dimensional space.
During training the SVM engine attempts to
maximize the margin between critical values and a
separating hyperplane. See (Drawing 1) for an
illustration where the dark line represents a
projection of the hyperplane dividing the dataset.
The thinner dotted lines mark the distance between
the plane and the closest data point.

9

There are a number of configuration parameters
that can be tuned for the task at hand, the most
common are kernel function, γ and C.

The heart of the SVM engine is a pluggable
kernel function controlling the creation of the
hyperplane. Some examples are: linear,
polynomial, radial basis function (RBF), and
sigmoid.

Depending on the type of the function, a number
of configuration parameters may be available. The

γ parameter is common to most kernel
functions.

Since it may not be possible to place the plane
so it correctly classifies the training data it is
allowed to incorrectly classify training values but
at the cost of a penalty that is to be minimized. The
severity of this penalty is controlled by the C
parameter.

4 NP identification using SVM

The basic steps for applying SVM to NP
detection are:
– Selecting appropiate features.
– During training:
– Scale and encode features for train data.
– Select kernel function and trim parameter.
– Train SVM model.

– During testing:
– Scale and encode features for test data.
– Let SVM model classify test data.
– Decode classification labels.

Since SVM works with points in a mathematical
space the words and tags in the natural language
material needs to be encoded into numbers.

SVM like most learning algorithms thrive on
information. But it's important that both the
training data and the encoding is not biased
fooling SVM into identifying patterns that are not
applicable to the test data.

5 Test, training and evaluation

The material I used is the same as used at
CoNLL-2000 and in turn originally produced by
(Ramshaw and Mitchell, 1995).

The corpora contain one word per line and each
line contains six fields of which the first three
fields are relevant: the word, the part-of-speech tag
assigned by the Brill tagger and the correct IOB
tag showing phrase par limits.

Words can be inside a NP (I) or outside a NP

(O). In the case that one NP immediately follows
another NP, the first word in the second base NP
receives tag B.

The source corpora of the data is sections of the
Wall Street Journal (WSJ), part of the Penn
Treebank (Marcus et al., 1993). Sections 15-18,
211727 tokens are used as training material and
section 20, 47377 tokens as test material.

Three values are used to measure performance:
• precision, percentage of detected noun

phrases that are correct ,
• recall, percentage of noun phrases in the

data that were found by the classifier,
• and F-beta, provides a collected

measurement of the previous two values
evaluated as (2*precision*recall)/
(precision+recall)

Results are measured up against a baseline value
provided by a simple unigram tagger (tagging IOB
tags instead of POS tags).

6 The Demo Program

The purpose of the demo program is to
demonstrate how an arbitrary text provided the
user is tagged and NP chunked by the implemented
methods.

The demo is implemented as an interactive
console program. Once it is started an introductory
message and a prompt is shown. The prompt
accepts the commands described in (Table 1).

The tagger used is a simple back-off tagger
composed of in order of preference: a trigram
tagger, a bigram tagger, a unigram tagger, and as a
last result defaulting to the NN tag.
Table 1Demo program commands

command Description
chunk Chunks the provided text.

Tagger and SVM engine
has to be loaded.

create_svm
[word count]

Creates a SVM engine and
trains it using CoNLL-2000
train data. A word count
can be provided to limit the
size of the corpora used.

create_tagger
[word count]

Creates a tagger and
populates it with data from
the CoNLL-2000 train data.
A word count can be
provided to limit the size of
the corpora used.

evaluate_tagger Evaluates the currently
loaded tagger.

exit Exits the program.

Drawing 1 SVM Classification optimization

10

help
[command]

Shows either available
commands or information
about a command if
provided.

history Provides a list of executed
commands.

load_svm Loads a svm model from
provided filename or
svm.pkl if none given.

load_tagger Loads a tagger from
provided filename or
tagger.pkl if none given.

save_svm
[filename]

Saves a svm model to
provided filename or
svm.pkl if none given.

save_tagger
[filename]

Saves a tagger to provided
filename or tagger.pkl if
none given.

shell
[command]

Executes the provided
command in a spawned
shell.

tag text Tags the provided text
using the loaded tagger.
Also saves the output to the
file tagged.txt.

test Creates a tagger and a SVM
engine and then tags and
chunks a test text.

! [command] Same as the shell command.

7 Results

Building on the baseline (F-beta = 79.99)
implementation by using n-tagger showed showed
some improvements that quickly tapered off with
tagger complexity.

Using SVM on half the training set with C=64
and γ=64 produced F-beta=80.99 when not using
context based features. When adding the previous
context based POS tag to the features F-beta
improved to 86.60.

8 Conclusion

Although my results are not that great, they
show that just adding some context data shows a
good improvement. Providing more an better
features would give very good results.

9 References

Dimitrios Kokkinakis and Sofie Johansson
Kokkinakis. 1999. A Cascaded Finite-State
Parser for Syntactic Analysis of Swedish, In:
"Proceedings of EACL'99", Bergen, Norway.

Taku Kudo and Yuji Matsumoto.2001. Chunking
with Support Vector Machines, In: "Proceedings

of NAACL 2001", Pittsburgh, PA, USA.

Mitchell P. Marcus, Beatrice Santorini, Mary Ann
Marcinkiewicz. 19993. Building a large
annotated corpus of English: the Penn
Treebank, Computational Linguistics.

Lance A. Ramshaw and Mitchell P. Marcus. 1995.
Text Chunking Using Transformation-Based
Learning. In: "Proceedings of the Third ACL
Workshop on Very Large Corpora", Association
for Computational Linguistics.

11

12

Requirements Analysis

Stephane Clinchant
ENSEEIHT

Lund University
stephane.clinchant@netcourrier.com

Abstract

This paper presents the attempts to adapt the
minimal edit cost algorithm for sentences in or-
der to compare two requirements. These re-
quirements are two short texts strongly related
we want to compare. What is similar ? What
is new ? are the questions we want to answer.

1 Introduction

One of the first and fundamental activities in
a software process is requirement analysis. The
system’s services constraints and goals are es-
tablished by consultation with system users and
defined in a manner which is understanbled by
boh users and developpement staff. Domain un-
derstanding , Requirement collection , Classifi-
cation , Conflict Resolution , Prioritization and
requirement validation are main activities in re-
quirement analysis. This project is related to
classification: this activity takes the unstruc-
tured collection of requirement and organized
them into coherent clusters. In market driven
software development there is a strong need for
support to handle congestion in the require-
ment enginneereing process. To meet the mar-
ket demands it is important to have an effective
and efficient requirement engineereing process
to deal with a numerous flow of incoming re-
quirements.

2 Aim of the project

This project was suggested by Obigo a mobile
phone software company. An analyst work on 2
sets of requirements: the old requirements and
the new requirements, which could be for exam-
ple :

Old: SMS messages may contain up
to 140 characters
New: SMS messages must contain
240 characters including ISO charac-
ters.

A part of the analysts’ work is spent on
matching pairs of old and new requirements and
identifying changes. His first task is to link sim-
ilar requirements, to detect requirements refer-
ring to the same need , functionnality. It is a
classification activity to find the structure and
the relations between the requirements. The
second task is to find the change , the new
constraints , the difference between the related
requirements. In the example, the important
changes here are may → must, 140 → 240 and
a new constraint: including ISO characters.

This project aims at improving requirement
analysis and saving time of Obigo’s analysts.
We focused on sequential sets of requirements
and compare the new and the old ones. To
streamline analysis , the following process was
proposed :

• Use the tool of Johan Natt och
Dag, ReqSimile to find the similar
requirements

• Find the difference, the change
between the pair of requirements
:this is the aim of this project.

The language processing project was to im-
plement an algorithm to detect and quantify
the changes between two similar requirements.
Thus, the analysts would be able to explore
quicly the sets of requirements, find relations
and detect the changes.

3 Minimun Edit Cost Algorithm and
Alignments

The idea to explore in order to compare two
short texts was to try to adapt the minimun
edit cost algorithm for sentences and provide
an alignment to compare them. Alignments
and the minimun edit cost algorithm (MCA)
are strongly related since the minimun edit cost
produce an alignment. A definition of an aligne-
ment could be a sequence of operation which

13

transforms a sequence of symbols (the source)
into an other (the target). Operations acts on
symbols , can be copy (of symbols), insertion,
deletion, substitution and have a cost. Letters
are the symbol type for the classical minimun
edit cost algorithm. A sequence of symbols is
a word and the algorithm measure the distance
between two words. Symbols can also be ADN
bases in order to compare genomes. In this
project symbols are words in the same language.
But what is important to keep in mind is that
an alignment is a way of matching elements of
the source with the target. Here is an example
of a possible alignment for the previous require-
ments

[copy(sms),copy(messages),subs(may,must),
del(up),del(to),subs(140,240),
copy(characters),ins(including),ins(iso),
ins(characters)]

The MCA is part of dynamic programming and
gives alignments with the minimal cost. It is
significant to underline the fact that there ex-
ists most of the time several possible align-
ments for one source and one target.The MCA
equations stand for the possibilities a sequence
source can be transformed into the sequence
target. Basically there are 3 ways to do this.
Suppose we have two sequences [a1, . . . , an] and
[b1, . . . , bn]. First we can suppress an and trans-
form [a1, . . . , an−1] into [b1, . . . , bn]. A sec-
ond way to proceed is : if an = bn or if we
substitute an by bn we only need to trans-
form [a1, . . . , an−1] into [b1, . . . , bn−1]. Lastly ,
if we know how to transform [a1, . . . , an] into
[b1, . . . , bn−1], we just need to insert bn.

More formally, if E is the edit cost of two
sequence and c(.) the cost of an operation The
minimun edit cost algorithm is defined by these
equations:

E([a1, , an], [b1, , bn]) =

min






E([a1, , an−1], [b1, , bn]) + c(del(an))
E([a1, , an−1], [b1, , bn−1]) + c(subs(an, bn))

E([a1, , an−1], [b1, , bn−1]) + c(ins(bn))

E([a1, , ak], []) = k E([], [b1, , bk]) = k

The costs of operation in the classical algorithm
are

cost(ins) = 1 cost(del) = 1
cost(copy) = 0 cost(subs) = 2

To get the alignment , a matrix is filled with
the cost of intermediary transformed sequences.

Then , an alignment is obtained by a path in
this matrix.

4 Hypothesis

To investigate the adaptation of MCA , I first
limit my approach by not doing any linguistic
process but just to use and apply the the basic
algorithm to observe basic results. For exam-
ple, we could say that the insertion of the word
”and” costs zero because it does not bring sig-
nificant information in the new requirement.So
I did not try to tune this algorithm linguisti-
cally. One of the most important observation, is
that there are several possible alignments.When
I developped my algorithm, my goal was to con-
struct all the possible alignments and to choose
the best one with an heuristic.There is one sim-
ple reason for multiple alignment. In the ex-
ample of requirements, the word ”characters”
occurs two times in the new requirement. So
the ”character” from the old requirement can
be linked in two different places in the new re-
quirement.

5 Factorization

Another reason is if we use the classical MCA
we will obtain similar alignments which leads
to the same matching of words. If x and y are
two symbols, inserting x then deleting y is the
same than deleting y then inserting x which is
the same than substituting y by x.

ins(x), del(y) ∼ del(y), ins(x) ∼ subs(y, x)

We get the same matching of words but we are
only intereted in a reduced form, the short-
est alignment among its similarity class. So
I decided to suppress the substitution opera-
tion from the algorithm so that it produces
sequences of operations which are only inser-
tion, deletion or copy. The next step was to
factorize , to reduce the alignment in order to
find the set of possible and interesting align-
ment. copy(x), subs(y, w) is the same than
copy(x), ins(w), del(y) but the first form is the
best to keep. If we want to reduce an aligne-
ment, we have to consider more complicated
similarity forms. As I suppressed the substitu-
tion operation, I can obtain alignement whose
parts are such that:

ins(x1), del(y1), ins(x2), del(y2), . . . , ins(xk), del(yk)

I need to factorize it and the problem was there
was several way to do it. For example if we

14

have:

ins(x1), del(y1), ins(x2), del(y2)

This can be factorized in two ways:

subs(y1, x1), subs(y2, x2)

ins(x1), subs(y1, x2), del(y2

and we can not know which form is the best. If
F is the Factorization function, the simple case
are

F (Copy :: tail) = Copy :: F (tail)

F (Ins :: Ins :: tail = Ins :: F (Ins :: tail)

F (Del :: Del :: tail = Del :: F (Del :: tail)

F (Del :: Ins :: a :: tail = Subs :: F (a :: q)

where a = Copy or Ins

F (Ins :: Del :: a :: tail = Subs :: F (a :: q)

where a = Del or Copy
The complicated case is whenever there is a
sequence of ins, del or a sequence of del,ins.
Wether the number of couple ins,del be pair or
not , there is always two possibilities to under-
stand and to factorize this sequence:

• Take the first pair of ins,del (or
del,ins) and group the other pairs
after. If the number of sequence is
unpair there is one operation left.

• Take the first operation and form
the first pair with the second and
the thrid operation. If the num-
ber of sequence is pair there is one
operation left.

6 Results

So I developped a component for reducing align-
ment and I obtained 18 factorized alignment for
the requirement example. I should have worked
on heuristic at this time but I developped a sim-
ple GUI to display alignment and the matching
of words with color codes. I had one idea about
a heuristic at this time: alignments wih inser-
tions at the end are more likely to be better
than the others because people tend to add new
elements at the end of a requirement when they
rewrite them.

Then, I ran my algorithm on real require-
ments from Obigo which were much longer and I
obtained something like 8 thousands alignments

! It was a exponential and combinatorial prob-
lem. To face this, I had to think to new ways
to proceed:

• The first idea is to ”to divide and conquer”
and split the requirement in sentences and
align sentences first and then align words.

• Drop the idea of finding the ”best” align-
ment among the set of all possible align-
ment but just take one alignment with an
heuristic.

I only had time to explore the second idea:
my heuristic was to favorize insertion at the end.
I had also a new idea : highlight the new words
in the new requirement. New words in the re-
quirement show the analyst which part of the
requirement has been changed and need to be
read. All the copy operation in the alignment
show what is identical in the requirements.

7 Conclusion

Aligning two sentences is a very difficullt task if
we do not take into acccount linguistic informa-
tion. In translation where they also align sen-
tences they exploit the structure of the sentence
and linguistic information to find an alignment.
But what the analyst is interested in , is to see
what part of the requirement are identical and
what is new. Taking one alignment is a sim-
ple and effective solution but there is work to
do on how to display graphically the difference
and the similarity of two text so that it is easy
to see for the human eye.

8 Acknowledgements

I would like to thank Pierre Nugues, Johann
Natt och Dag from Departement of Computer
Science at Lund Universoty and Sven Olof
Karlsson from Obigo for their help and advices
during this project.

References

K.Yamada C.Goutte and E.Gaussier. Aligning
words using matrix factorisation. Xerox Re-
search Centre Europe.

C.Brockett C.Quirk and W.Dolan. Monolingual
machine translation for paraphrase genera-
tion. Natural Language Processing group Mi-
crosoft Research.

S.Brinkkemper J. Natt och Dag, V.Gervasi and
B. Regnell. Speeding up requirements man-
agement in a product software company.

15

Pierre Nugues. An Introduction to Language
Processing with Perl and Prolog.

H.Garcia-Molina S.Chawathe, A.Rajaraman
and J.Widom. Change detection in hierarchi-
cally structured information. Departement of
Computer SCience Stanford University.

16

Word sense disambiguation using WordNet and the Lesk
algorithm

Jonas EKEDAHL

Engineering Physics, Lund Univ.
Tunav. 39 H537, 223 63 Lund, Sweden

f99je@efd.lth.se

Koraljka GOLUB
KnowLib, Dept. of IT, Lund Univ.

P.O. Box 118, 221 00 Lund, Sweden
koraljka.golub@it.lth.se

Abstract

Word sense disambiguation is the
process of automatically clarifying the
meaning of a word in its context. It has
drawn much interest in the last decade
and much improved results are being
obtained.

In this paper we take the so-called
Lesk approach. In our case, definitions
of the senses of the words to be
disambiguated, as well as of the ten
surrounding nouns, adjectives and
verbs, are derived and enriched using
the WordNet lexical database.

Two possible implications of this
project could be that the results are
dependent on the characteristics of a
test document and on the
characteristics of glosses, which needs
to be further investigated. The average
precision performed worse (0.45) than
baseline precision (0.60) which was
based on always selecting the most
frequent sense. However, the presented
approach has several limitations: a
small sample, and a big number of fine
senses in WordNet, many of which are
not that distinguishable from each
other. The future work would include
experimenting with different variations
of the approach.

1 Introduction

Word sense disambiguation is the
process of automatically clarifying the
meaning of a word in its context. For
example, the word contact can have

nine different senses as a noun, and
two different senses as a verb.

Word sense disambiguation has
drawn much interest in the last decade
and much improved results are being
obtained (see, for example,
(Senseval)). It can be important for a
variety of applications, such as
information retrieval or automated
classification (for an example of the
latter, see Jones, Cunliffe, Tudhope
2004).

Different approaches to word sense
disambiguation have been taken. Many
are based on different statistical
techniques. Some require corpora that
are tagged for senses and others
employ unsupervised learning. In this
paper we take the so-called Lesk
approach (Lesk 1986), which involves
looking for overlap between the words
in given definitions with words from
the text surrounding the word to be
disambiguated. In our case, definitions
of the senses of the words to be
disambiguated, as well as of the ten
surrounding nouns, adjectives and
verbs, are derived and enriched using
the WordNet lexical database
(WordNet). The sense definition
chosen as correct is the one that has the
largest number of words in common
with the definitions of the surrounding
words. A version of Lesk algorithm in
combination with WordNet has
recently been reported for achieving
good word sense disambiguation
results (Ramakrishnan, Prithviraj,
Bhattacharyya 2004).

17

In this paper we conduct a pilot
experiment, which is a part of a larger
project that employs word sense
disambiguation for improving accuracy
of automated classification.

In the following chapter (2
Methodology) the approach is
described in detail. Results are
presented and the third chapter (3
Results), and in the last chapter
conclusions are given and the future
work is suggested.

2 Methodology

2.1. Introduction
In the paper a pilot experiment is
conducted, that is a part of a larger
project in which this word sense
disambiguation approach would be
applied for improving accuracy of
automated classification.
 The Lesk algorithm has first been
implemented in its simple form by M.
Lesk (1986). It is based on the
assumptions that when two words are
used in close proximity in a sentence,
they must be talking of a related topic
and, if one sense can be used by each
of the two words to refer to the same
topic, then their dictionary definitions
must use some common words
(Banerjee 2002, p 1). This approach
involves looking for overlap between
the words in dictionary definitions with
words from the text surrounding the
word to be disambiguated. The
problem of this approach is that
dictionary definitions often do not have
enough words for this algorithm to
work well, which can be overcome by
using the WordNet lexical database
(WordNet) (ibid.), because it contains
different types of relationships between
words, such as, for example,
syononymy and hyper/hyponymy.

2.2. Creation of glosses from
WordNet

In the research conducted by G.
Ramakrishnan, B. Prithviraj and P.
Bhattacharyya (2004), different types
of relationships in WordNet have been
experimented with. It showed that the
best results are obtained when
concatenating the descriptions of word
senses with the glosses of its first- and
second-levels hypernyms (ibid., p.
218). We adopted their approach. For
example, the word contact in WordNet
has nine senses for the noun, and two
senses for the verb:

The noun contact has 9 senses in
WordNet:

1. contact -- (close interaction; "they kept
in daily contact"; "they claimed that they
had been in contact with extraterrestrial
beings")
2. contact -- (the state or condition of
touching or of being in immediate
proximity; "litmus paper turns red on
contact with an acid")
3. contact -- (the act of touching
physically; "her fingers came in contact
with the light switch")
4. contact, impinging, striking -- (the
physical coming together of two or more
things; "contact with the pier scraped paint
from the hull")
5. contact, middleman -- (a person who is
in a position to give you special assistance;
"he used his business contacts to get an
introduction to the governor")
6. liaison, link, contact, inter-group
communication -- (a channel for
communication between groups; "he
provided a liaison with the guerrillas")
7. contact, tangency -- ((electronics) a
junction where things (as two electrical
conductors) touch or are in physical
contact; "they forget to solder the
contacts")
8. contact, touch -- (a communicative
interaction; "the pilot made contact with
the base"; "he got in touch with his
colleagues")
9. contact, contact lens -- (a thin curved
glass or plastic lens designed to fit over

18

the cornea in order to correct vision or to
deliver medication)

The verb contact has 2 senses in

WordNet:

1. reach, get through, get hold of, contact -
- (be in or establish communication with;
"Our advertisements reach millions"; "He
never contacted his children after he
emigrated to Australia")
2. touch, adjoin, meet, contact -- (be in
direct physical contact with; make contact;
"The two buildings touch"; "Their hands
touched"; "The wire must not contact the
metal cover"; "The surfaces contact at this
point")

For each sense, we take the

description given in the brackets, e.g.
for the seventh noun sense it is:
(electronics) a junction where things
(as two electrical conductors) touch or
are in physical contact; "they forget to
solder the contacts."

Then we extract two nearest
hypernym levels of the word. The
resulting gloss for the seventh sense of
the noun contact would be:

contact, tangency --
 ((electronics) a junction where things (as t
wo electrical conductors) touch or are in p
hysical contact; "they forget to solder the c
ontacts")
 => junction, conjunction --
 (something that joins or connects)
 => connection, connexion, connect
or, connecter, connective --
 (an instrumentality that connects; "he sold
ered the connection"; "he didn't have the ri
ght connector between the amplifier and th
e speakers")

Words in the form bank_building

have been converted into their
components, i.e. in this example into
bank building for easier later
comparison.

Finally, while comparing, all words
containing three characters and less are
left out. This was done in order to

leave out frequent words such as
articles or pronouns; when there were
more than one occurrences of a word,
only one was retained. The final gloss
for the seventh sense of the word
contact would be:

amplifier between conductors conjunction
connecter connection connective
connector connects connexion contact
contacts didn't electrical electronics forget
have instrumentality joins junction
physical right solder soldered something
speakers tangency that they things touch
where

The glosses were prepared using
Prolog, since WordNet is available in
Prolog (Obtaining WordNet).

2.3. Pre-processing the documents
Fifteen documents were selected and
downloaded from the World Wide
Web. They had to be prepared for the
algorithm. First, they were converted
into .txt format. Then they were pre-
processed into Penn Treebank (Penn
Treebank project) tokens using a sed
Unix script (Tokenizer.sed). The part-
of-speech tagger was MXPOST
(MXPOST). Finally, regular
expressions were used to put one word
per line.

2.4. Comparing for overlapping
words
From the pre-processed document,
words to be disambiguated were
extracted, together with senses of
surrounding words. The surrounding
words were simply five nouns or
adjectives or verbs preceding the word
to be disambiguated, and five nouns or
adjectives or verbs following it. If a
noun/adjective/verb was not in the
WordNet, the next closest one was
chosen.

Every sense of the word to be
disambiguated was compared to each
sense of the surrounding words. A
number of combinations was derived

19

and scores were assigned to them,
based on the number of the
overlapping words. For example, if a
word to be disambiguated had two
senses, and it was surrounded by two
words, one having three different
senses, and the other having two
different senses, the number of derived
combinations was 12, out of which six
were for the first sense of the word to
be disambiguated, and the other six
were for the second sense of the word
to be disambiguated. The sense chosen
was the one in which group of six there
was the combination with the highest
score out of all the 12 combinations.

 The Lesk algorithm itself was
implemented in Prolog.

2.5. Sample
Three words to be disambiguated have
been selected: bank, contact, and
m/Mercury. Although all of these
words have more than two senses, the
aim of this pilot experiment was to
disambiguate between the two major
senses:

bank:

1) depository financial
institution (two documents
in the sample)

2) sloping land, especially the
slope beside a body of
water (three documents in
the sample)

contact:

1) close interaction between
people (two documents in
the sample)

2) a junction where things (as
two electrical conductors)
touch or are in physical
contact (three documents in
the sample)

m/Mercury:
1) mercury: Hg, metallic

element (three documents
in the sample)

2) Mercury: the planet. (two
documents in the sample)

For each word five documents have

been manually selected, out of which
two of them had one main meaning,
and three another.

3. Results

On our small sample, the average
precision performed worse (0.45) than
baseline precision (0.60) which was
based on always selecting the most
frequent sense. However, this result
should not be taken for granted, since
the sample of three words and 15
documents is too small for any
trustworthy results.
 Instead, we could use some
qualitative analysis:

1) The word bank has 18 senses in
WordNet. The precision for all
the five documents was
relatively bad: 0.25, 0.16, 0.27,
0.30, and 0.5. In all the
documents the often assigned
sense was that of a piggybank,
which might have to do with
the fact that its gloss contains a
lot of frequent words, such as
usually, with, that, from, some.

2) The word contact has 11 senses
listed in WordNet. The
precision for the five
documents was the following:
0.08, 1, 0.6, 0.625, and 0.92.
This good result is partly due to
the fact that we merged
together two rather closely
related senses, that of contact as
communicative interaction, and
that of contact as close human
interaction. We were able to do
this since the main aim of the
experiment was to distinguish

20

between two totally unrelated
senses of contact (see 2.5).
While in one example we
obtained 23 correct senses out
of 25 occurrences, in another
only 3 out of 38 were correctly
assigned and in this case the
extracted senses were not
related to the topic of electrical
contact.

3) The word m/Mercury has four
senses listed in WordNet. The
precision for the five
documents was the following:
0.82, 0.5, 0.66, 0, and 0.05. The
three first numbers are quite
good results and all refer to
discovering the sense of
mercury as a metallic element.
Not-so-good results in one of
the other two documents is due
to the fact that the document
was discussing the temperature
of the planet of Mercury, which
produces the third sense of the
word mercury in WordNet,
about temperature.

4. Conclusion

Two possible implications of this
project could be that the results are
dependent on the characteristics of a
test document and on the
characteristics of glosses, which needs
to be further investigated. However,
the presented approach has several
limitations: a small sample, and a big
number of fine senses in WordNet,
many of which are not that
distinguishable from each other.

In order to determine which
solution is best, the future work would
include conducting experiments with:
• WordNet preparation and

document pre-processing (create a
collection-specific stop-word list,
apply stemming, do part-of-speech
tagging on WordNet glosses,
exclude examples from glosses

which are in quotation marks,
replace the ten-surrounding-word
frame with a paragraph/sentence
frame; experiment with different
combinations of WordNet
relations);

• modify algorithm (the role of tfidf
in precision, taking into account
the number of words per gloss,
experiment with different similarity
measures); and

• utilize WordNet Domains (Domain
Driven Disambiguation), a file that
contains synsets annotated by
domain labels, such as Medicine,
Architecture and Sport.

References
Desire : Development of a European
Service for Information on Research
and Education.
http://www.desire.org/.

Domain Driven Disambiguation.
http://wndomains.itc.it/download.html

Ganesh Ramakrishnan, B. Prithviraj,
Pushpak Bhattacharyya. A Gloss
Centered Algorithm for Word Sense
Disambiguation. Proceedings of the
ACL SENSEVAL 2004, Barcelona,
Spain. P. 217-221.

Jones I., Cunliffe D., Tudhope D.
2004. Natural Language Processing
and Knowledge Organization Systems
as an aid to Retrieval. Proceedings 8th
International Society of Knowledge
Organization Conference (ISKO 2004),
UCL London. (Ed: Ia C. McIlwaine),
Advanced in knowledge Organization,
9, Ergon Verlag. P. 351-356.

Lesk, Michael. 1986. Automatic sense
disambiguation: How to tell a pine
cone from an ice cream cone. In
Proceedings of the 1986 SIGDOC
Conference, pages 24−26, New York.
Association for Computing Machinery.

21

MXPOST : Maximum Entropy Part-
Of-Speech Tagger, and MXPARSE:
(local) Maximum Entropy Parser.
http://www.cis.upenn.edu/~adwait/pen
ntools.html#Tools

Obtaining WordNet.
http://www.cogsci.princeton.edu/~wn/
obtain.shtml

The Penn Treebank project.
http://www.cis.upenn.edu/~treebank/

Satanjeev Banerjee. 2002. Adapting
the Lesk algorithm for Word Sense
Disambiguation to WordNet. Master’s
thesis. Dept. of Computer Science,
University of Minnesota, USA.
http://www.d.umn.edu/~tpederse/Pubs/
banerjee.pdf

Senseval : evaluation exercises for
Word Sense Disambiguation.
http://www.senseval.org/

Tokenizer.sed.
http://www.cis.upenn.edu/~treebank/to
kenizer.sed

WordNet : a lexical database for the
English language.
http://www.cogsci.princeton.edu/~wn/

22

HMS2005: Predictive text entry using bigrams

Myrtille Dedianne and Robert Nilsson

17th January 2005

Abstract

Nowadays, hundred millions of SMS are sent every-
day all around the word and become common in
our everyday-life. Then, the efficiency of text entry
method in mobile phones is more and more impor-
tant. As a previous team project already worked
on, in order to improve it by using bigram predic-
tion, we decided to continue their work and improve
it. In this paper, we describe the system, which is
called HMS[3], and how we improved it. This im-
proved version will be called HMS2005. Firstly, the
code was reviewed to make it work in English or
in whatever language. Secondly, the code was re-
viewed to make it work quicker and usable. Finally,
we added a key, which stops the prediction and falls
back to T9 when typing. For the tests, we involved
7 international persons and measured the time and
the number of key pressed needed to entry a text.
We showed that keys pressed needed were reduced
of 20%, but time-consuming was increased of 15%.
However, we noticed a difference between people
who were or not trained by the new system, which
can false the final results. This could be measure
in good conditions of a real experience.

1 Introduction

To enter SMS with our mobile phones, we use to use
methods we are offered, like T9. But these are not
perfect yet and can be optimized to be more usable,
more flexible, more efficient, easier to learn, quicker
type a SMS message, with less stress etc.

We chose to work on this subject in order to im-
prove the way to write SMS messages. A previ-
ous team of 3 Swedish students (Hasselgren, Mont-
nemery, Svensson) have had already worked on it
in this course and their system was named HMS
[3]. We studied how they built it and how to im-

prove it. Our improved version is called HMS2005
and can be found as an applet at this address:
http://www.orbstation.com/hms2005.

After, we analysed the different methods already
existing and began to code.

2 Evolution of different meth-
ods

With a keyboard of 12 keys, we can measure the
efficiency of different methods using the number of
keystrokes per character or KSPC[4] and the time-
consuming to entry the text.

Since the beginning of SMS messages, several
predictive text entry methods were developed, in
order to improve the efficiency of the multi-press
method. In this method, the user has to press once
a key to type the first letter of the key, twice for the
second, three times for the third et cetera. It is still
used but requires more than one of keystroke per
character and takes time. We will present 3 other
predictive text entry methods.

2.1 T9, by Tegic

This method is a single-press method using uni-
grams. The user presses once key per character
and the program matches the sequence to words
in a dictionary. In many cases, only one word is
possible given the sequence, otherwise, a list with
other possibilities is suggested and the user chooses.
The KSPC is then reduced roughly to 1 and is less
time-consuming, whereas the beginning of using it
is quite disturbing. Many mobile phones use this
method nowadays.

But other implementations are iTAP by
Motorola[2] and eZiText by Zi Corporation[1],
which suggest the next word you intend to type.

1

23

2.2 HMS (for Swedish), Lund Insti-
tute of Technology, Sweden

This method is a single-press method using uni-
grams and bigrams, i.e. two consecutive words[3].
It was developed by 3 students of LTH, Lund (Swe-
den), and uses context. Typing a sequence of
keys, the system considers the previous constant
word typed, matches it in the dictionary of bigrams
(which gives the most frequent words which can
follow this word), and gives in real-time the en-
tire word it could be. In this implementation, the
bigrams are always prioritized over the unigrams.
Available for Swedish, this method reduced KSPC
of 7% on SMS messages and 13% on News[3].

2.3 Other methods

There are other methods, like LetterWise[5] or
Less-tap[6].

LetterWise is a system that does not use a stored
dictionary of words, but a small database of pre-
fix information to disambiguate user keystrokes
(Eatoni Corporation, 2003). Its published KSPC
is 1.1500[5].

Less-tap method uses a remapped keyboard as
a complement for single-press or multi-press meth-
ods. Since the keyboard is built on the alphabetical
order, it does not take in account the frequency of
the most common characters used in different lan-
guages. For example in English, ”e” is the most
common character used, but is in the second place
on his key and shares it with ”d” and ”f”. The
keyboard could be remapped, mixing all characters
and their order, to reduce the KSPC required to
1.4412[6]. However, this proposal could be difficult
to be accepted by people who use to use the actual
keyboard.

3 Dictionary and corpus

3.1 Dictionary compilations

Our first aim was to make it work in English, and
independent of the language. To achieve this it
was important that the data files were stored in an
internationalizable and platform independent way.
Hence we, quite naturally, chose to use Unicode.
After that we collected a dictionary of English uni-
grams. We could have chosen between 2 dictionar-

ies available on the Oxford’s documents which are
publically available. The first was small (254 kb,
about 27000 words) and contained most common
abbreviations, places and names, but did not con-
tain all the inflected words. The second was big
(3 Mb, 10 millions words), and was a mixed file of
all Moby’s dictionaries available, with all inflected
words, abbreviations, places and names. The first
was too small to be used, not enough complete, and
the second was too big, requires too much memory
and given too many not common words. So we de-
cided to use one between both as a compromise. We
found a dictionary on the web (UK English wordlist
v1.01, from the website of Brian Kelk, Cambridge,
UK: http://www.bckelk.uklinux.net/) contain-
ing inflected forms, and we combined it with the
small one, containing most common abbreviations,
names and places. The final dictionary is now 686
kb for 67 485 words.

3.2 Corpus collection and statistics
calculation

A suitable corpus for text entry on mobile phones
should contain mostly everyday English. However,
must corpora are compiled from either news or lit-
erature and the language use from these two sources
can differ quite much from everyday use. There-
fore we decided to collect our own corpus. After
some contemplation we decided that Usenet con-
tains large volumes of text which quite close to ev-
eryday use. The problem with Usenet is that it
also contains a large amount of, for us, unwanted
content such as spam and binaries. However, cer-
tain news groups are more likely to contain usable
text than others and hence we decided to limit our
sampling to 118 subgroups of alt.politics, alt.society
and soc. From these groups we collected 57 181
messages over a period of nineteen days. This was
then compiled into a corpus of roughly ten million
words.

First the uni- and bi-gram statistics were cal-
culated from the corpus at runtime. Obviously
this slowed down the application considerably as it
could take over 2 minutes to compile all statistics
with all n-grams present, see section 3.3. In order
to avoid this lag when the application started it was
decided to precompute all statistics. This was done
through the use of a Python script which read in
the normalized corpus and created one data file for

2

24

each desired n-gram, such as uni-, bi- and so forth.
In our case we decided to only use uni- and bi-grams
as the frequency of trigrams and higher was too low
to yield any noticable effect. The application and
its support scripts are however designed in such a
way that adding support for higher n-grams is easy
to do, see section 5.1.

3.3 Memory considerations

We noticed early on that this application requires
a lot of memory. As a matter of fact in our ini-
tial revisions of the dictionary and statistics files
it required up to 300 MB of RAM. It is important
to note here, also, that the memory requirements
are largely due to the fact that the data struc-
tures are written more with the aim of being easy
to understand and maintain rather than to opti-
mize memory consumption. Furthermore Java in
itself creates a fairly large overhead when it comes
to memory usage. However, we decided that we
needed to reduce the amount of data used in the
application. This was done by both limiting the
size of the dictionary to only include more common
words, less pronouns and so fourth. Furthermore a
frequency cut-off was applied to both the unigrams
and bigrams. Entities with a frequency of xx and
yy respectively were removed. This measure en-
sured that the application consumed less than the
96 MB limit which is standard for Java applets.

Naturally the reduction of the dictionary and the
cut-off reduces the accurary of both the uni- and
bi-gram prediction but it is our distinct impression
that it does not degrade the performance of the
application by a great deal. One would of course
have to conduct more thourough investigations of
this matter to draw a more firm conclusion. Fur-
thermore we believe that the fact that the applica-
tion can run without problems both as an applet
and from the command line is more important than
the accuracy gained from lowering the cut-offs and
increasing the dictionary size.

4 Combining bigram statis-
tics, prediction and T9

First, we made a system using bi-gram statistics,
prediction and unigram statistics at the same time,

for each key pressed. The bigrams were obvi-
ously prioritized over the unigrams. But a problem
was high-lighted: many times when typing a short
word, longer words were given instead of having
words with only the length of the number of key
pressed, because of the prediction. For example,
typing ”of” after ”no”, the words given before ”of”
were ”next”, ”need”, ”means”, ”news”, ”mention”,
”new”, ”mercy” and ”official”. Itincreased a lot the
number of KSPC, to go down in the list in order to
select it, whereas using T9, ”no” appears first in the
list. Then we decided to add a key, the ”yes” key,
which allows stopping the prediction and restricts
the length of words given to the number of key al-
ready pressed. In the previous example, pressing
this key would have reduced the list of words given
to ”me”, ”ne” and ”of”, because we pressed only 2
keys.

This kind of key is not natural at the beginning to
using it, but permits to combine advantages of both
HMS and T9 methods, i.e. prediction with bigrams
and statistics of unigrams without prediction.

Moreover, we added two checkboxes, which are
”prediction” and ”context” and work in real-time.
With them, the system is flexible and the user can
choose to use the different advantages of HMS. In
that sense, we can differentiate the 2 advantages
of HMS compare to T9. With both check-off, the
system works like T9. It is useful, then, to be able
to choose the right method for the right word. The
user can switch from one to the other when typing,
to take the best advantage of the different meth-
ods (for example, we will choose ”context-on” and
”prediction-off” to use T9 with context, or choose
”context-on” and ”prediction-on” to write a long
sentence in a good language, or choose ”context-
off” and ”prediction-off” for short words, et cetera).

Finally, we added a functionality usually well ap-
preciated by the users: the ability to learn. That
means that each time a word is selected, its fre-
quency is increased by 1. Then, more and more,
the most common words used by the user become
the first in the list and it is easier and quicker for
him, decreases the KSPC.

However, as the system is settled and reloaded
each time, it is not possible to save the scores of
each user.

3

25

5 Implementation

As mentioned earlier one of our goals was to enable
the application to be as flexible as possible when it
comes both the depth of n-grams used and to have
structures that are language independent. Of these
the latter is the largest importance if this is do be
deployed in real use. This is achieved by making the
data structure in the application abstract enough
to allow for different key pad encodings without
having to rewrite any code. How this is done is dis-
cussed in section 5.1. One prerequisite for the data
structure to work in this manner is to be able to
translate a press on a button into a set of charac-
ters, e.g. the button labeled ”2” on the keypad, see
figure 1, represents the characters ”a”, ”b”, ”c” and
”2”. By reversing this, e.g. saying that ”a” maps
onto the button ”2”, we can encode a word as a se-
ries of key presses given a certain encoding scheme,
or key map. By stating that the buttons each have
an index and that the first button is ”1” with index
0. By using this the word ”hello” would in English
be encoded as the following sequence 3-2-4-4-5.

Another important aspect of any application is
its user interface. In our case There was not really
much choice as to how the application should look
as its task was to mimic the front, or user interface,
of a mobile phone and there is already a de facto
standard for this. Hence the GUI is laid out with a
text area above a keypad which the user can press
with the mouse. One addition is the list of proposed
words to the right of the text area and keypad.
Furthermore we added two checkboxes to turn word
prediction and context awareness on and off. The
user interface of HMS2005 can be seen in figure 1.

5.1 Data structure

The application stores its data about words and
their probabilities (unigrams) as well as bigrams in
a common structure, a word tree. In the tree the
nodes are connected by arcs which represents one of
the buttons labeled 1 through 9, see figure 1. Each
node also can contain a list of words which this
node is said to represent. Furthermore the tree can
optionally contain a link to a different word tree for
each word, more on this later. And last, and quite
naturally a node can have up to nine references
to subtrees. Hence if we take the example with
”hello” from above we would, starting from the

Figure 1: The user interface of HMS2005

root node, take the fourth arc followed third and
so forth. After the sequence has been followed we
would have reached the node containing the word
”hello”. With this solution word prediction just
becomes the task of compiling a list of words from
the subtree of the current node as well as the list
of words contained in the node.

We can use this basic structure to include bigram
information as well by, as hinted earlier, for each
word in a node also link to another word tree, the
bigram tree. When a word has been accepted by
the user the bigram tree corresponding to that tree
is stored. As the user types the next word the ap-
plication traverses both trees with the same input
and when the prediction lists are generated the list
from the bigram tree is prepended to the unigram
list. Of course this method could be repeated an
arbitrary number of times to provide which ever n-
gram depth desired. A schematic view of the data
structure can be seen in figure 2.

4

26

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

4

4

5

...

hello

...

Figure 2: The data structure used in HMS2005
with the path leading to ”hello” highlighted

The data for the application is stored as plain
text lists with one entity per line and where each
line consists of either just a word, for the dictionary,
or the frequency followed by one or more words
for uni- and bi-grams. When the application starts
these are added to the tree in a such a way that only
words in the dictionary are allowed, this to avoid
unwanted words from the corpus to enter the tree.
Of course this approach slow the loading process if
there are many unwanted words but as the loading
time was acceptable after cut-offs were applied, see
section 3.3, we decided to keep this approach as it
simplified our work.

The time consumption of this data structure de-
pends largely of the length of the words stored. Of
course going from one node to another can be done
in constant time hence going from the root node
to a certain node and finding a word within that
node can be done in O(n + m) time where n is the
length of the word and m is the number of words
within the destination node. When building a word
prediction list the application has to first visit each

node in the subtree and for each node a word list
has to be compiled consisting of the words in that
node concatenated with the words of that node’s
subtree. If we assume that adding a word to a list
is O(1) this phase will run in O(nm) time where n
is the number of nodes and m the number of words.
The next phase will be sorting the list according to
some criterion, usually frequency but it could also
be alphabetically, and depending on the sorting al-
gorithm used this can vary greatly. If we employ an
fairly efficient sorting algorithm this phase can be
done in O(n log n) time which would yield a total
running time of O(nm + n log n). This can be op-
timized further of course, for example storing the
words pre-sorted within the structure, but as the
aim of this implementation is clarity and demon-
stration rather than efficiency and speed this must
be considered adequate.

6 Evaluation

To evaluate our new method, we chose 2 factors of
measurement: number of KSPC and time to entry
the text.

We did first a ”different participants for the same
sentence” evaluation, i.e. each participant entries
the same sentence in order to compare between par-
ticipants, and secondly a ”same participant for dif-
ferent sentences” evaluation, i.e. each participant
entries 2 different sentences in order to compare
between sentences.

A total of 7 participants were involved, typing
firstly a sentence both in HMS and T9 (in this or-
der), and secondly another sentence in the same
way. The sentences were ”I study at the University
of Lund” and ”Hello I hope you’re fine and don’t
forget our meeting in Lund tomorrow morning”.

Typing 2 different sentences was important be-
cause for the first one, people were disturbing by
the new system, using it for the first time and try-
ing to learn how it worked. There were friendlier
with it for the second sentence.

The results were quite positive. Firstly, in terms
of keystrokes per character, we highlighted an im-
provement of 20% (that means that you need 20%
less key pressed to write the message). We can con-
sider it as an average because we kept all the mis-
takes done by the users, which sometimes increase
the KSPC instead of reducing it.

5

27

Secondly, in terms of time, we highlighted a
weakness of 15% (that means that you need 15%
more time to write the message). The problem
is that the system disturbs the user at the begin-
ning, mostly because of short words and because
you have to remember the letters you have already
typed.

Comparing trained and not trained people (both
of us and other users), we noticed that for the more
experienced users the time consumption of HMS
and T9 were roughly the same although the KSPC
for HMS was lower. Furthermore, we noticed a
big difference in time consumption when it came
to trained and untrained people. We measered a
200% speed increase for trained people and this can
probably be explained by the fact that as you get
used to using the bigram prediction you get more
confident that the system will predict the correct
word. Naturally this is probably also true for new
users of T9.

But the most important thing which reduces the
efficiency of the system is the length of words. HMS
reduces a lot the KSPC for long words but not for
short words. This can be seen in table 1.

word T9 HMS
tomorrow 8 kp 4 kp

in 2 kp 3 kp

Table 1: Key press Comparision

The problem is that when typing short words,
long words are proposed first and you have to press
one key more (the ”Yes” key or the ”T9” key) to
restrict the length or stop the prediction. This
increases KSPC and time consumption and could
be optimized. It can be seen from the following
two figures, figure 3 and figure 4, how the KSPC
changes as the word length increases.

7 Conclusions

As we have seen, we tried to improve the HMS sys-
tem, which is a predictive text entry method using
context. We first made it works in English, collect-
ing an English dictionary and a corpus of the closest
language from SMS language we could. After, we
improved it by adding a key which can stop the
prediction and come back to the T9 method. This

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5

4

K
S

P
C

Figure 3: Word length versus KSPC for HMS

key permits to take both advantages of HMS and
T9 methods when typing. Then we made the sys-
tem intelligent by learning the words the most used
by the user (without reload the system). After an
evaluation, we showed an improvement of 20% us-
ing the KSPC as the measurement, and a decrease
of 15% using the time as the measurement.

7.1 Improvements

But of course, this system can be optimized and im-
proved again. Firstly, to be closer to the existing
mobile phones, numbers, punctuation and special
characters could be added in the keyboard. This
could be used to do longer and more complex exper-
iments and could be closer to the reality. Secondly,
our results are not as closed to the reality as they
could be because of the corpus we used to calculate
the bigrams. We wanted to use free corpora of SMS
but none exists yet today, so we used corpora from
Usenet. This kind of corpora of SMS are collecting
by researchers just now, because the technology is
new and these corpora are needed to extend the re-
searchs. We found one corpus of english SMS from
Singapore, but not really useful because of strange
words or names sometimes. Thus, we think that
in a few years, more SMS copora will be available
for researchs and evaluation will be closer to the
reality.

6

28

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5

4

K
S

P
C

Figure 4: Word length versus KSPC for T9

References

[1] Zi Corporation. eZiText, 2002.

[2] Lexicus Devision. iTap. Motorola, 2001.

[3] Jon Hasselgren, Erik Montnemery, Pierre
Nugues, and Markus Svensson. HMS: Predic-
tive text entry. In DAT171, 2003.

[4] I. Scott MacKenzie. KSPC (keystrokes
per character) as a characteris-
tic of text entry techniques. In
http://www.yorku.ca/mack/hcimobile02.PDF,
2002.

[5] Scott MacKenzie, Hedy Kober, Derek Smith,
Terry Jones, and Eugene Skepner. Letterwise:
Prefix-based disambiguation for mobile text in-
put. In http://www.eatoni.com/research/lw-
mt.pdf, 2001.

[6] Andriy Pavlovych and Wolfgang Stuer-
zlinger. Less-tap: A fast and easy-
to-learn text input technique for
phones. In http://www.cs.yorku.ca/ an-
driyp/papers/GI2003 Less-Tap.pdf, 2003.

7

29

30

Named entity recognition using statistical methods

Stefan Ekenberg
Department of Computer Science

Lund University
d01se@efd.lth.se

Abstract

This report is the result of the project part
of a course in computer linguistics. The
assignment was to develop a java pro-
gram that tags proper nouns using statis-
tical methods. To do this, a Support
Vector Machine was used and the main
part of the project was to find out what
parameters to send into the SVM to get a
good result.

To evaluate the system the precision and
recall values of a corpus were calculated.

1 Introduktion

Syftet med denna rapport är att beskriva hur sta-
tiska metoder kan användas i ett system för att
tagga egennamn i en text. En träningstext an-
vänds för att lära systemet vilka taggar som skall
användas och i vilken kontext som dessa oftast
befinner sig i. Informationen kan sedan användas
för att tagga en liknande text.

Till skillnad från tidigare arbete som ”Name
Extraction in Car Accident Reports for Swedish”1
används inga gazetteers2 eller regler som till ex-
empel reguljära uttryck. Detta ger främst de två
fördelarna att systemet blir generellt och kan på
så sätt användas i många olika sammanhang samt

1 Ett projekt som tidigare utförts på LTH i kursen ”Språkbe-
handling och Datalingvistik”, precis som detta projekt. Se
referenser.
2 Gazetteer – lista med ord och motsvarande tagg som sys-
temet har lagrad.

att den implementerade koden blir mycket enkla-
re att felsöka och få översikt över. Koden med
reguljära uttryck blev mycket svårhanterlig och
det var mycket svårt att hitta fel samt att lägga till
nya uttryck. Dock har även detta nya system ut-
vecklats för att fungera så bra som möjligt på
texter om trafikolyckor, precis som tidigare
nämnda arbete. Detta har påverkat en del val av
parametrar som används för att känna igen kon-
texten för en viss tagg.

Parametrarna som plockas ut från det ord som
skall taggas och dess kontext matas in i LIBSVM
som är ett programpaket för att känna igen möns-
ter. Uppgiften i projektet var att hitta de paramet-
rar som skulle matas in i LIBSVM för att få bästa
möjliga resultat.

Först kommer denna rapport nämna möjliga
användningsområden för systemet och därefter
beskrivs LIBSVM kortfattat. Sedan kommer de
olika parametrarna som skickas in i detta pro-
grampaket behandlas noggrant och till sist görs
analys av hur storleken på systemets träningskor-
pus påverkar resultatet samt en evaluering av
korrektheten vid taggning som systemet produce-
rar.

2 Bakgrund

System för att tagga egennamn kan till exempel
användas till program som behandlar texter och
behöver information om de olika orden i texten
för att sedan på något sätt kunna tyda vad me-
ningen betyder. CarSim3, som är ett text-till-
scenomvandlingsprogram för trafikolyckor, är ett
exempel på program som har användning av att

3 Pierre Nugues, 2004. Se referenser.

31

veta vilka ord som är egennamn. Då kan det ta
reda på vem som är inblandad i olyckan, var den
inträffade och så vidare.

3 LIBSVM

LIBSVM bygger på Support Vector Machines
som är en statistisk metod för att känna igen
mönster. För att klassificera försöker SVM hitta
en hyperyta i rymden av möjliga indata. Denna
hyperyta försöker dela de positiva exemplen från
de negativa. Delningen görs på ett sådant sätt att
hyperytan får så långt avstånd som möjligt till de
närmsta av de positiva och negativa exemplen. På
så sätt kan en klassificering göras korrekt för
testdata som är nära men inte identisk till trä-
ningsdatan. För mer information om SVM se
”Chih-Chung Chang and Chih-Jen Lin,
LIBSVM: a library for support vector machines,
2001”, ”A Tutorial on Support Vector Machines
for Pattern Recognition” och en hemsida från
Microsoft Research CCSP Group på adressen
http://research.microsoft.com/~jplatt/svm.html.

4 Parametrar

För att få idéer på vilka parametrar som kan ge
bra resultat har bland annat artiklarna ”Introduc-
tion to the CoNLL-2003 Shared Task: Language-
Independent Named Entity Recognition”, ”Na-
med Entity Recognition through Classifier Com-
bination” och ”Named Entity Recognition with a
Maximum Entropy Approach” studerats. Dessa
användes som en utgångspunkt för vilka paramet-
rar som med stor sannolikhet borde ingå. Därefter
har felaktiga taggningar i resultatet studerats för
att komma på nya parametrar som skulle kunna
användas. Dessa har sedan testats för att se om de
gör en positiv eller negativ inverkan på resultatet
för att kunna avgöra om de skall användas re-
spektive förkastas. På så sätt har en iterativ me-
tod använts för att komma fram till slutresultatet.

I Tabell 1 finns en sammanställning av de pa-
rametrar som gjorde en positiv inverkan på resul-
tatet och därför ingår i systemet.

Tabell 1. De olika parametrarna som används och deras relativa inverkan på resultatet. Vid framtag-
ningen av värdena i tabellen användes en träningskorpus på 9502 ord och en testkorpus på 3805 ord.
Värden större än 1 betyder att då parametern används så ökar värdet. Om en parameter är bra så skall
den alltså ha värden som är större än 1 i kolumnerna ”Korrekta taggningar”, ”Precision” och ”Recall”
medan värdet för ”Feltaggningar” skall vara mindre än 1 (förklaring till precision och recall finns i
stycke 6).

Parametertyp
Korrekta

taggningar: Feltaggningar: Precision: Recall:
Ordets suffix 1,12 0,82 1,10 1,12
 - Längden 4 1,02 0,93 1,03 1,02
 - Längden 3 1,01 1,01 0,99 1,01
 - Längden 2 1,03 0,95 1,02 1,03
 - Längden 1 1,01 0,98 1,01 1,01
Föregående och efterföljande ord 1,07 0,84 1,11 1,07
 - Ordet innan föregående 1,00 0,95 1,02 1,00
 - Föregående ord 1,02 0,95 1,02 1,02
 - Efterföljande ord 1,04 0,93 1,03 1,04
Inledande stor bokstav 1,06 0,89 1,02 1,06
Ordklassinformation 1,04 0,93 1,03 1,04
Frasinformation 1,03 0,95 1,02 1,03
Efterföljande är ett nummer 1,03 0,95 1,01 1,03
Efterföljande ord har stor bokstav 1,04 0,91 1,05 1,04

32

4.1 Ordets suffix

Suffix av det ord som skall taggas gav positivt
resultat upp till längden fyra. Hela ordet används
även som parameter men suffix kan få fram gene-
rella mönster på orden för de olika taggarna som
inte enbart själva ordet kan. En möjlig anledning
till att suffix av längden fem inte gav något för-
bättrat resultat är att inte träningsdatan var till-
räckligt omfattande för att LIBSVM skulle kunna
känna igen mönster av längden fem.

Suffix av längden ett (sista bokstaven) skulle
man kunna tro var för generell för att användas.
Dock var så inte fallet som visas i Tabell 1. Detta
kan förklaras med samband som till exempel att
gatunamn ofta slutar på bokstaven n vilket är sis-
ta bokstaven i ”gatan” och ”vägen”.

Suffix av längden två hade en större inverkan
på resultatet men någon direkt förklaring till detta
är svårt att ge. Dock är ju denna mindre generell
än endast en bokstav vilket gör att mönster är
lättare att upptäcka.

Suffix av längden tre är bra för att upptäcka
mönster i efternamn vilka ofta slutar på ”son”,
som till exempel ”Andersson” och ”Johnson”.

Suffix av längden fyra gav även ett positivt
resultat. En möjlig förklaring till det positiva re-
sultatet är till exempel samband som att städer
ofta slutar på ”borg” som i ”Helsingborg” och
”Ludviksborg”.

Suffix av längden fem gav som tidigare inget
förbättrat resultat. Dock skall det observeras att
så är fallet när även alla de andra suffixen an-
vänds. Om alla de andra ej används medan suffix
av längden fem används så ger denna en positiv
inverkan på resultatet jämfört med om inget suf-
fix alls används.

4.2 Föregående och efterföljande ord

För att kunna utnyttja ett ords kontext används
föregående och efterföljande ord som parametrar.
Dessa medför att programmet tar hänsyn till i
vilket sammanhang som ordet befinner sig i.

Testning har visat att systemet fungerar bäst då
de två föregående orden var för sig samt det ef-
terföljande ordet används som parametrar. Trä-
ningsdatans begränsade storlek kan ses som en
anledning till att systemet inte fungerar bättre
med ännu fler föregående och efterföljande ord
som parametrar. Om det skall vara möjligt att se

mönster på ett längre avstånd från ordet som skall
taggas så måste systemet tränas mer eftersom
orden får ett mindre och mindre samband med
ordet som skall taggas ju längre avståndet är.

Ett exempel på en mening där kontexten har
stor betydelse är ”Mannen och kvinnan åkte till
Malmö.” som innehåller typiska ord för en viss
sorts tagg innan ordet ”Malmö”. Om orden
”åkte” och ”till” befinner sig innan ett ord är det
stor sannolikhet att ordet skall taggas med en
tagg som LOCATION eller CITY, beroende på
vilka taggar som systemet har tränats med. Ett
exempel på en ytterligare mening är ”Jag vill ha
glass, sade Johan” där ordet ”sade” innan ”Jo-
han” kan hjälpa systemet att tagga rätt eftersom
ord efter ”sade” med stor sannolikhet skall ha en
tagg av typen PERSON.

Ett försök med bigram som parameter, det vill
säga de två föregående orden tillsammans, gjor-
des även med ett misslyckat resultat som följd.
Att skicka in orden var för sig som parametrar
gav mycket bättre resultat. Återigen borde detta
bero på träningsdatans storlek eftersom det finns
många fler variationer av bigram än av orden var
för sig.

Efterföljande ord kan även ha stor betydelse
för att systemet skall ha möjlighet att tagga rätt. I
meningar som ”De med svårast skador flyttades
till Falu lasarett.” kan system har svårt att tagga
”Falu lasarett” som LOCATION om det inte vet
om att ordet ”lasarett” kommer efter ”Falu”.
Tabell 1 visar även att det efterföljande ordet in-
verkar mer på resultatet än de två föregående var
för sig.

4.3 Inledande stor bokstav

En typisk egenskap för ett egennamn är att det
inleds med stor bokstav. Därför används en pa-
rameter som kan anta värdena ”true” och ”false”
som anger om ordet inleds med stor bokstav eller
inte. Tabell 1 visar dock att parametern inte har
så stor betydelse som man skulle kunna tro. Detta
beror till största del på att den inte säger så
mycket vilken tagg som skall sättas utan mer att
någon tagg överhuvudtaget skall sättas. Att ett
ord inleds med stor bokstav avslöjar inte om det
är en stad eller ett personnamn.

Något som också måste observeras är att alla
egennamn inte inleds med stor bokstav. Till ex-

33

empel ordgruppen ”riksväg 13” som möjligtvis
skall taggas som ROAD har inte stor bokstav i
något av orden.

4.4 Ordklassinformation

Om texten som skall taggas även innehåller in-
formation om ordets ordklass hjälper detta även
systemet att tagga korrekt. Ett egennamn har då
oftast ordklasstaggen ”pm.nom” vilket hjälper
systemet på samma sätt som inledande stor bok-
stav. Dock kan det förekomma fel i ordklasstag-
garna eftersom dessa antagligen är satta av en
automatisk ordklasstaggare som inte är hundra-
procentig. Detta har nackdelen att man får in fler
felkällor i resultatet men som Tabell 1 visar så
har denna parameter ändå en positiv inverkan på
resultatet.

Den positiva inverkan som ordklassinforma-
tionen för med sig måste sättas i relation till den
extra beräkningskraft som krävs för att köra ord-
klasstaggaren. Resultatet visar att ordklassinfor-
mationen inte har en så pass stor inverkan att den
är nödvändig och därför kan systemet klara sig
utan den då den ej finns tillgänglig.

4.5 Frasinformation

Precis som med ordklassinformationen kan tex-
ten som skall taggas först gå igenom en frastyp-
taggare som sätter ut frastypsinformation.
Eftersom egennamn oftast taggas som substantiv-
fras kan detta hjälpa systemet att identifiera att en
tagg skall sättas, dock ej vilken. Frastypinforma-
tionen medför även den att det finns en felkälla
eftersom en frastyptaggare inte heller alltid tag-
gar korrekt. Denna parameter förbättrar ändå re-
sultatet, dock är inte förbättringen inte lika tydlig
som med ordklassinformationen.

Precis som med ordklassinformationen så visar
resultatet i Tabell 1 att den extra beräkningskraft
som krävs för att sätta ut frasinformationen inte
alltid är motiverad. Frasinformation är alltså inte
heller en nödvändighet men har en positiv inver-
kan på resultatet.

4.6 Efterföljande är ett nummer

Systemet kontrollerar om den grupp av tecken
som befinner sig efter ordet som skall taggas är
ett nummer. Denna information används som en
parameter som kan anta värdena ”sant” eller
”falskt”. Taggen används för att kunna märka
upp taggar som ROAD där dessa ofta skrivs som
till exempel ”riksväg 13”. För att systemet skall
ha möjlighet att tagga ”riksväg” korrekt behövs
informationen att ”13” är ett nummer. Detta är en
parameter som är lite specialanpassad till den
korpus med trafikolyckstexter som användes för
att träna och testa systemet och har ingen märk-
bar betydelse på andra typer av korpus.

4.7 Efterföljande ord har stor bokstav

Denna parameter ökar systemets förmåga att tag-
ga personnamn korrekt. Till exempel ”Joakim” i
”Joakim Palmkvist” har större sannolikhet att få
rätt tagg när denna parameter används. Däremot
så hjälper den ju inte när till exempel endast för-
namnet finns utskrivet i texten. Precis som para-
metern med kontrollen om efterföljande
teckengrupp är ett nummer, så består även denna
av antingen värdet ”sant” eller ”falskt” då efter-
följande ord har inledande stor bokstav respekti-
ve ej inledande stor bokstav.

4.8 Föregående ords egennamnstagg

Innan denna parameter användes hade systemet
stora problem med det gjorde konstiga taggningar
som till exempel för ”Udo Theil”:

Udo I-PERSON
Theil I-CITY

Det vill säga taggningar som skulle innefatta fle-
ra ord fick istället olika taggar för de enstaka or-
den. Genom att även använde föregående ords
tagg som parameter i systemet kunde taggningens
kvalitet öka avsevärt vilken syns tydligt i Tabell
1. Det är ju mycket mindre sannolikt att två ord
efter varandra har olika taggar än att de båda har
samma tagg. Då denna parameter används får
”Udo Theil” sin korrekta taggning, det vill säga:

Udo I-PERSON
Theil I-PERSON

34

4.9 Kommentarer till val av parametrar

Tester har även gjorts med lite mer avancerade
parametrar. Försök att komma till rätta med pro-
blemet att personnamn inte fick någon tagg då
inte både för- och efternamn fanns utskrivet har
gjorts, tyvärr med misslyckat resultat. Denna pa-
rameter använde det faktum att då ett namn
nämns i en artikel så står nästan alltid hela nam-
net utskrivet först, det vill säga med både för- och
efternamn och dessa kunde systemet tagga kor-
rekt som PERSON. Dessa namn sparades sedan
undan i en lista och för varje ord som skulle tag-
gas så kontrollerades det mot denna lista för att
se om det tidigare taggats som namn. I så fall fick
parametern värdet ”sant”, annars värdet ”falskt”.
Resultatet blev dock att många taggningar där
både för- och efternamn fanns med nu istället
blev felaktiga och systemet blev inte heller bättre
på syftet med taggen – att tagga personnamn som
endast bestod av för- eller efternamn.

Orsaken till detta är antagligen att parametern
inte alltid är antingen ”sant” eller ”falskt” då sy-
stemet tränas eftersom första gången namnet fö-
rekommer är den ”falskt” och nästa gång är den
”sant”. På så sätt förvillar istället parametern ef-
tersom den inte har samma värde för alla ord som
skall taggas som PERSON.

En lösning på problemet hade varit att inte gå
via SVM och använda informationen som en pa-
rameter utan att själv tagga ord som PERSON då

de finns med i listan. Då förloras dock syftet med
systemet eftersom det inte längre blir generellt
och all information som finns i de andra paramet-
rarna tas ingen hänsyn till. Det behöver ju inte
vara ett personnamn bara för att det finns med i
listan. Till exempel ”Berg” kan först finnas med i
”Johan Berg” och sedan inleda en mening som
”Berg är vackra att se på!”.

Läxan som kan läras av detta är att man inte
skall anstränga sig för mycket vid val av para-
metrar och hitta på komplicerade samband, utan
ta med generella saker som finns i ordets närhet,
det vill säga den typen av parametrar som finns
med i Tabell 1.

5 Träningskorpusens storlek

Det är inte bara parametrarna som har en stor
betydelse för hur resultatet blir utan även storle-
ken på träningskorpusen har en stor inverkan.
Detta illustreras i Figur 1 och Figur 2 som visar
hur antalet korrekta och felaktiga taggningar be-
ror av antal träningsord respektive hur precision4
och recall5 beror av antalet träningsord.

I figurerna syns att kurvorna fortfarande vid
190000 ord inte har stabiliserat sig vilket betyder
att en ännu större träningskorpus hade gett ett
bättre resultat. Tyvärr fanns inte större tränings-
korpus tillgänglig för att vidare utforska hur stor
den måste vara för att en ytterligare storleksök-

4 Vad precision betyder beskrivs i stycke 6
5 Vad recall betyder beskrivs i stycke 6

Antal korrekta och felaktiga taggningar som
funktion av antal träningsord

0
200

400
600
800

1000

1200
1400

0 50000 100000 150000 200000

Antal korrekta
taggningar
Antal felaktiga
taggningar

Figur 1. Visar hur antalet korrekta och felaktiga taggningar beror av träningsdatans
storlek

35

ning inte skall påverka resultatet.

6 Resultat

För att kunna evaluera systemet har en testkorpus
med trafikolyckstexter, som innehåller 3805 ord,
taggats manuellt vilket gav 182 taggar. Denna
taggning jämfördes sedan med systemets produ-
cerade taggning. Innan dess tränades systemet
med en annan trafikolyckskorpus innehållandes
9502 ord och 436 taggar. Dock var denna trä-
ningskorpus maskinellt taggad vilket gör att det
inte är helt korrekt och detta påverkar systemets
resultat negativt. Dessutom är det inte tillräckligt
stort för att systemet skall ha en chans att lära sig
de olika taggarnas egenskaper. Med en större
korpus som är korrekt taggat hade alltså resultatet
varit bättre.

Vid utvärderingen används följande vokabu-
lär:

• Answer file – texten, maskinellt tag-
gad av vårt program.

• Key file – texten, manuellt taggad.
Denna text utgör definitionen på kor-
rekt taggning.

• Recall – antalet korrekta taggar i
Answer file dividerat med det totala
antalet taggar i Key file.

• Precision – antalet korrekta taggar i
Answer file dividerat med det totala
antalet taggar i Answer file.

Systemet gav följande resultat:

Antal korrekta taggningar:
144
Antal feltaggningar: 55
Precision: 77.84%
Recall: 79.12%

Eftersom kvaliteten på den träningskorpus som
användes inte var den bästa kan inte alltför stora
slutsatser dras av detta resultat. Det ger dock en
fingervisning på hur pass bra systemet är.

Systemet har även testats på en korpus som in-
nehåller ekonomiska texter på engelska. Trä-
ningskorpusen innehöll ca 190000 ord och
testkorpusen innehöll ca 23000 ord. Tyvärr var
både tränings- och testkorpus maskinellt taggade
vilket återigen gör att resultatet endas kan ses
som en fingervisning. Då erhölls följande resul-
tat:

Antal korrekta taggningar:
1001
Antal feltaggningar: 383
Precision: 77.96%
Recall: 76.41%

Resultatet visar att systemet även fungerar väl på
texter skrivna i andra språk än svenska samt
andra typer av texter. Som en jämförelse kan man
studera resultatet från CoNLL-2003 Shared Task6

6 Se referenser.

Precision och recall som funktion av antal
träningsord

0

20

40

60

80

100

0 50000 100000 150000 200000

Precision
Recall

%

Figur 2. Visar hur precision och recall beror av träningsdatans storlek

36

som gick ut på att tagga egennamn. Där fick det
bästa systemet resultatet

Precision: 88.99%
Recall: 88.54%

på engelska texter vilket är ett betydligt bättre
resultat. Dock använde detta system, precis som
de flesta andra som ställde upp, gazetteers vilka
ej skulle användas i detta system eftersom det
skall vara så generellt som möjligt.

7 Slutsatser

Vikten av valet av bra parametrar kan inte nog
påpekas när man skall utveckla ett system som
använder en statistisk metod som detta system.
För att ta fram parametrar som fungerar bra mås-
te man testa sig fram. Dock kan man alltid ha en
tanke i bakhuvudet som säger att generella para-
metrar som ligger i ordets kontext fungerar bäst.
Man skall inte försöka hitta komplicerade sam-
band.

Systemet som implementerades med hjälp av
enbart statistiska metoder får tyvärr anses inte
vara tillräckligt bra för kommersiell användning.
Då måste precision och recall säkert upp till 97 %
innan det kan anses intressant. Dit har systemet
en lång väg. För att komma dit måste antagligen
knep som gazetteers användas på bekostnad att
systemens generallitet.

Tack

Jag vill tacka Richard Johansson för implemente-
ringen av interface till LIBSVM, allmänna tips
samt stödet under projektets gång.

8 Referenser

Lisa Persson and Magnus Danielsson. 2003. Name
Extraction in Car Accident Reports for Swedish.
Projektarbete på Lunds Tekniska Högskola i kursen
“Språkbehandling och Datalingvistik”.

Pierre Nugues. 2004. Development of a Text-to-Scene
Converter for Vehicle Accident Reports,
http://www.lucas.lth.se/lt/carsim.shtml

Chih-Chung Chang and Chih-Jen Lin. 2001. LIBSVM:
a library for support vector machines. Mjukvara

tillgänglig på internet-adressen
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Christopher J.C. Burges. 1998. A Tutorial on Support
Vector Machines for Pattern Recognition. Bell La-
boratories, Lucent Technologies.

Microsoft Research. Support Vector Machines.
http://research.microsoft.com/~jplatt/svm.html.

Erik F. Tjong Kim Sang and Fien De Meulder. 2003.
Introduction to the CoNLL-2003 Shared Task:
Language-Independent Named Entity Recognition.
CNTS – Language Technology Group University
of Antwerp.

Radu Florian, Abe Ittycheriah, Hongyan Jing and
Tong Zhang. 2003. Named Entity Recognition
through Classifier Combination. IBM T.J. Watson
Research Center 1101 Kitchawan Rd, Yorktown
Heights, NY 10598, USA.

Hai Leong Chieu and Hwee Tou Ng. 2003. Named
Entity Recognition with a Maximum Entropy Ap-
proach. Department of Computer Science National
University of Singapore 3 Science Drive 2 Singa-
pore 117543.

37

38

Investigating an implementation of Joakim Nivre's algorithm for projective
dependency parsing of Swedish text.

Jörgen Hartman
Lund University Computer Science
jorgen.hartman.398@student.lu.se

Abstract
This paper presents some statistics on an

implementation of Joakim Nivre's algorithm. The
implementation in Prolog have a coverage of 100%
because of the backtracking mechanism in Prolog.
The rank of the correct graph within all produced
graphs are not very good with this implementation.
This paper also shows that the rank can be
improved at the cost of the coverage.

1 Introduction
How hard is it to find the correct dependency

graph from Swedish sentences? I will investigate
an implementation of the algorithm described by
Nivre [1]. The implementation itself was made by
Pierre Nugues at Lunds Tekniska Högskola. I will
try the implementation on an annotated Swedish
Treebank called Talbanken. Talbanken is tagged
using a probabilistic part-of-speech-tagger trained
on the Stockholm Umeå Corpus (SUC). Talbanken
consists of about 5000 sentences.

2 The algorithm.
Nivre's algorithm uses a basic shift reduce

algorithm extended with some more parse actions:
• Left arc - Adds an arc from head to left

dependent if there is a dependency rule that
allows it.

• Right arc - Adds an arc from head to right
dependent if there is a dependency rule that
allows it.

• Reduce - Pops the node on top of the stack
if it has a head.

• Shift - Pushes next word of the input onto
the stack.

The algorithm makes sure that the graph will be
acyclic, connected, and projective. The algorithm
will always find a graph for any sentence provided
there are lexical rules for all dependencies in the
sentence. The algorithm and its different actions
are further described in Nivre [1].

2.1 The implementation of the algorithm.
The implementation is done in Prolog

programming language. Prolog uses a backtracking
mechanism that allows the algorithm to produce a
new alternative graph until the correct one is found
or all alternatives are found. For example; if the
dependency between two words can be determined
by two different rules, Prolog will try the first rule,
and if it does not produce a correct graph it will go
back and try the other rule.

3 Investigation of the implementation.
The idea was to see if the algorithm always

could find the correct graph. Prolog uses a
backtracking mechanism that makes it possible to
find several different graphs that can be generated
from a single sentence. It would be interesting to
see the rank of the correct graph within all the
generated graphs.

I started with a Treebank called Talbanken. It's
an annotated Treebank with Swedish sentences. It
contains information like index and class of the
words, index for the sentence, and dependencies
between words. I used that information to extract
the dependency graph from Talbanken and
compare that graph with the graph produced by
nivre's algorithm. I wrote a perl script that extracts
the sentences from Talbanken into a file that can
easily be read by prolog, and I made a script that
extracted the graphs as well. The algorithm needs a
set of dependency rules that covers the
dependencies in the sentences. If a rule was
missing you would not be able to find the correct
graph. Since all information is available in
Talbanken, I wrote a perl script that extracts all the
dependency rules as well.

The test was then done in prolog. The testing

program reads the first sentence and then uses the
implementation of Nivre's algorithm to produce all
possible dependency graphs. It then compares this

39

list of graphs with the dependency graph taken
from Talbanken and writes the rank of the correct
graph to a result file. If no correct graph was
found, the rank would be set to zero.

I immediately ran into problems with stack

overflows. Making prolog do a list containing all
possible graphs for a sentence required a lot of
memory, especially if the sentence was long. I
made changes in all three perl scripts so you could
set a maximum sentence length. It would now be
easy to only extract sentences up to a specific
length along with the corresponding graphs and
dependency rules.

Tests with sentences of maximum length five
showed that the coverage (number of correct
graphs found) was 100%, and 74% of the correct
graphs was ranked number one.

I found that some of the sentences in Talbanken

were only one word long. The reason is that there
are for example titles inside the annotated text in
Talbanken. One-word sentences will of course
always produce the correct dependency graph since
it is equal to an empty list. I decided to implement
an option to skip over one-word sentences when
extracting information. With the same sentences
but excluding those consisting of only one word, I
still got 100% coverage, but only 47% of the
graphs were ranked number one. So I will from
now on exclude one-word sentences.

I tried with maximum sentence length ten, but it

was not able to complete the algorithm due to
memory shortage. The number of graphs generated
from a sentence with ten words would be huge. I
now understood that I would not be able to get
ALL the graphs. I needed a way to limit the
calculations. I started looking in the dependency
rules direction, since every new rule would
generate a large amount of graph combinations.

I experimented with the 1098 first sentences

from Talbanken and got these results:
Maximum sentence length eight generated 252

sentences and graphs, and 110 rules.
100% coverage and 18% of the graphs ranked

number one (average rank 387).

The same 252 sentences and rules extracted for

sentences of maximum 7 words, I got 93 rules,
93% coverage and 20% of the graphs ranked
number one (average rank 233).

The same 252 sentences and rules extracted for

sentences of maximum 6 words, I got 84 rules,

88% coverage and 22% of the graphs ranked
number one (average rank 202).

The result shows that if you have fewer rules the

rank will get better, but the coverage will decrease.

Since talbanken is tagged by a probabilistic

POS-tagger, some of the dependencies might be
incorrect. Statistically, faulty dependency rules
would be more common for longer sentences than
for shorter.

The dependency rules can be either left or right

oriented and when checking for a matching rule
inside the algorithm you will try both rules. This
generates a lot of backtracking in prolog, and
requires a lot of memory. Extracting the
dependency rules from shorter sentences will
provide the algorithm with fewer rules to match.
This will of course lower the coverage of the
algorithm since some rules might be missing
completely, but it will increase the speed, lower the
memory usage of the implementation, and increase
the rank of the graphs that are correct.

When you build a sentence you first make the

core of the sentence, for example 'bilen röd'. Then
you apply different rules to make the sentence
more readable, for example linking the noun and
adjective like 'bilen är röd'. You also add
determiners like 'Den bilen är röd'. One of the last
things you do before the sentence is complete is
topicalization to restructure the phrases like 'bilen
den är röd'. That would generate a dependency
rule; 'From noun to determiner where determiner is
to the right of the noun'. This looks like a strange
rule, and it's not common at all. It would cause the
implementation in prolog to make a lot of extra
graphs for all sentences containing determiners.
Topicalizations are more common in longer
sentences than in shorter ones. This shows why the
rank can be improved at the cost of the coverage
by extracting the dependency rules from shorter
sentences only.

Another way of limiting the number of

dependency rules would be to split up the data.
Using smaller chunks of text from Talbanken, I
suspected I could increase the rank. I also
suspected that the coverage would go down since
each rule would percentage wise be a larger part of
the rules needed for 100% coverage.

With 500 sentences from Talbanken and

maximum sentence length eight, the perl script
generated 102 sentences and 83 dependency rules.
The test result I got now was:

40

100% coverage, 22% was rank one, average rank
was 344. The same sentences but with rules
extracted for sentences of maximum 7 words, I got
61 rules, 84% coverage, 31% was rank one,
average rank was 91. The same sentences but with
rules extracted for sentences of maximum 6 words,
I got 54 rules, 79% coverage, 35% was rank one,
average rank was 81.

With 200 sentences from Talbanken and

maximum sentence length eight, the perl script
generated 38 sentences and 42 dependency rules.
The test result I got now was: 100% coverage, 39%
was rank one, average rank was 88. The same
sentences but with rules extracted for sentences of
maximum 7 words, I got 32 rules, 79% coverage,
53% was rank one, average rank was 38. The same
sentences but with rules extracted for sentences of
maximum 6 words, I got 25 rules, 66% coverage,
60% was rank one, average rank was 23.

Ultimately, you could extract the rules

dynamically from Talbanken, giving a set of rules
for each sentence. The algorithm would then use
only the rules attached to a specific sentence. That
would give 100% coverage and a very good rank.
Of course this would not apply to real life cases,
because you then need to have all rules available at
all times, but it would give a good idea on how
robust the algorithm is.

There are more ideas on how to improve the

rank of the dependency graphs. One of them would
be to implement a probability check for the
dependency rules within the algorithm. If the
algorithm had two rules to choose from, it would
choose the one which are most often used.

Talbanken is tagged with features in addition to

the part-of-speech tag. The feature is more granular
than the part-of-speech tag and describe for
example tense (present, preterite, supinum, and
infinite) and degree (positive, comparative, and
superlative). Keeping these features will make
each dependency rule apply to less words. It would
therefore be interesting to investigate the rank
when keeping the features within the dependency
rules.

4 Conclusion
The implementation of Nivre's algorithm is very

robust and will always produce a graph provided
that there are dependency rules covering the word
classes in the sentences. The correct graph will
always be produced because of the backtracking
mechanism in prolog. Too many rules or faulty

rules will make the implementation produce lower
(worse) ranked graphs.

5 Acknowledgements
Pierre Nugues, Lunds Tekniska Högskola:

Project leader, algorithm implementation.
Klas Sigbo, Lunds Tekniska Högskola:

Answering Prolog questions.
Richard Andersson, Student at Lund University

Cognitive Science: Linguistic discussions.

References
[1] Joakim Nivre: An efficient algorithm for

projective dependency parsing. School of
Mathematics and Systems Engineering, Växjö
University.

[2] Pierre Nugues: An Introduction to Language
Processing with Perl and Prolog, August 2004.
Unfinished book used as course material, Lunds
Tekniska Högskola.

[3] Joakim Nivre and Mario Scholz:
Deterministic dependency parsing of English text.
School of Mathematics and Systems Engineering,
Växjö University.

41

Appendix:
Users manual.

Files needed:
conv_xml2sent.perl
conv_xml2graph.perl
conv_xml2drules.perl
calcResult.perl
nivre_2.pl
readfiles.pl
TalbankenMalt.xml

TalbankenMalt.xml can be downloaded from

http://w3.msi.vxu.se/~nivre/research/talbanken.htm
l

Make sure you have an untouched version of the

file TalbankenMalt.xml or at least a part of the
original file that contains the sentences you wish to
work with.

If you want to limit the tests to only work with

sentences up to a specific length, you need to edit
the value of the variable sentence_length_limit.
This is done in all three perl scripts (conv_xml2...).
Please note that the script that extracts the
sentences and the graphs need to have the same
value.

if you want to exclude sentences that are only

one word long (they will always give correct
graph) from the tests, you need to change the
variable named $removeSingleWordSentences.
The value true will make the perl script skip all
one-word sentences. This variable needs to be
changed in both conv_xml2sent.perl and
conv_xml2graph.perl. This variable is not found in
the dependency rules extraction script because
there are no dependencies in a one-word sentence.

NOTE: Make sure you work with the SAME

input file when running the three different perl
scripts.

Convert the xml to sentences that nivres

algorithm can read in prolog:
perl conv_xml2sent.perl TalbankenMalt.xml
This will produce a <Sentences> file.

The dependency rules needed by Nivre's

algorithm are extracted by a perl script:
perl conv_xml2drules.perl TalbankenMalt.xml
This will produce a <Dependency rules> file.

The correct graphs as given by

TalbankenMalt.xml is extracted by a perl script:
perl conv_xml2graph.perl TalbankenMalt.xml

This will produce a <Graphs> file.

start prolog with:
pl -G20m
This increases the global stack size to 20 Mb (4

Mb default). You might have to increase even
more for longer sentences.

consult needed files (algorithm, dependency

rules, help predicates):
consult([nivre_2,drules,readfile]).

The command:
readfiles(<Sentences>,<Graphs>,<Result>).
should perform the tests and write the result to

the <Result> file.

Run the perl script called calcResult.perl to

calculate the coverage, rank, and other statistics for
the result:

perl calcResult.perl result
This will give the statistics in the terminal

window.

42

Naive Bayes Spam Filtering Using Word Position Attributes

Johan Hovold
Department of Computer Science, Lund University

Box 118, 221 00 Lund, Sweden
johan.hovold.363@student.lu.se

Abstract

This paper explores the use of the naive Bayes
classifier as the basis for personalized spam fil-
ters. Various machine learning algorithms, in-
cluding variants of naive Bayes, have previously
been used for this purpose, but the author’s
implementation using word position based at-
tribute vectors gives very good results when
tested on several publicly available corpora.

The effect of various forms of attribute
selection—removal of frequent and infrequent
words, respectively, and by using Mutual
Information—is investigated. It is also shown
how n-grams, with n > 1, may be used to boost
classification performance. Finally, a weighting
scheme for cost-sensitive classification of vari-
able length attribute vectors is introduced.

1 Introduction

The problem of unsolicited bulk e-mail, or spam,
gets worse for every year. The vast amount of
spam being sent wastes resources on the Inter-
net, wastes time for users and may expose chil-
dren to unsuitable contents (e.g. pornography).
This development has stressed the need for au-
tomatic spam filters.

Early spam filters were instances of knowl-

edge engineering, using hand-crafted rules (e.g.
the presence of the string “buy now” indicates
spam). The process of creating the rule base re-
quires both knowledge and time, and the rules
were thus often supplied by the developers of
the filter. Having common and, more or less,
publicly available rules made it easy for spam-
mers to construct their e-mails to get through
the filters.

Recently, a shift has occurred, as more focus
has been put on machine learning for the auto-
matic creation of personalized spam filters. A
supervised learning algorithm is presented with
e-mails from the users mailbox and outputs a fil-
ter. The e-mails have previously been classified

manually as spam or non-spam. The resulting
spam filter has the advantage of being optimized
for the e-mail distribution of the individual user.
Thus it is able to use also the characteristics of
non-spam, or legitimate, e-mails (e.g. presence
of the string “machine learning”) during classi-
fication.

Perhaps the first attempt of using machine
learning algorithms for the generation of spam
filters was reported by Sahami et al. (1998).
They trained a naive Bayes classifier and re-
ported promising results. Other algorithms
have been tested but there seems to be no clear
winner (Androutsopoulos et al., 2004). The
naive Bayes approach have been picked up by
end-user applications such as the Mozilla e-mail
client1 and the free software project SpamAssas-
sin2, where the latter is using a combination of
both rules and machine learning.

Spam filtering differs from other text cate-
gorization tasks in at least to ways. First, one
might expect a greater class heterogeneity—it is
not the contents per se that defines spam, but
rather the fact that it is unsolicited. Similarly,
the class of legitimate messages may also span a
number of diverse subjects. Secondly, misclas-
sifying a legitimate message is generally much
worse than misclassifying a spam.

In this paper the results of using a variant
of the naive Bayes classifier for spam filtering,
will be presented. The effect of various forms
of attribute selection, will be explored, as will
the effect of considering not only single tokens,
but rather sequences of tokens, as attributes.
A scheme for cost-sensitive classification will
also be introduced. All experiments have been
conducted on several publicly available corpora,
thereby making a comparison with previously
published results possible.

The rest of this paper is organized as follows:

1http://www.mozilla.org/
2http://www.spamassassin.org/

43

section 2 presents the naive Bayes classifier; sec-
tion 3 discusses the benchmark corpora used;
the experimental results are presented in sec-
tion 4; section 5 gives a comparison with pre-
viously reported results and in the last section
some conclusions are drawn.

2 The Naive Bayes Classifier

In the general context, the instances to be clas-
sified are described by attribute vectors A =
〈a1, a2 . . . , an〉. Bayes’ theorem says that the
posterior probability of an instance A being of
a certain class c is

P (c|A) =
P (A|c)P (c)

P (A)
. (1)

The naive Bayes classifier then assigns to an in-
stance the most probable, or maximum a poste-
riori, classification from a finite set C of classes

cMAP ≡ argmax
c∈C

P (c|A).

By noting that the prior probability P (A) in
Equation (1) is independent of c, we may rewrite
the last equation as

cMAP = argmax
c∈C

P (A|c)P (c). (2)

The posterior probabilities P (A|c) =
P (a1, a2 . . . , an|c) could be estimated di-
rectly from the training data, but are generally
infeasible to estimate unless the available
data is vast. Thus the naive Bayes as-

sumption—that the individual attributes are
conditionally independent of each other, given
the classification—is introduced:

P (a1, a2, . . . , an|c) =
∏

i

P (ai|c).

With this strong assumption, Equation (2) be-
comes the naive Bayes classifier:

cNB = argmax
c∈C

P (c)
∏

i

P (ai|c) (3)

(Mitchell, 1997).
In text classification applications, one may

choose to define one attribute for each word po-
sition in a document. This means that we need
to estimate the probability of a certain word wk

occurring at position i, given the target classifi-
cation cj : P (ai = wk|cj). Due to training data
sparseness, we introduce the additional assump-
tion that the probability of a specific word wk

occurring at position i is identical to the prob-
ability of that same word occurring at position
m: P (ai = wk|cj) = P (am = wk|cj) for all
i, j, k, m. Thus we estimate P (ai = wk|cj) with
P (wk|cj). The probabilities P (wk|cj) may be
estimated with maximum likelihood estimates,
using Laplace smoothing to avoid zero proba-
bilities:

P (wk|cj) =
Cj(wk) + 1

nj + |V ocabulary|
,

where Cj(wk) is the number of occurrences of
the word wk in all documents of class cj , nj

is the total number of word positions in docu-
ments of class cj and |V ocabulary| is the num-
ber of distinct words in all documents (Mitchell,
1997).

Note that during classification the index i in
Equation (3) ranges over all word positions con-
taining words also in the vocabulary, thus ig-
noring so called out-of-vocabulary words. For
a more elaborate discussion of the text model
used see Joachims (1997).

3 Benchmark Corpora

The experiments were be conducted on the
PU corpora3 and the SpamAssassin corpus4.
The four PU corpora, dubbed PU1, PU2, PU3
and PUA respectively, have been made publicly
available by Androutsopoulos et al. (2004) in
order to promote standard benchmarks. The
four corpora contain private mailboxes of four
different users in encrypted form. The messages
have been preprocessed and stripped from at-
tachments, HTML-tags and mail headers (ex-
cept Subject). This may lead to overly pes-
simistic results since attachments, HTML-tags
and mail headers may add useful information to
the classification process. For more information
on the compositions and characteristics of the
PU corpora see Androutsopoulos et al. (2004).

The SpamAssassin corpus (SA) consists of
private mail, donated by different users, in un-
encrypted form with headers and attachments
retained5. The fact that the e-mails are col-
lected from different distributions may lead to
overly optimistic results, e.g. if (some of) the

3The PU corpora may be downloaded from
http://www.iit.demokritos.gr/skel/i-config/

4The SpamAssassin corpus is available at
http://spamassassin.org/publiccorpus/

5Due to a primitive mbox parser, e-mails containing
non-textual or encoded parts, i.e. most e-mails with at-
tachments, are ignored completely in the experiments.

44

spam messages have been sent to a particular
address, but none of the legitimate messages
have. On the other hand, the fact that the le-
gitimate messages have been donated by differ-
ent users may lead to underestimates since this
should imply greater diversity of the topics of
legitimate e-mails.

The sizes and compositions of the five corpora
are shown in Table 1.

corpus messages spam freq
PU1 1099 44%
PU2 721 20%
PU3 4139 44%
PUA 1142 50%
SA 6047 31%

Table 1: Sizes and spam frequencies of the five cor-
pora.

4 Experimental Results

As mentioned above, misclassifying a legitimate
mail as spam (L→S) is in general worse than
misclassifying a spam message as legitimate
(S→L). In order to capture such asymmetries
when measuring classification performance, two
measures from the field of information retrieval,
called precision and recall, are often used. De-
note with |S→L| and |S→S| the number of spam
messages classified as legitimate and spam, re-
spectively, and similarly for |L→L| and |L→S|.
Let NS and NL be the total number of spam and
legitimate messages, respectively. Then spam

recall(R) and spam precision(P) are defined as

R =
|S→S|

NS

and P =
|S→S|

|S→S| + |L→S|
.

In the rest of this paper spam recall and spam
precision will be referred to simply as recall
and precision. Intuitively, recall measures ef-
fectiveness and precision gives a measure of
safety. One is often willing to accept lower recall
(more spam messages slipping through) in order
to gain precision (fewer misclassified legitimate
messages).

Sometimes accuracy (Acc) is used as a com-
bined measure

Acc =
|L→L| + |S→S|

NL + NS

.

All experiments have been conducted using
10-fold cross validation, i.e. the messages have

been divided into ten partitions6 and at each it-
eration nine partitions have been used for train-
ing and the remaining tenth for testing. The re-
ported figures are the means of the values from
the ten iterations.

4.1 Attribute Selection

It is common to apply some form of attribute
selection process, retaining only a subset of
the words—or rather tokens, since punctuation
signs and other symbols are often included—
found in the training messages. This way the
learning and classification process may be sped
up and memory requirements are lowered. At-
tribute selection may also lead to increased clas-
sification performance, e.g. since the risk of
overfitting the training data is reduced.

Removing infrequent and frequent words, re-
spectively, are two possible approaches. The
rationale behind removing infrequent words is
that this is likely to have a significant effect on
the size of the attribute set and that predictions
should not be based on such rare observations
anyway. Removing the most frequent words is
motivated by the fact that common words, such
as the English words “the” and “to”, are as
likely to occur in spam as in legitimate mes-
sages. Furthermore, this has the effect of mak-
ing sure that very frequent tokens do not dom-
inate Equation (3) completely.

Another possibility—used by Sahami et al.
(1998), Androutsopoulos et al. (2000) and An-
droutsopoulos et al. (2004)—is to rank the at-
tributes using Mutual Information(MI), and to
keep only the highest scoring ones. MI(X; C)
gives a measure of how well an attribute X dis-
criminates between the various classes in C, and
is defined as

∑

x∈{0,1}

∑

c∈C

P (x, c) log
P (x, c)

P (x)P (c)

(Cover and Thomas, 1991). The probability dis-
tributions are estimated using maximum likeli-
hood estimates with Laplace smoothing.

In the experiment tokens occurring less than
n = 1, . . . , 15 times were removed. The results
indicated unaffected or slightly increased preci-
sion at the expense of slightly reduced recall,
as n grew. The exception was the PU2 corpus,
where precision dropped significantly. The rea-

6The PU corpora come prepartitioned and the SA
corpus has been partitioned according to the last digit
of the messages decimal id.

45

son for this may be that PU2 is the smallest cor-
pus and contains many infrequent tokens. On
the other hand, removing infrequent words had
a dramatic impact on the vocabulary size (see
Figure 1). Removing tokens occurring less than
three times seems to be a good trade-off between
memory usage and classification performance,
reducing the vocabulary size with 56–69%. This
selection scheme was used throughout the re-
maining experiments.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 2 4 6 8 10 12 14

vo
ca

bu
la

ry
 s

iz
e

words occuring less than n times removed

PU1
PU2
PU3
PUA

SA

Figure 1: Impact on vocabulary size when removing
infrequent words.

Removing the most frequent words turned
out to have a major effect on both precision
and recall (see Figure 2). This was most sig-
nificant on the largest and non-preprocessed SA
corpus where recall increased from 77% to over
95% by just removing the hundred most com-
mon tokens, but classification gained from re-
moving the 100–200 most frequent tokens on all
corpora. Removing too many tokens reduced
classification performance—again most notably
on the smaller PU2 corpus.

In the last attribute selection experiment MI-
ranking was used instead of removing the most
frequent tokens. Although the gain in terms
of reduced memory usage was high—the vo-
cabulary size dropped from 7000–35000 to the
number of attributes chosen to be kept, e.g.
500–3000—classification performance was sig-
nificantly reduced (see Figure 3). Since learning
and classification time is mostly unaffected—
MI still has be calculated for all attributes—I
see no reason for using MI-ranking, if memory
usage is not crucial7.

7Androutsopoulos et al. (2004) reaches the opposite
conclusion.

4.2 n-grams

Up to now each attribute has corresponded to
a single word position, or unigram. Is it possi-
ble to obtain better results by considering also
token sequences of length two and three, i.e. n-
grams for n = 2, 3? The questioned was raised
and answered partially in Androutsopoulos et
al. (2004). Although many bi- and trigrams
were shown to have very high information con-
tents, as measured by MI, no improvement was
found.

There are many possible ways of extending
the attribute set with general n-grams, e.g.
by using all available n-grams, by just us-
ing some of them or by using some kind of
back-off approach. The attribute probabilities,
P (wi, wi+1, . . . wi+n|cj), are still estimated us-
ing maximum likelihood estimates with Laplace
smoothing

Cj(wi, wi+1, . . . , wi+n) + 1

nj + |V ocabulary|

(see Section 2). Note that extending the at-
tribute set in this way will result in a total prob-
ability mass greater than one. Fortunately, this
need not be a problem since we are not estimat-
ing the classification probabilities explicitly (see
Equation (3)).

It turned out that adding bi- and trigrams to
the attribute set increased classification perfor-
mance on all the PU corpora, but not on the SA
corpus. The various methods for extending the
attribute set all gave similar results and I set-
tled on the simple version which just considers
each n-gram as an independent attribute8. The
results are shown in Table 2.

The precision gain was highest for the cor-
pus with lowest initial precision, namely PU2.
For the other PU corpora the precision gain was
relatively small or even non-existing. At first
the significantly decreased classification perfor-
mance on the SA corpus came as a bit of a
surprise. The reason turned out to be that
when considering all bi- and trigrams in the
non-preprocessed SA corpus, a lot of very fre-
quent attributes, originating from mail headers
and HTML, are added to the attribute set. This
had the effect of giving badly discriminating at-
tributes (e.g. some mail headers) and HTML, a
too dominant role in Equation (3). By removing

8This is clearly not true. The three n-grams in the
phrase “buy now”—“buy”, “now” and “buy now”—are
obviously not independent.

46

 75

 80

 85

 90

 95

 100

 0 200 400 600 800 1000

pe
rc

en
t

n most frequent words removed

PU1

spam recall
spam precision

 75

 80

 85

 90

 95

 100

 0 200 400 600 800 1000

pe
rc

en
t

n most frequent words removed

PU2

spam recall
spam precision

 75

 80

 85

 90

 95

 100

 0 200 400 600 800 1000

pe
rc

en
t

n most frequent words removed

PU3

spam recall
spam precision

 75

 80

 85

 90

 95

 100

 0 200 400 600 800 1000

pe
rc

en
t

n most frequent words removed

PUA

spam recall
spam precision

 75

 80

 85

 90

 95

 100

 0 200 400 600 800 1000

pe
rc

en
t

n most frequent words removed

SA

spam recall
spam precision

Figure 2: Impact on spam precision and recall when removing the most frequent words.

more of the most frequent words, classification
performance was increased also for the SA cor-
pus (see Table 3). The conclusion to be drawn is
that mail headers and HTML, although contain-
ing useful information, shouldn’t be included by
brute force. Perhaps some kind of weighting
scheme or selective inclusion process would be
appropriate.

Finally, considering that extending the at-
tribute set with bi- and trigrams has a dramatic
effect on the vocabulary size, the gained classi-
fication performance is unlikely to compensate

for the increased memory requirements.

4.3 Cost-Sensitive Classification

Generally it is much worse to misclassify legit-
imate mails than letting spam slip through the
filter. Hence, it would be desirable to be able
to bias the filter towards classifying messages
as legitimate, yielding higher precision at the
expense of recall.

One way of biasing the filter is to multiply the
prior probability of legitimate messages by some
factor λ > 1 (Androutsopoulos et al., 2000;

47

 75

 80

 85

 90

 95

 100

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

pe
rc

en
t

number of attributes

PU1

spam recall
spam precision

spam recall (200)
spam precision (200)

 75

 80

 85

 90

 95

 100

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

pe
rc

en
t

number of attributes

PU2

spam recall
spam precision

spam recall (200)
spam precision (200)

 75

 80

 85

 90

 95

 100

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

pe
rc

en
t

number of attributes

PU3

spam recall
spam precision

spam recall (200)
spam precision (200)

 75

 80

 85

 90

 95

 100

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

pe
rc

en
t

number of attributes

PUA

spam recall
spam precision

spam recall (200)
spam precision (200)

Figure 3: Attribute selection using Mutual Information on the PU corpora—spam recall and precision versus
the number of retained attributes. Included is also the precision and recall figures when only the 200 most
frequent words have been removed.

Androutsopoulos et al., 2004). This turns out
to have a very limited effect, since the expres-
sion in Equation (3) is dominated by the poste-
rior probabilities. Another problem is that this
weighting scheme is inappropriate to use with
word position based attribute vectors, as the
impact of the cost factor λ will vary with the
length of the document being considered.

To overcome these problems the following
simple weighting scheme was used; each pos-
terior probability P (wi|clegit) in Equation (3)
was multiplied with a weight w > 1. The re-
sult of using this “tuning knob” can be seen in
Figure 4.

5 Evaluation

Many different machine Machine Learning al-
gorithms besides naive Bayes, such as C4.5,
k-Nearest Neighbor and Support Vector Ma-
chines, have previously been used in spam fil-
tering experiments. There seems to have been
no clear winner, but there is a difficulty in com-
paring the results of different experiments, since

the used corpora have rarely been made pub-
licly available (Androutsopoulos et al., 2004).
This section gives a comparison with the imple-
mentation and results of the authors of the PU
corpora.

In Androutsopoulos et al. (2004), a variant
of naive Bayes was compared with three other
learning algorithms; Flexible Bayes, LogitBoost
and Support Vector Machines (SVM). All of the
algorithms used real valued word frequency at-
tributes. The attributes were selected by re-
moving words occurring less than five times and
then keeping the 600 words with highest Mutual
Information (see Section 4.1). As can be seen
in Table 4, the word position based naive Bayes
implementation of this paper achieved signifi-
cantly higher precision and better or compara-
ble recall on all four PU corpora. The results
were also better or comparable to the results of
the best-performing algorithm on each corpus.

In Androutsopoulos et al. (2000), the au-
thors used a naive Bayes implementation based
on boolean attributes, representing the pres-

48

n-grams R P Acc
PU1

n = 1 98.12 95.35 97.06
n = 1, 2, 3 99.17 96.19 97.89

PU2
n = 1 97.14 87.00 96.20
n = 1, 2, 3 95.00 93.12 96.90

PU3
n = 1 96.92 96.02 96.83
n = 1, 2, 3 96.59 97.83 97.53

PUA
n = 1 93.68 97.91 95.79
n = 1, 2, 3 94.56 97.90 96.23

SA
n = 1 97.12 99.25 98.95
n = 1, 2, 3 92.26 98.70 97.42

Table 2: Comparison of classification results when
using only unigram attributes and uni-, bi- and tri-
gram attributes, respectively. In the experiment
words occurring less than three times and the 200
most frequent words have been removed.

n-grams f R P Acc
n = 1 200 97.12 99.25 98.95
n = 1, 2, 3 200 92.26 98.70 97.42
n = 1, 2, 3 5000 98.46 99.66 99.46

Table 3: Comparison of classification results on the
SA corpus when using only unigram attributes and
uni-, bi- and trigram attributes, respectively. In the
experiment words occurring less than three times
and the f most frequent words have been removed.

ence or absence of a fixed number of words.
The attributes were selected using Mutual In-
formation. In their experiments three different
cost scenarios were explored. Table 5 compares
the best results achieved on the PU1 corpus9

for each scenario, with the results achieved by
the naive Bayes implementation of this paper.
Due to the difficulty of relating the two differ-
ent weights, λ and w, the weight w has been
selected in steps of 0.05 in order to get equal
or higher precision. The authors deemed out
the λ = 999 scenario because of the low recall
figures.

9The results are for the bare PU1 corpus, i.e. the
stop-list and lemmatizer have not been applied. The
number of attributes have been optimized for each cost
scenario.

 60

 65

 70

 75

 80

 85

 90

 95

 100

 1 1.2 1.4 1.6 1.8 2

pe
rc

en
t

weight

PU1

spam recall
spam precision

 60

 65

 70

 75

 80

 85

 90

 95

 100

 1 1.2 1.4 1.6 1.8 2

pe
rc

en
t

weight

PU2

spam recall
spam precision

Figure 4: Cost-sensitive classification on the PU1
and PU2 corpora—spam recall and precision versus
classification weight.

6 Conclusions

In this paper it has been shown that it is pos-
sible to achieve very good classification perfor-
mance using a word position based variant of
naive Bayes. The simplicity and low time com-
plexity of the algorithm, thus makes naive Bayes
a good choice for end-user applications.

The importance of attribute selection has
been stressed—memory requirements may be
lowered and classification performance in-
creased.

By extending the attribute set with n-grams
(n = 1, 2, 3), better classification performance
may be achieved, although at the cost of signif-
icantly increased memory requirements.

With the use of a simple weighting scheme,
precision may be boosted further, while still
retaining a high enough recall level—a feature
very important in real life applications.

7 Acknowledgments

The author would like to thank Pierre Nugues
for inspiring comments during this work. Many

49

learner R P Acc
PU1

Androutsopoulos 99.38 89.58 94.59
Hovold 98.12 95.35 97.06
Flexible Bayes 97.08 96.92 97.34

PU2
Androutsopoulos 90.00 80.77 93.66
Hovold 97.14 87.00 96.20
Flexible Bayes 79.29 90.57 94.22

PU3
Androutsopoulos 94.84 93.59 94.79
Hovold 96.92 96.02 96.83
SVM 94.67 96.48 96.08

PUA
Androutsopoulos 94.04 95.11 94.47
Hovold 93.68 97.91 95.79
Flexible Bayes 91.58 96.75 94.04

Table 4: Comparison of the results achieved by
naive Bayes in Androutsopoulos et al. (2004) and
by the author’s implementation. In the latter, at-
tributes were selected by removing the 200 most fre-
quent words as well as words occurring less than
three times. Included is also the results of the best-
performing algorithm for each corpus, as found in
Androutsopoulos et al. (2004).

thanks also to Peter Alriksson and Pontus
Melke for useful suggestions regarding this pa-
per.

References

Ion Androutsopoulos, John Koutsias, Kon-
stantinos Chandrinos, and Constantine D.
Spyropoulos. 2000. An experimental com-
parison of naive bayesian and keyword-based
anti-spam filtering with personal e-mail mes-
sages. CoRR, cs.CL/0008019.

Ion Androutsopoulos, Georgios Paliouras, and
Eirinaios Michelakis. 2004. Learning to filter
unsolicited commercial e-mail. Technical Re-
port 2004/2, NCSR ”Demokritos”. Revised
version.

Thomas M. Cover and Joy A. Thomas. 1991.
Elements of Information Theory. Wiley.

Thorsten Joachims. 1997. A probabilistic anal-
ysis of the Rocchio algorithm with TFIDF
for text categorization. In Douglas H. Fisher,
editor, Proceedings of ICML-97, 14th Inter-

national Conference on Machine Learning,
pages 143–151, Nashville, US. Morgan Kauf-
mann Publishers, San Francisco, US.

Tom M. Mitchell. 1997. Machine Learning.
McGraw-Hill.

learner R P
Androutsopoulos (λ = 1) 83.98 95.11
Hovold (unigram, w=1) 98.12 95.35
Hovold (n-gram, w=1) 99.17 96.19
Androutsopoulos (λ = 9) 78.77 96.65
Hovold (unigram, w=1.20) 97.50 97.34
Hovold (n-gram, w=1.05) 99.17 97.15
Androutsopoulos (λ = 999) 46.96 98.80
Hovold (unigram, w=1.65) 91.67 98.88
Hovold (n-gram, w=1.30) 96.04 98.92

Table 5: Comparison of the results achieved by naive
Bayes on the PU1 corpus in Androutsopoulos et al.
(2000) and by the author’s implementation. Results
for the latter are shown for both unigram and n-
gram (n = 1, 2, 3) attributes. In both cases, at-
tributes were selected by removing the 200 most fre-
quent n-grams as well as n-grams occurring less than
three times. For each cost scenario, the weight w has
been selected in steps of 0.05 in order to get equal
or higher precision.

Mehran Sahami, Susan Dumais, David Heck-
erman, and Eric Horvitz. 1998. A bayesian
approach to filtering junk E-mail. In Learn-

ing for Text Categorization: Papers from the

1998 Workshop, Madison, Wisconsin. AAAI
Technical Report WS-98-05.

50

Hidden Markov Models in Spoken Language Processing

Björn Johnsson
dat171

Sveaborgsgatan 2b
21361 Malmö

dat02bjj@ludat.lth.se

Abstract

This is a report about Hidden Markov Models,
a data structure used to model the probabilities
of sequences, and the three algorithms associ-
ated with it. The algorithms are the forward
algorithm and the Viterbi algorithm, both used
to calculate the probability of a sequence, and
the forward-backward algorithm, used to train
a Hidden Markov Model on a set of sequences,
raising the propabilites of these and similar se-
quences.

1 Introduction

The theories and methods of spoken language
processing have evolved much over the last years
and the field is one of the most interesting
of computer science. This report will explain
Hidden Markov Models, a graph-based data-
structure used to model and calculate probabil-
ities of sequences. The Hidden Markov Model
is used in almost every speech-recognition envi-
ronment.

2 The Model

2.1 The Markov Chain

The Hidden Markov Model data-structure is
based on a data-structure called the Markov
Chain. The Markov Chain is a directed,
weighted graph, where each node contains a
symbol from the output alphabet to wich it is
applied, and an initial probability. The graph is
complete i.e all nodes have vertices to all nodes,
including itself. The weight of each vertice is
the probability of a transition. Given a Markov
Chain and a sequence it is then easy to calculate
the probability of the given sequence by taking
the product of the initial propablity of the node
associated with the first symbol of the sequence
and all the transition-propabilites to the nodes
associated with the following symbols in the se-
quence. That is, for sequence S with of length
n, the propabilite of sequence S is

prop(S) = init(S1) ∗
n∏

i=2

(Si−1|Si)

where (i|j) is the transition-probability from
state i to state j.

2.2 The Hidden Markov Model

In the Hidden Markov Model there is no one-to-
one relation between the alphabet and the nodes
as in the Markov Chain, instead each node con-
tains every symbol in the alphabet and relates
each symbol with a probability. As a conse-
quence there is no longer a ”true” path through
the graph corresponding to a sequence, as there
often exists several possible paths. Therein
lay one of the problems of the Hidden Markov
Model, as the evaluation no longer is as simple
as in the Markov Chain. In most cases is there
even Ot possible ways through the graph cor-
responding to the same sequence, making the
calculations extensive.

51

3 Algorithms

In the Hidden Markov Model there are basically
two problems, the evaluation and the training.
The evaluation problem is solved by two differ-
ent algorithms giving different probabilities of
a sequence. The first, the forward algorithm,
gives the sum of the probabilities of all possi-
ble paths through the graph. The Viterbi algo-
ritm gives the probability of the path with the
highest probability. The training is performed
by the forward-backward algorithm, wich trains
the Hidden Markov Model to give a set of sim-
ilar sequences a higher probability.

3.1 The Forward Algorithm

The forward algorithm calculates the probabil-
ity of a sequence by adding up the sum of prob-
abilities of all possible paths giving the right
outputsequence. To do this in an easy way I
first define the forward probability.

3.1.1 The forward Probability

Given a Hidden Markov Model, Φ, and a se-
quence X, it is possible to calculate the forward
probability α. αt(j) is defined as the probabil-
ity of being at node j at time t giving the output
in the sequence. Using a recursion this is fairly
easy to calculate using the formula:

αt(j) =

[N∑

i=1

αt−1(i)aij

]
bj(Xt)

α1(i) = πibi(X1)

3.1.2 The Final Step

Having calculated the forward probability the
sum of all probabilities is easy to calculate.

P (X|Φ) =
N∑

i=1

αT (i)

This gives that P (X|Φ) is the sum over all
nodes, of being at that node after sending out
the output given in the sequence, ie the sum
of the probabilities over all possible path in the
graph.

3.2 The Viterbi Algorithm

The Viterbi algorithm calculates the probability
and the nodesequence of the most likely traver-
sion through the graph giving the expected out-
putsequence. This is implemented in my Hid-
den Markov Model but I have not investigated
it more closely as I rarely use it.

3.3 The Forward-Backward Algorithm

The forward backward algorithm trains the Hid-
den Markov Model by raising the probability of
the given sequence and thereby all sequences
similar to this. To calculate the new values for
a and b, labeled â and b̂, I first define two new
probabilities, the backward probability, β, and
the transition probability, γ.

3.3.1 The backward probability

Just as I defined the forward probability, I can
also defin the backward probability βt(i) that
is, the probability that after being at node i
at the time t, the model outputs the sequence
Xt+1...XT . Similar to the forward probability,
this can be calculated using a recursion as fol-
lows.

βt(i) =

[N∑

j=1

aijbj(Xt+1)βt+1(j)

]

βT (i) =
1

N

3.3.2 The transition probability

The transtion probability γt(ij) is the probabil-
ity of taking the transition from node i to node
j at time t given a Hidden Markov Model and
an outputsequence. Using the prior defined for-
ward and backward-probabilities it can be cal-
culated as follows.

γt(ij) =
αt−1(i)aijbj(Xt)βt(j)∑N

k=1 αT (k)

This is interpreted as the forwardprobability
of being at node i after giving the output
X1...Xt−1 multiplied by the probability of tak-
ing the transition to node j and there give the
output Xt multiplied by the probability of go-
ing from node j and give the output Xt+1...XT

and dividing the hole product by the sum of all
possible paths giving that outputsequence.

3.3.3 Calculating â

To calculate âij, the new values meant to re-
place the prior value at aij,Itake the sum of all
transitions between node i and node j, at all pos-
sible times t and divide it with the sum of all
possible transitions from node i at all possible
times t.

âij =

∑T
t=1 γt(ij)∑T

t=1

∑N
k=1 γt(ik)

52

3.3.4 Calculating b̂

It is possible to calculate b̂j(k) in a similar way
as the sum of all transitions to node j if Xt = Ok
and dividing it by the sum of all transitions to
node j.

b̂ =

∑
t∈(xt=Ok)

∑N
i=1 γt(ij)∑T

t=1

∑N
i=1 γt(ij)

3.3.5 Trainging on a set of sequences

These calculations can easy be extended to train
on a set of sequences instead of a single se-
quence. To do soIadd another dimension to the
γ so that γmt (ij) is the probability of going from
node i to node j at time t given the m’th se-
quence of the trainingset. he calculations are
still the same. Howether, the calculations for â

and b̂ has to be changed, so they are based on
the hole set. â and b̂ should instead be calcu-
lated as follows.

âij =

∑M
m=1

∑T
t=1 γ

m
t (ij)

∑M
m=1

∑T
t=1

∑N
k=1 γ

m
t (ik)

b̂ =

∑M
m=1

∑
t∈(xt=Ok)

∑N
i=1 γ

m
t (ij)

∑M
m=1

∑T
t=1

∑N
i=1 γ

m
t (ij)

3.3.6 Post calculations

After calculating â and b̂ you just exchange a
and b by them. In theory. On computers this
will be a problem as almost all evaluation then
will become zero as the values go beyond the
reach of a double floating point variable. To
cope with that, the easiest way is to define that
the values in a and b are not allowed to go be-
neath a value, in my case 1e-20. As computers
calculating values of this size almost always does
errors I normalize the values in a and b so that
the probabilities sum up to one.

3.3.7 Result of the forwardbackward
algorithm

Using this algorithm on fairly large traing-
ingset, it can train a Hidden Markov Model in
about five iterations and after that recognize se-
quences similar to those in the trainingset.

4 Appendix

4.1 Notation

The following notations are used in the calcu-
lations:
N is the number of nodes in the Hidden Markov
Model
O is the number of symbols in the outputal-
phabet
T is the number of symbols in a particular
outputsequnce
aij is the transitionprobability between node i
to node j
bi(x) is the probability of the output x at node
i
Xt is the output at time t in sequence X
πi is the initial probability of node i, ie the
probability that the sequence starts at node i
αt(i) is the forward probability defined in
chapter 3.1.1
βt(i) is the backward probability defined in
chapter 3.3.1
γt(ij) is the transition probability defined in
chapter 3.3.2
âij is the new transitionprobability used tem-
porary in the training, defined in chapter 3.3.3
b̂ij is the new outputprobability used temporary
in the training, defined in chapter 3.3.4
M is the number of sequences in a trainingset

4.2 The use of Hidden Markov Models
in Speech Recognition

Speech and sound is in computers often repre-
sented as PCM data or Pulse CodeModulation.
It is a sequence of values representing the pori-
tion of the membran on either the speaker or the
microphone. Unfortunatly this sequence con-
tains to much data to be evaluated by a Hidden
Markov Model so it has to be transformed be-
fore it is used this data structure. Usually the
PCM data is divided in frames of approxomatly
20 milliseconds and each frame the converted
to single number or a small vector of numbers.
There are multipla ways to do this step.

• Fast Fourier Transfom
A Fast Fourier Transform, or a FFT, is
a fast but inaccurate way of calculating
the energy of the sound at different fre-
quences. Picking the numbers of the right
frequences, this is a good way of turning
the PCM into a useful value.

• Linear Prediction Coding
The Linear Prediction Coding, or the LPC,

53

is a way of creating a polynomial that,
given the prior values of the data, try to
predict the coming value.

• Energy
Adding up the absolute value of the PCM
data gives the total energy of a frame. This
is a useful as such, but if one take the differ-
ence between the frames insted hte values
give a better representation of the sound.
Especially if all the frames energies are sub-
tracted with the energy of the frame with
the highest energy, thus removing the pos-
sible error of different recording volumes.

After this is done, the values are made discrete
using a codebook to spread the values over all
the discrete symbols in the output alphabet.
This gives us a sequence of symbols, in my case,
integer between 0 and 255. It is then possi-
ble to do this for several recordings of the same
command, getting a set of sequences that can
be used to train a Hidden Markov Model. The
Hidden Markov Model can the be used to calcu-
late the probability of sequence extracted from
a sound recording i the same way as the traun-
ing set, and using a treshold, determine whether
the sound was the command or not. Using sev-
eral Hidden Markov Models, one per command,
this can be used to controll a computer using
speech commands.

5 References

Huang, Acero and Hon. 2001. Spoken Lan-
guage Processing, A Guide to Theory, Algo-
rithm, and System Development. Prentice Hall
PTR. ISBN 0-13-022616-5

54

Grammar Checker

Markus Malmsten
Department of Computer Science

Lund Institute of Technology
Sweden,

e99mm@efd.lth.se

Simon Klasén
Department of Computer Science

Lund Institute of Technology
Sweden,

e99sk@efd.lth.se

Abstract

The goal with our project was to implement a
grammar checker prototype. The work was in-
fluenced by the paper intelligent writing assis-
tance (Heidorn, 2000), which describes the Mi-
crosoft word grammar checking technique. Our
implementation uses a Perl script for text for-
matting and the Charniak parser for part of
speech and syntactic tagging. The analyzing
part was implemented in java.

1 Introduction

The goal with our project was to implement a
grammar checker prototype. The purpose with
a grammar checker is to check a text for gram-
matical errors that a grammar book would dis-
cuss. A grammar Checker can also include sup-
port for style checking (good writing style), but
this is not part of our system.

One of the first widely used grammar checker
was Writers Workbench (Macdonald et al.,
1982) which was developed for Unix systems
about 25 years ago. Today the built-in grammar
checker in Microsoft Word probably is the most
widely used one. It is based on the work that
was started by the natural language process-
ing (NLP) group at Microsoft Research in 1992.
Our work was influenced by the paper intelli-
gent writing assistance (Heidorn, 2000) which
describes the Microsoft Word grammar check-
ing technique.

The biggest difference between the Microsoft
Word and our solution is that Microsoft Word
is a total solution where all the necessary parts
for grammar checking are all built in, while in
contrast our solution is divided into three main
steps. The steps are text formatting, parsing
and analyze, which is taken care of by different
tools.

To start with we must tag the input data(the
text that should be analyzed); this is done by
a simple Perl script that just delimits the sen-

tences with a tag which makes the text ready
for parsing by the Charniak Parser.

The Charniak parser takes the tagged input
data and performs part of speech and syntactic
tagging based on the Penn Treebank (Marcus
et al., 1993) tagset. The result is a parse-tree
delimited by parenthesis.

Finally is the rule-based analyzing part im-
plemented in Java. We also developed a simple
GUI which simplifies the usage of the system.
Basically there is one input area for a Charniak
parse-tree and an output area that displays the
original text including suggested corrections.

2 Implementation

2.1 Overview
We have used three programs in our project;
one Perl-script for formatting the original text,
one parser that produces a tagged tree and our
own Java program which reads the output from
the parser, builds a tree and applies the imple-
mented rules and presents the result in a GUI.

2.2 Perl-script
The Perl-script delimits each sentence by adding
the <s> ... </s> tags. This format is required
by the Charniak parser.

2.3 Charniak parser
We chose the Charniak parser to do the part-of-
speech and syntactic tagging. Collins was the
other suggested parser but that was neglected
due to its much longer running time and the
fact that it was 10 times larger. The Charniak
parser takes the delimited sentences supplied by
the Perl-script and produces a tree in text form
where the branches and nodes are enclosed by
parentheses.
2.3.1 Penn Treebank style
The tagset used by the Charniak parser is the
one constructed by the Penn Treebank project
(Marcus et al., 1993), which is a large annotated
English corpus. The Penn Treebank tagset is

55

based on the pioneering Brown Corpus which
consists of 87 tags. Other tagsets uses up to
around 200 tags. The Brown tagset was how-
ever pared down considerably. A key strategy
in reducing the tagset was to eliminate redun-
dancy by taking into account both lexical and
syntactic information. The resulting tagset con-
sists of 48 part-of-speech (see Appendix A, table
1) tags and 14 syntactic tags (see Appendix A,
table 2).

2.4 Grammar Checker
2.4.1 System
Our program consists of 3 classes and one main-
method. The main-method creates an instance
of a GUI-object which includes two event han-
dlers. The event handlers are bound to buttons,
one for choosing a file and the other for execut-
ing the implemented rules.

It is also in this event handler that the tree is
constructed through the method buildTree() in
the class CorpusHandler. This function returns
a PennNode-object which is the root of the tree.
By invoking methods on this root node different
rules can be applied and the modified content
can be requested which is then displayed.
2.4.2 Building the tree
The program starts with storing the text pro-
duced by the Charniak parser in a string. The
parentheses structure of the string is then used
to decide when new nodes should be created and
what they should contain. When a left paren-
thesis encountered, a new child is created and
it becomes the current node. The tag type for
the new node is the following word. There are
now three possibilities; if the next character is
a left parenthesis then a new node is created as
above, if its a right parenthesis then this closes
the node and the parent node is set to be cur-
rent node and if its neither of these then the
word is the content of the node i.e. a word in
the input sentence. In each node we also store
which depth in the tree it is in. This can then
be used in the search algorithms.
2.4.3 Rules
The rules are applied on each sentence and are
recursive. A finite state machine is used to
keep track of what to search for and when a
correction should be suggested. A special self-
constructed node type, FLAG, is inserted if an
error is found and it contains a text explaining
to the user what can be corrected. Our rules
are applied sequentially but they do not affect
each other. However the inserted FLAG-nodes

must be taken into consideration during the im-
plementation of further rules.

2.4.4 GUI
There are two events that can be triggered in
our program. First a file can be chosen by click-
ing the File-button and secondly the Submit-
button which creates tree, runs the algorithms
on it and finally prints the resulting tree and
text to the lower window. You can chose which
rules you want to apply by using the checkboxes
at the top. There is also an option to hide the
tree structure. See Apendix B for a screenshot
of the GUI when the system analyzes a simple
sentence.

3 Evaluation

3.1 Testing

Testing of the rules was done in parallel with
program construction, one rule at a time. Our
initial test samples were just single sentences
which had the errors that a specific rule should
trig on. After some modifications of the rules,
the system was behaving as expected for the
single sentences. Everything seemed to work
fine.

The real problems started when we tried a
larger test corpus. It turned out our rules were
to general and was trigged not only when there
was an error, but also when the sentences were
grammatically correct. The main reason for the
behavior was that we were analyzing too small
parts of the sentences; we focused at the part of
speech tags. This was solved by adding a depth
value to all nodes in our parse tree, which en-
abled us to adjust the rules in respect to bigger
text blocks, e.g. subordinate clauses.

The size of the test data was not large enough
to make any statistic analyses of the system ac-
curacy. A randomly chosen corpus downloaded
from internet indicated the system to work cor-
rect, finding the errors and in the same time not
trigging on any correct sentence.

4 Conclusions

Even though our grammar checker was inspired
by the one found in Microsoft Word, the meth-
ods are not the same. The one found in Mi-
crosoft Word utilizes a recursive algorithm ap-
plied to top nodes. Depending on the type of
the node, it applies the subset of rules that are
applicable for that type of top node. Our ap-
proach on the other hand uses a finite state ma-
chine that steps through the text word by word,

56

in order. To determine whether we still are in-
side the same clause we use the depth attribute.
We check one rule at a time, sequentially, which
means we keep one object containing the current
state of our search. This object differ depend-
ing on the rule, and the type of node we search
for depend on the current state. When the final
state is reached and the requirements are met,
a ”FLAG”-node is inserted and the state ma-
chine is reset, or set to a specific state, depend-
ing on the rule. Our approach is of course more
expensive, but for our purpose if was sufficient
and resulted in code that is easier to understand
and maintain.

A problem we encountered that would have
made it even more difficult to utilize the Mi-
crosoft Word approach was that for incorrect
sentences the whole structure of the tree pro-
duced by the Charniak parser was altered. This
means that it is not sufficient to look at a cor-
rect sentence for patterns to which to look for.
We got around some of those issues by looking
at the text in order.

References

George E Heidorn. 2000. Intelligent writing as-
sistance.

NH Macdonald, LH Frase, P Gingrich, and
SA Keenan. 1982. The writer’s workbench:
Computer aids for text analysis.

Mitchell P. Marcus, Mary Ann Marcinkiewicz,
and Beatrice Santorini. 1993. Building a
large annotated corpus of english: The penn
treebank.

57

Appendix A

1. CC Coordinating conjunction 25. TO to
2. CD Cardinal number 26. UH Interjection
3. DT Determiner 27. VB Verb, base form
4. EX Existential there 28. VBD Verb, past tense
5. FW Foreign word 29. VBG Verb, gerund/present perticiple
6. IN Preposition/subord. conjunction 30. VBN Ver, past participle
7. JJ Adjective 31. VBP Verb, non-3rd ps. sing. present
8. JJR Adjective, comparative 32. VBZ Verb, 3rd ps. sing. present
9. JJS Adjective, superlative 33. WDT wh-determiner

10. LS List item marker 34. WP wh-pronoun
11. MD Modal 35. WP$ Possessive wh-pronoun
12. NN Noun, singular or mass 36. WRB wh-adverb
13. NNS Noun, plural 37. # Pound sign
14. NNP Proper noun, singular 38. $ Dollar sign
15. NNPS Proper noun, plural 39. . Sentence-final punctuation
16. PDT Predeterminer 40. , Comma
17. POS Possessive ending 41. : Colon, semi-colon
18. PRP Personal pronoun 42. (Left bracket character
19. PP$ Possessive pronoun 43.) Right bracket character
20. RB Adverb 44. ” Straight double quote
21. RBR Adverb, comparative 45. ‘ Left open single quote
22. RBS Adverb, superlative 46. “ Left open double quote
23. RP Particle 47. ’ Right close single quote
24. SYM Symbol (mathematical or scientific) 48. ” Right close double quote

Table 1: The Penn Treebank POS tagset

58

Tags

1. ADJP Adjective phrase
2. ADVP Adverb phrase
3. NP Noun phrase
4. PP Prepositional phrase
5. S Simple declarative clause
6. SBAR Clause introduced by subordinating conjunction or 0 (see below)
7. SBARQ Direct question introduced by wh-phrase
8. SINV Declarative sentence with subject-aux inversion
9. SQ Subconstituent of SBARQ excluding wh-word or wh-phrase

10. VP Verb phrase
11. WHADVP Wh-adverb phrase
12. WHNP Wh-noun phrase
13. WHPP Wh-prepositional phrase
14. X Constituent of unknown or uncertain category

Null elements

1. * ”Understood” subject of infinitive or imperative
2. 0 Zero variant of that in subordinate clauses
3. T Trace-marks position where moved whconstituent is interpreted
4. NIL Marks position where preposition is interpreted in pied-piping context

Table 2: The Penn Treebank syntactic tagset

59

Image 1: Screenshot from the Java GUI.

60

Automatic learning of dependency rules from corpora

A project in the course
EDA171/DAT171 Language Processing and Computational Linguistics

Tomas Rutegård e99, Bibi Sandberg e00 and Johan Larsson dat00

Abstract
This paper presents work done in project
form in the course Language Processing and
Computational Linguistics given at Lund
School of Technology during the fall of
2004. The work develops and assesses a new
dependency parser for Swedish, based on
decision trees learned from corpora. To
assess the parser, it is trained and tested on a
subset of the MALT corpus and found to
perform fairly well considering its stage of
development.

1 Introduction

1.1 Project purpose
 The given purpose of the project presented
in this paper was to construct a software
system for the automatic learning of
grammar rules used by a certain text parser:
the Nivre parser. The Nivre parser is a
dependency parser developed by Joakim
Nivre [1]. The Nivre parser uses a special
kind of D-rules, namely directed D-rules, for
parsing.
 As it happened, we, the authors of this
paper, decided to instead develop our own
parser, a parser also using rules derived from
corpora, but rules of a different kind, used in
a different way. The automatic learning
algorithm of our parser is decision tree
induction algorithm, simple yet not
powerless.

2 Short introductions of theory

2.1 Dependency Grammars
 According to the book An Introduction to
Language Processing with Perl and Prolog
[3] dependency grammar is used for
describing the structure of a language. It is
especially good for describing languages

where the word order is flexible. This is the
case for Latin and Russian but not for
English and Swedish. The rules can be
helpful in translations or just for
understanding the language.
 Every word in a sentence is the dependent
of one head with one exception. This
exception is the head of the sentence, also
called the root, which only have dependants.
The head of the sentence is generally the
main verb but can also in rare cases be a
noun. These dependency rules are marked as
arrows from the dependant to the head. The
root is marked with an arrow pointed at the
top of the screen.
 The basic dependency rules are that a
dependant links to its noun and a subject
noun links to its main verb. Other rules are
that determiners and adjectives are
dependents to their noun and adverbs to their
adjectives. One example is Figure 1.

Figure 1. An example of how dependency
grammar can look like

 Here “ate” is the main verb and also
called the root. The two nouns “I” and
“cat” are the dependants of “ate” and the
determiner “the” is the dependant of its
noun “cat”.

2.2 Decision tree induction

2.2.1 The decision tree structure
 Consider some object or situation to which
some set of attributes is related. A decision

61

tree is a structure associating with each
possible set of values of the attributes some
value, thus constituting a function from the
set of possible sets of attribute values to an
arbitrary set. If the set of values associated
with possible sets of attribute values is
discrete, the values associated with possible
sets of attribute values are called
classifications.
 A decision tree is a tree data structure.
Each non-leaf node of a decision tree
represents a test of one of the attributes of
the attributes set and each outbound branch
from a non-leaf node represents one of the
possible values of the attribute tested in that
node. Each leaf node of a decision tree
represents a value assigned to some subset
of the set of possible sets of attribute values.
The value associated by a decision tree with
a given set of attribute values is the value
represented by the leaf reached when
traversing the tree from root to leaf, in each
node choosing branch according to the value
of the attribute tested in that node.
 Decision trees are simple yet somewhat
expressive. Any Boolean function can be
written in the form of a decision tree, though
by necessity some, for example the majority
function, are quite large in the form.

2.2.2 The induction algorithm

 Let an example of a function be a member
of the domain of the function and the
associated member of the codomain of the
function. A set of sets of attribute values and
values associated with these sets of attribute
values can be regarded as a set of examples
of some function whose domain comprise
the attribute values and whose codomain
comprise the associated values. The forming
of a function consistent with the examples
approximating the function exemplified is
referred to as inductive inference. The
formed function is called a hypothesis.
 The algorithm in Figure 1 [2] forms a
consistent hypothesis in the form of a
decision tree for any set of examples which
are examples of a classifying decision tree or
some function that can be written in the
form of a classifying decision tree. In Figure
2, the goal predicate is an attribute whose
value for any set of attribute values is the
value associated with that set of attribute
values. The algorithm applies Ockham’s
razor and prefers the simplest hypothesis of
a set of hypotheses all consistent with the
examples. Forming the smallest consistent
hypothesis is an intractable problem, though.
The algorithm forms a smallish one.
CHOOSE-ATTRIBUTE chooses the
attribute which provides the most
information, in the mathematical sense.

Figure 2. An algorithm forming a smallish decision tree consistent with a set of examples.

function DECISION-TREE LEARNING(examples, attributes, default) returns a
decision tree
 inputs: examples, set of examples
 attributes, set of attributes
 default, default value for the goal predicate
 if examples is empty then return default

else if all examples have the same classification then return the
classification

else if attributes is empty then return MAJORITY-VALUE(examples)
else
 best ← CHOOSE-ATTRIBUTE(attributes, examples)
 tree ← a new decision tree with root test best
 m ← MAJORITY-VALUE(examplesi)

for each value vi of best do
examplesi ← {elements of examples with best = vi}
subtree ← DECISION-TREE-LEARNING(examplesi,

attributes – best, m)
add a branch to tree with label vi and subtree subtree

return tree

62

3 The parser

3.1 The decision trees generated
and the parser algorithm
 This section presents the parsing algorithm
we have made. It uses four different decision
trees in order to classify the correct part-of-
speech tags in a sentence.
 We will first describe how the decision
trees have been generated.

3.1.1 Is-root
 This tree is used to find the most probable
root in the sentence. It has learned by
looking at the part-of-speech tag and a
context of two words on each side. In the
example shown in Figure 3, a correct
classified sentence is shown. The word ”är”
is root in the sentence. So for every word in
the sentence, we will add its part-of-speech
tag and its context to the database together
with a true/false that tells if its the root.
Later in the parsing algorithm, the decision
tree tries to classify when something is root
and not.

Figure 3. Is-root

 The tree classifies 80% of all sentences
(on an unseen domain) correct. When it
fails, there are more than one candidate to be
root (the most likely will be chosen).

3.1.2 Find-head-1
 This decision tree is trained by taking the
part-of-speech (pos) tag and a context of one
word on each side, and trains it to find the
correct head to the pos-tag. The example in
Figure 4 shows how the selection has been
made. This is added for every word except
root (since it doesn’t have any parent).

Figure 4. Find head 1

3.1.3 Find-head-2
 This is an extension of Find-head-1 that is
trained by looking at the pos-tag, a context
of two words on each side, plus a context of
one word on each side of the head. How this
is used in practice is explained later, but you
can see what the database looks like by
viewing the example in Figure 5.

Figure 5. Find head 2

63

3.1.4 Find-Direction
 The database that is used to train this tree
looks almost the same as the one used to
train Find-head-2. In addition it also has the
direction of the arrow (right/left) that is used
as goal-attribute in the decision tree learning
algorithm. This makes it able to classify the
most probable direction.

3.2 The parsing algorithm
 This algorithm is used to demonstrate how
we can use decision trees to classify all
words/pos-tags in a sentence. It uses the four
decision trees explained above. In practice it
works in three different phases. It is at the
moment quite simple, and could easily be
expanded to use more decision trees and
more advance functions. The following
explains the three phases of the algorithm.

3.2.1 Phase 1
 The first phase uses only the find-root and
find-head-1 trees described above. Its main
goal is to find the most probable root, and all
possible candidates for head for all words.
The easiest way to show how this works is
by using an example.
 Lets say we want to find the head for the
Swedish word “inkomsterna” (see Figure 6),
this is a noun, and its closest neighbors is a
determiner and a verb. We can ask find-
head-1 with this information, and it will
answer by providing a list of the most
probable neighbors, in this case verb
(56.5%) and preposition (43.5%). The next
thing we do is to go though all the words
looking for prepositions and verbs, we add
this to a list of potential parents. In this
sentence the preposition at position zero, the
verb at position three and seven would be
added to the list of potential parents for our
noun. We do this for all the words in the
sentence.

Figure 6.

3.2.2 Phase 2
 We now have a list of head-candidates for
every word except the most probable root.
The next step is to go through all the
candidates in the list (and we do this for
every word) and ask find-head-2 and find-
direction how probable that candidate is.
Since find-head-2 is more accurate, its result
gets higher ranked when choosing the
candidate. In the example above, the
preposition at position zero would get a
score of 105, the verb at position three a
score of 6.3 and the verb at position seven a
score of 1.8. This means we will chose the
preposition at position zero as our most
probable head.

3.2.3 Phase 3
 After phase 2, the algorithm is almost
complete, however there may still be easy
found errors in the complete graph. For
example, we know that two arrows may
never cross each other (see Figure 7 “A
crossing link”). If they do, at least one of
them is pointing wrong. We use a simple
method to find and remove all crossing
arrows.
 We also look for cycles in the graph (see
Figure 8 “A cycle”), and use a method to
break these. This step is not optimized, but
works quite well.

Figure 7. A crossing link

Figure 8. A cycle

64

Form: av
Links to: ge (x-link: false)
-tree---
<pp:9>
 <nn:12>
 dt:10
 jj:11

Pot.Parents: pp:9
 vb:3 (106.33559) (pr: false)
 vb:1 (106.33559) (pr: false)
 nn:8 (105.58499) (pr: false)
 nn:12 (61.73145) (pr: false)
 nn:5 (5.5849915) (pr: false)
 nn:0 (0.60047567) (pr: true)
-rules--
vb (56.89655)
 left (100.0)
nn (41.37931)
 left (99.60318)
 right (0.39682543)
rg (1.7241379)
 right (100.0)

3.2.4 The complete graph
 On this page the program and its GUI is explained, and an example of a complete graph is
shown in Figure 9.

Figure 9. The complete graph

3.3 The program and how to use it.
 This is what the GUI for our program looks
like. In the list a sentence from the loaded XML
file can be chosen. When loading a sentence to
classify, the correct answer is shown at the top
(red and blue arrows), and the result of our
algorithm is shown at the bottom (green arrows
for correct classifications, and red arrows for
errors). So in this sentence, 2 errors are present
(“endast” -> “ge”, and “av” <- “ge”). There is
also another window (not showing here) that is
used as log-tool. If we press a word, for example
“av” the following info will show in the log-tool.
 The first row in Figure 10 shows the chosen
form, in this case “av”. The next tells us what
“av” links to (in this case “ge”) and the “x-link:
false” says its not crossing any other arrow. The
tree shows all children (and their children) and
also tells us if there are any cycles present. The
next list shows all potential parents for “av”. As
you can se, the verb at position 3 has gotten the
highest score together with the verb at position

1). The noun at position 8 (the correct one) has
gotten just slightly less score. The “pr: false”
tells us if the arrow goes past the root, in that

case, it will
get a penalty
since its quite
unlikely. The
last list (rules)
shows a more
a abstract
view of likely
parents, telling
us its is most
likely to link
to a verb.

Figure 10.

65

4 Performance analysis and
conclusions

4.1 The performance of the program
 The program use approximately 800
sentences as a practice set and about 300
sentences as a test set. Best results are given
when the program is training and testing on
the same set of sentences i.e. the test set is
300 sentences that are selected out of the
800. In 300 sentences there are
approximately 4000 arrows (there are
approximately 8700 arrows in 800
sentences) and the program gets about 86.7
% of them correct and 73.5 % correct if the
test set is new to the program. Sentences
where all the arrows are correct is about 37.6
% when the program is training and testing
on the same set and 19.3 % else. The
training set was later expanded to 5000
sentences and the test set to 1300 sentences.
But the result turned out to decrease. When
testing on new sentences it gets about 70 %
of the arrows correct which is a decrease by
3.5%. This probably has to do with the
decision trees that get overfitted. A solution
to this problem could be to improve the
pruning of the trees.

4.2 Difficulties on the way
 We started to use the neighbors of the
dependant word to improve the program.
Two neighbors to the right and two to the
left were showing to be the most efficient so
far. After this improvement we also added
neighbors to the head word. The statistic
improved by roughly 15 %.
 To find the correct root in the sentence
was harder then first expected. And when
the program choused the wrong word as the
root it generated more errors to the other
arrows in the sentence. Improvements can
still be done here.
 Another problem that maybe is not that
important, but contributes to lower the
statistics, is that the arrow from the dot in
the sentence more often is wrong than right.
 In the beginning the program sometimes
made loops which are not acceptable in
dependency grammar. To solve the problem

temporary an algorithm was made. The
algorithm solves the problem with the loops
(Figure 2) but not in the most efficient or
most correct way. Here big improvements
can be done.

Figure 2. An example of a loop

 Crossing arrows was also a problem in the
beginning but was easily fixed with a small
algorithm.

4.3 Future aspects, if more time was
given
 To find a better way to classify the root is
a good start. The root is in most cases the
main verb and to locate that easier it maybe
would help to add some more attributes to
the words. Such as how the verb is
intransitive, transitive or ditransitive.
 An improvement of the loop algorithm
could be done by making the algorithm go
trough all possible arrow changes before
choosing. At the moment the algorithm
picks out the first possible fit.
 To examine how much improvement a
larger training set will give has not given as
good results as hoped for. This is because of
the decision trees that get overfitted. A
solution to this problem is maybe to get
better pruning of the trees.
 At the moment only the lexical categories
are used as attribute to the words. To
improve the program it could also examine
how the most common words in a sentence
relate to the other words. For example
instead of using the attribute determiner to a
very common word like “the” you could use
the fact that the word “the” in most cases
has the first noun to its right as the head.
 To try the program on other languages
would be an interesting project and not so
hard to accomplish. The program is capable
to read xml documents in a certain

66

predefined type and if given, it could train
and test on a different xml database in a new
language.

5 References

[1] Nivre, J. (2003) An Efficient
Algorithm for Projective
Dependency Parsing. In
Proceedings of the 8th International
Workshop on Parsing Technologies
(IWPT 03), Nancy, France, 23-25
April 2003, pp. 149-160.

[2] Russel, S, Norvig, P. (2003)
Artificial Intelligence: A Modern
Approach. Second edition. Prentice
Hall series in artificial intelligence.

[3] Nugues, P. (2004) An Introduction
to Language Processing with Perl
and Prolog. Lecture notes for the
course Language Processing and
Computational Linguistics given at
Lund School of Technology.

67

68

Part-of-Speech Tagging Using the Brill Method

Maria Larsson and Måns Norelius
Lund Institute of Technology

Lund, Sweden
d00ml@efd.lth.se, d00mno@efd.lth.se

Abstract

Part-of-speech tagging is the process of associat-
ing each word in a text with it’s part-of-speech
category and possibly a set of morphosyntac-
tic features. This information is represented by
part-of-speech tags. This paper describes an
implementation of a part-of-speech tagger for
Swedish based on the Brill method. The ba-
sic idea is to apply a set of rules to an initial
annotation achieved using a simple algorithm.
The rules are found using transformation-based
learning applied to a manually tagged training
corpus. The paper also addresses the problem
of tagging unknown words, i.e. words that don’t
appear in the training corpus.

1 Introduction

1.1 Part-of-Speech Tagging

The first step in implementing a part-of-speech
tagger is to build a lexicon, where the part-of-
speech of a word can be found. Unfortunately
many words are ambiguous, and each word can
therefore have several classifications. As an ex-
ample, the word “note” can be either a noun
or a verb. It is the object of the part-of-speech
tagger to resolve these ambiguities, using the
context of the word. Another problem is the
handling of words that have no entries in the
lexicon.

There are basically two approaches to part-of-
speech tagging: rule-based tagging and stochas-
tic tagging. This paper describes an implemen-
tation using the rule-based approach, where the
rules are generated using transformation-based
learning.

1.2 Transformation-Based Learning

Transformation-based error-driven learning is a
machine learning method typically used for clas-
sification problems, where the goal is to assign
classifications to a set of samples. An initial
classification is produced using a simple algo-
rithm. In each iteration the current classifica-

tion is compared to the correct classification and
transformations are generated to correct the er-
rors. The output of the algorithm is a list of
transformations that can be used for automatic
classification, together with the initial classifier.

Figure 1: Transformation-based learning

There are two components of a transforma-
tion: a rewrite rule and a triggering environ-
ment. The rewrite rule says what should be
done (e.g. change the class from A to B) and
the triggering environment says when it should
be done (e.g. if the preceding sample is of class
C).

Transformation-based learning is used in
many different areas, and has proven to be a
very successful method in the field of natural
language processing. The algorithm was intro-
duced for POS tagging by Eric Brill in 1995.

2 Brill’s Learning Algorithm

The algorithm first assigns every word it’s most
likely part-of-speech, i.e. the most common tag
for that word. This initial annotation is com-
pared to a hand-annotated corpus, and a list of
errors is produced. For each error, rules to cor-

69

rect the error are instantiated from a set of rule
templates. Each instantiated rule is evaluated
by computing it’s impact on the whole corpus.
The rules are compared by assigning each rule a
score, which is the difference between the num-
ber of good transformations and the number of
bad transformations the rule produces. The rule
with the highest score is applied to the text and
added to the result list. The transformed corpus
is then used to generate a new rule in the next
iteration. The algorithm stops when a certain
criteria has been fulfilled, e.g. the error rate is
below a specified threshold. The algorithm is
outlined in figure 2.

while (nbr of errrors > threshold)
for (each error)
for (each rule r correcting the error)

good(r) = nbr of good transformations
bad(r) = nbr of bad transformations
score(r) = good(r) - bad(r)

Apply the rule with highest score and
append it to the rule list

Figure 2: Pseudo code for Brill’s learning algo-
rithm

2.1 Rule Templates

The learning algorithm instantiates rules given
a set of templates. The rules change the
tagging of a word based on the tagging of the
neighbouring words, and are therefore called
contextual rules. The rule templates proposed
by Brill are presented below.

Change tag a to tag b when:

1. The preceding (following) word is tagged z

2. The word two before (after) is tagged z

3. One of the two preceding (following) words
is tagged z

4. One of the three preceding (following)
words is tagged z

5. The preceding word is tagged z and the
following word is tagged w

6. The preceding (following) word is tagged z

and the word two before (after) is tagged
w

where a , b, z and w are tag variables.

Instantiating a rule using one of these tem-
plates means that the variables are assigned tags

corresponding to the specific error to be cor-
rected.

3 Tagging of Unknown Words

A simple way of dealing with unknown words
is to assign them the most common part-of-
speech and then rely on the contextual rules to
correct the errors. There are however more so-
phisticated methods that can be used to achieve
higher accuracy. Brill suggests a special set of
rules to apply only to the unknown words, gen-
erated in basically the same way as the contex-
tual rules. These rules are applied after the ini-
tial tagging and before applying the contexual
rules.

3.1 Rule Templates

The rule templates used only for unknown
words changes the tag based on properties of
the actual word, and not based on the tagging
of neighbouring words. The following list
describes the templates designed by Brill.

Change the tag of an unknown word from a

to b when:

1. Deleting the prefix (suffix) x results in a
word

2. The prefix (suffix) of the word is x

3. Adding the prefix (suffix) x results in a
word

4. The preceding (following) word is w

5. The character c appears in the word

where x is a string of length 1 to 4.

4 Implementation

4.1 Corpus

The corpus used is the SUC 1.0 corpus, which
was developed as part of a joint research
project between the Departments of Linguistics
at Stockholm University and Ume̊a University
respectively. The POS tags used in the imple-
mentation are identical to the tags used in the
SUC project.

4.2 Previous Work

As a project for last year’s course a Java im-
plementation of the Brill tagger was written by
François Marier and Bengt Sjödin. It contained
the basic Brill algorithm and the contextual rule
templates, but was too slow for practical use.
This program has worked as a foundation for

70

our implementation. Shorter running time and
handling of unknown words are the main im-
provements in this year’s implementation.

4.3 Optimization

Because of unexpected low accuracy of the im-
plemented tagger, it was suggested that the pro-
gram of last year might contain a bug. A set of
tests was performed, which resulted in the con-
clusion that the program worked correctly. The
reason for the bad results was instead that the
training algorithm was too slow. It was only
able to work on small texts, which could not
be expected to generate very good results. Our
first goal was therefore to optimize the program
to be able to run it on a large training corpus.

4.3.1 Problems Identified and Solved

After analyzing the code and extracting pro-
file information, we were able to identify the
main reasons for the slow running time of the
learner. First we found that a large percentage
of the running time was spent on string compar-
isons. This was because the POS tags were rep-
resented by strings, and the algorithm contains
many comparisons between tags. The problem
was solved by representing the tags by integers,
which are faster to compare, and introducing a
new class to handle the translation.

Secondly, we discovered that the rule evalua-
tion was done in an inefficient way. Rules were
evaluated by actually applying them to the text
and then counting the number of errors in the
resulting tagging. This meant that the whole
corpus had to be copied for every rule evalua-
tion. In our implementation we count the num-
ber of good and bad transformations without
applying it. Only the best rule is applied and
hence there is no need for copying.

Finally, a number of rules were instantiated in
linear time with respect to the number of words
in the training corpus. This had a great effect
on the total time complexity, and increased the
running time when using larger texts. In the
final implementation all rules are instantiated
in constant time.

To further improve the time complexity, all
rules are generated in the beginning of the pro-
gram, and not in each iteration. This means we
only consider rules that corrected errors in the
original tagging. Consequently, there is a risk
that selected rules introduce new errors that no
rule is able to correct. However, the output of
the algorithm was not affected by this change,
which indicates that these missed rules should

have been disgarded anyway.
4.3.2 Test Results

In order to demonstrate the process of the opti-
mization, a comparison has been made between
the running times of the learning algorithm of
the original program and three optimized ver-
sions. The versions have an increasing level of
optimization and the main changes added to
each version are presented below.

1. The tags are represented by integers in-
stead of strings.

2. All rules are instantiated in constant time.
All rules to consider are generated once.

3. The rules are evaluated by counting the
number of good and bad transformations.
Only the best rule is applied, which re-
moves the need for copying.

The programs were tested on a training cor-
pus of 23 000 words extracted from 10 files of
the SUC corpus. There are no unknown words,
since the dictionary was generated using the
whole SUC corpus. The algorithm was stopped
after 100 learned rules and the result was the
same for all programs.

All tests were performed on a Pentium M 1.4
GHz with 512 MB of RAM and Windows XP
Professional operating system.

Program version Running time
Original 585 min
Optimized 1 121 min
Optimized 2 14 min
Optimized 3 3 min

As seen in the table above, the final opti-
mized version is almost 200 times faster than
the original program. Since the time complex-
ity has improved as well, this ratio increases as
the training corpus grows. Figure 3 and 4 illus-
trate the difference in time complexity between
the two programs. Running time is plotted as
a function of training corpus size.

4.4 Handling of Unknown Words

The second part of the project was to devel-
ope a system for handling unknown words. In
the original program all words not present in
the dictionary were marked as unknown and
ignored. A first approach was to found out
which tag was the most common and tag ev-
ery unknown word with this tag. Disgarding

71

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

Number of files

T
im

e
(m

in
)

Figure 3: Running time of the original program

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

Number of files

T
im

e
(m

in
)

Figure 4: Running time of the optimized pro-
gram

closed word classes, the most frequent tag was
concluded to be “NN UTR SIN IND NOM”,
which represents a type of noun (see appendix
for details). This simple step correctly classified
about 15 % of the unknown words.

4.4.1 Initial Tagging

Although a few steps have been added to the
first approach, the initial tagging is still very
simple. The unknown words are divided into
three groups: numbers, proper nouns and com-
mon nouns. If the word contains digits it is
tagged as a number. If the it is capitalized and
not in the beginning of a sentence it is tagged
as a proper noun. All other words are tagged
with the most common tag, i.e. common noun.

Also more sophisticated methods were tested

to improve the initial tagging. For instance, we
tried to conclude some features based on word
endings. Although this improved accuracy, we
later decided to keep the initial tagger simple.
During the developement work of the learner of
unknown word rules, it became clear that these
types of problems could be better solved by gen-
erated rules than by our manually written rules.

However, one extra feature is part of the final
implementation. It was found that many of the
unknown words are compound words. As a re-
sult, we try to divide the unknown word in such
a way that the last part forms a known word. If
it succeeds, the unknown word is tagged with
the default tag for that word. As an exam-
ple, the unknown word “solstol” is tagged in
the same way as the known word “stol”.
4.4.2 Learning Rules for Unknown

Words

The handling of unknown words was done in the
way suggested by Brill. A program was written
for generating rules instantiated from the rule
templates described in section 3.1. The learn-
ing algorithm is very similar to the algorithm
described in figure 2, with the difference that
only errors concerning unknown words are con-
sidered. Another small difference is the way
of counting good and bad transformations of
a rule. The good and bad counts should only
increase once for each unique unknown word.
This prevents a rule that only corrects the tag-
ging of one unknown word from getting a good
count just because there are many occurrences
of that word. Also, the training corpus must
of course contain unknown words and should
therefore not be part of the corpus used to cre-
ate the dictionary.

The rules for unknown words process words
instead of tags, and therefore the algorithm for
unknown word rules is slower than the algo-
rithm for contextual rules. In addition, tests
showed that it is necessary to generate the rules
in each iteration in this case.
4.4.3 Tagging

The tagging is done in three steps.

1. Initial tagging

2. Application of unknown word rules

3. Application of contextual rules

4.5 System Overview

The class diagram below presents an overview
of the system.

72

Figure 5: Class diagram

The system can be divided into two programs.
First the learning algorithm must be run (one
time for each type of rules). After that the rules
are generated and can be used in the program
performing part-of-speech tagging. Learner is
the main class of the learning program and Tag-
ger is the main class of the tagging program. As
can be seen in the class diagram, many classes
are used by both programs.

For clarity reasons some classes are omitted
in the diagram. These include the classes for
specific rule templates along with the WordDic-
tionary and TagDictionary classes used by most
other classes. The rule templates for contex-
tual rules are represented by 13 subclasses to
the class ContextualRule. In the same way the
unknown word rule templates are represented
by 9 subclasses to the class UnknownWordRule.

4.6 Class Descriptions

Learner is the main class of the learning pro-
gram and contains the general learning al-
gorithm. It is an abstract class that re-
quires the subclasses to implement some
parts of the algorithm.

ContextualRuleLearner is a subclass of
Learner and is responsible for the contex-
tual rule learning.

UnknownWordRuleLearner is also a sub-
class of Learner and is responsible for learn-
ing the unknown word rules.

Rule is the superclass of all rules. It contains
the abstract methods instantiate, predi-
cate, evaluate and apply.

ContextualRule is the superclass of all con-
textual rules.

UnknownWordRule is the superclass of all
unknown word rules.

RuleList is a class for maintaining a list of
rules.

CorpusReader is responsible for extracting
words and tags from the manually anno-
tated corpus.

InitialTagger is responsible for the initial tag-
ging of each word with it’s most common
tag. Unknown words are tagged according
to a few simple rules.

Tagger is the main class of the tagging pro-
gram. It takes an untagged text as input
and produces a tagged text as output.

Tokenizer is used by the Tagger to divide the
input text into tokens.

WordDictionary contains all words of the
training corpus. It is used for finding the
most likely tag for a word, investigating if
a word exists and searching for prefixes or
suffixes of words.

TagDictionary is responsible for the transla-
tion between the string and integer repre-
sentation of the part-of-speech tags.

4.7 User Instructions

Before running the learner och tagger programs,
the dictionaries must be created. This is done
by running the two Dictionary classes with
the directory containing the training corpus
passed as an argument. This creates the files
word dict.dat and tag dict.dat which are used
by the other programs. If the corpus is large, it
might be necessary to increase the heap size. An
example is shown below. Note that the package
name

se/lth/cs/BrillTagger

has been omitted in the examples to save space.

java -Xmx256M WordDictionary dir
java -Xmx256M TagDictionary dir

Now the two learning programs can be run.
The directory of the training corpus must be
passed as an argument. It is important that the
training corpus for UnknownWordRuleLearner
has not been used when creating the dictionary.
Files containing the generated rules are created.

java -Xmx256M ContextualRuleLearner dir

java -Xmx256M UnknownWordRuleLearner dir

73

Finally the part-of-speech tagger is ready for
use. The argument is a file containing the un-
tagged text. The output is printed to standard
out.

java Tagger file.txt

In order to test the accuracy of the tagger, a
small testing program has been developed. It
works like the Tagger but takes a manually an-
notated corpus as input. That way it can com-
pute the accuracy of the tagging. The test pro-
gram is started with the following command,
where the argument can be either a file or a
directory.

java Test dir

5 Test Results

The implemented tagger has been evaluated by
computing the accuracy of the tagging on a test
corpus of 120 000 words, both with an open and
closed vocabulary. The time to learn the rules
have also been recorded. The tests were per-
formed on a Pentium M 1.4 GHz with 512 MB
of RAM and Windows XP Professional operat-
ing system.

5.1 Rule Learning

The contextual rules were learned in 9 hours
using a training corpus of 470 000 words. The
learner was stopped when 200 rules had been
generated. The dictionary was built using the
whole SUC corpus.

The learner of unknown word rules used a
training corpus of 230 000 words and was fin-
ished after 11 hours and 30 minutes. The whole
SUC corpus except the texts in the training cor-
pus was used to generate the dictionary. The al-
gorithm was stopped after 100 generated rules.

Figure 6 and 7 show the first ten rules learned
by each learner.

5.2 Closed Vocabulary Test

A closed vocabulary means that there are no
unknown words in the text to tag. Therefore
the whole SUC corpus could be used to build
the dictionary.

The results are presented as the percentage
of correctly tagged words after initial tagging,
which is called the baseline, and after applying
the rules. Only the contextual rules are applica-
ble here, since there are no unknown words. As
a comparsion it can be mentioned that an ac-
curacy of 97.0 % was reported by Brill, making
the closed vocabulary assumption.

From tag To tag Condition
IE SN Tag 1, 2 or 3 after is

VB PRS AKT
PN NEU SIN
DEF SUB/OBJ

DT NEU SIN
DEF

Tag 1, 2 or 3 after
is NN NEU SIN DEF
NOM

IE SN Tag 1, 2 or 3 after is
VB PRT AKT

JJ POS
UTR/NEU PLU
IND/DEF NOM

JJ POS
UTR/NEU SIN
DEF NOM

Tag 1, 2 or 3 before is
DT UTR SIN DEF

JJ POS
UTR/NEU SIN
DEF NOM

JJ POS
UTR/NEU PLU
IND/DEF NOM

Next tag is NN UTR
PLU IND NOM

NN NEU PLU
IND NOM

NN NEU SIN
IND NOM

Tag 1 or 2 before is
DT NEU SIN IND

HP - - - KN Tag 1 or 2 after is NN
UTR SIN IND NOM

DT UTR SIN
DEF

PN UTR SIN
DEF SUB/OBJ

Next tag is VB PRS
AKT

DT UTR/NEU
PLU DEF

PN UTR/NEU
PLU DEF SUB

Next tag is VB PRS
AKT

PN NEU SIN
DEF SUB/OBJ

DT NEU SIN
DEF

Tag 1 or 2 after is NN
NEU SIN IND NOM

Figure 6: The first ten contextual rules

From tag To tag Condition
NN UTR SIN
IND NOM

NN UTR PLU
DEF NOM

Suffix is “rna”

DT UTR SIN
IND

NN UTR SIN
DEF NOM

Suffix is “en”

PM NOM PM GEN Suffix is “s”
UO NN NEU SIN

DEF NOM
Suffix is “et”

NN UTR SIN
IND NOM

PC PRS
UTR/NEU
SIN/PLU
IND/DEF NOM

Suffix is “ande”

UO NN UTR PLU
DEF GEN

Suffix is “rnas”

AB NN UTR SIN
DEF GEN

Suffix is “ens”

DT UTR/NEU
PLU DEF

VB PRT AKT Suffix is “de”

JJ POS UTR
SIN IND NOM

NN UTR SIN
DEF NOM

Suffix is “n”

PM NOM NN UTR PLU
DEF NOM

Suffix is “rna”

Figure 7: The first ten rules for unknown words

Baseline: 91.92 %
Final accuracy: 95.18 %

5.3 Open Vocabulary Test

To test the performance of the tagger with an
open vocabulary, the test corpus could not be
part of the corpus used to build the dictionary.
The ratio of unknown words in the test corpus
were 7.44 %. The figures below show the per-
centage of correctly tagged known and unknown
words after the three main steps of tagging.

Accuracy after initial tagging (baseline)
Known words: 90.78 %
Unknown words: 59.67 %
All words: 88.46 %

74

Accuracy after applying unknown word
rules
Known words: 90.78 %
Unknown words: 73.37 %
All words: 89.48 %

Accuracy after applying contextual rules
Known words: 94.41 %
Unknown words: 74.70 %
All words: 92.94 %

This can be compared to the accuracy claimed
by Brill. With a baseline of 92.4 %, he reported
accuracies of 96.3 % for all words and 82.0 %
for unknown words.

6 Conclusions

6.1 Optimization

The optimization of the original tagger was very
successful, resulting in a running time almost
200 times faster when using a training corpus
of 23 000 words.

6.2 Handling of Unknown Words

Unfortunately, most of the rules for unknown
words turned out to give very poor results. A
possible reason is that the rule templates were
developed with the English language in mind.
The rule template that gave by far the best re-
sults was the one that changes the tag depend-
ing on the suffix of the word. It resulted in very
reasonable rules like “Change from nominative
to genitive if the word ends with s”.

6.3 The Results

The final result of our work can be summarized
in the figures showing the accuracy of the tag-
ger. The resulting accuracy was computed to
95.18 % and 92.94 %, with a closed and open
vocabulary respectively. These figures are sig-
nificantly lower than the ones reported by Brill.
The main difference between our result and that
of Brill is the baseline, which is much lower in
our implementation (88 % compared to 92 %).
The difference between the baseline and the re-
sulting accuracy is about 4 percentage points for
both implementations. However, it may be dif-
ficult to make comparisons between the two im-
plementations since our is for the Swedish lan-
guage and Brill’s is for English.

7 Further Work

For future extenders of this work, the baseline
will presumably be the focal point of attention.

It may be interesting to examine why the base-
line in this and Brill’s implementation differs
and see if improvements can be made.

A way to further increase the accuracy of the
tagger, would be to introduce the lexicalized
rules also suggested by Brill. It is a set of con-
textual rule templates that make reference to
words instead of tags. However, according to
Brill, these rules only improve accuracy slightly
(0.2 percentage points).

Another interesting task would be to inves-
tigate in what ways the rule templates for un-
known words could be adjusted to make them
more suitable for the Swedish language.

8 Acknowledgements

We would like to thank Pierre Nugues for valu-
able help and suggestions during our work. We
also wish to acknowledge the work of François
Marier and Bengt Sjödin, which resulted in a
clear and useful Brill tagger implementation.

References

Eva Ejerhed and Gunnel Källgren and Ola
Wennstedt and Magnus Åström. 1992.
The Linguistic Annotation System of the

Stockholm-Ume̊a Project.
Pierre Nugues. 2004. An Intruduction to Lan-

guage Processing with Perl and Prolog.
Eric Brill. 1995. Transformation-Based Error-

Driven Learning and Natural Language Pro-
cessing: A Case Study in Part-of-Speech Tag-

ging.
Grace Ngai and Radu Florian. 2001.

Transformation-Based Learning in the
Fast Lane.

Johan Carlberger and Viggo Kann. 1999. Im-

plementing an efficient part-of-speech tagger

François Marier and Bengt Sjödin. 2003. A part-
of-speech tagger for Swedish using the Brill

transformation-based learning

75

Appendix - The SUC 1.0 Corpus

Text Categories

The corpus consists of 500 text files, with approximately 2000 words each. Each
file has a unique name, containing information of which category the text falls
under. There are ten main text catagories and each of them has a number of sub-
categories. The distibution of files over the main categories are presented below.

Category Number of files
A. Press, Reportage 44
B. Press, Editorials 17
C. Press, Reviews 27
E. Skills, trades and hobbies 58
F. Popular lore 48
G. Biographies, essays 26
H. Miscellaneous 70
J. Learned and scientific writing 83
K. Imaginative prose 127

Format

The SUC 1.0 corpus is available in two different formats called SUC1A and
SUC1B. The format used in the project and described here is the SUC1A format.

The corpus is divided into text elements generally called tokens. Tokens
are normally words, but also include punctuations, numbers etc. Each token is
tagged with it’s part-of-speech category along with a number of morphosyntactic
features. The base form of the word is also part of the tag. Below is an example
of a tokenized and tagged sentence, with a reference number for each token.
Note that the swedish letters å, ä and ö are encoded }, { and |.

("<Det>" <1142>

(PN NEU SIN DEF SUB/OBJ "det"))

("<{r>" <1143>

(VB PRS AKT "vara"))

("<viktigt>" <1144>

(JJ POS NEU SIN IND NOM "viktig"))

("<att>" <1145>

(IE "att"))

("<inte>" <1146>

(AB "inte"))

("<st|ra>" <1147>

(VB INF AKT "st|ra"))

("<f}glarna>" <1148>

(NN UTR PLU DEF NOM "f}gel"))

("<under>" <1149>

(PP "under"))

("<h{ckningstiden>" <1150>

(NN UTR SIN DEF NOM "h{ckningstid"))

("<.>" <1151>

(DL MAD "."))

76

Part-of-Speech Categories

All tags begins with one of the two letter codes representing the part-of-speech.

Code Swedish category Example English translation

AB Adverb inte Adverb
DT Determinerare denna Determiner
HA Relativt adverb när Relative Adverb
HD Relativ determinerare vilken Relative Determiner
HP Relativt pronomen som Relative Pronoun
HS Relativt possessivt pronomen vars Relative Possessive
IE Infinitivmrke att Infinitive Marker
IN Interjektion ja Interjection
JJ Adjektiv glad Adjective
KN Konjunktion och Conjunction
NN Substantiv pudding Noun
PC Particip utsänd Participle
PL Partikel ut Particle
PM Egennamn Mats Proper Noun
PN Pronomen hon Pronoun
PP Preposition av Preposition
PS Possessivt pronomen hennes Possessive
RG Grundtal tre Cardinal number
RO Ordningstal tredje Ordinal number
SN Subjunktion att Subjunction
UO Utländskt ord the Foreign Word
VB Verb kasta Verb

Morphosyntactic Features

Parentheses show that a feature only applies to some members of the part-of-
speech or that not all the values of a feature are applicable.

Feature Value Legend POS where feature applies

Gender UTR Uter (common) DT, HD, HP, JJ, NN, PC, PN,
NEU Neuter PS, (RG, RO)
MAS Masculine

Number SIN Singular DT, HD, HP, JJ, NN, PC, PN,
PLU Plural PS, (RG, RO)

Definiteness IND Indefinite DT, (HD, HP, HS), JJ, NN, PC,
DEF Definite PN, (PS, RG, RO)

Case NOM Nominative JJ, NN, PC, PM, (RG, RO)
GEN Genitive

Tense PRS Present VB
PRT Preterite
SUP Supinum
INF Infinite

Voice AKT Active
SFO S-form1

Mood KON Subjunctive2

Participle form PRS Present PC
PRF Perfect

Degree POS Positive (AB), JJ
KOM Comparative
SUV Superlative

Pronoun form SUB Subject form PN
OBJ Object form
SMS Compound 3 All parts-of-speech

77

78

Morphological parser for Latin

Alexander Malmberg
LTH

d00am@efd.lth.se

Abstract

Morphology describes how words are formed
in a language, for example by adding suffixes
or prefixes to existing words. In some lan-
guages, this process is very productive, and
it is thus important for computational lin-
guistics to be able to handle this. The pur-
pose of a morphological parser is to extract
information from the morphological struc-
ture of a word. In this paper, we examine
this problem and briefly look at the stan-
dard two-level morphology approach of han-
dling it. We also present a basic but working
morphological parser for Latin.

1 Introduction

Morphology is the study of how words are
formed. In many languages, the processes by
which new words are formed are very com-
mon. For example, in English, one can form
compound words, and it is common that plu-
ral forms of words are formed by adding ”s”
to the singular form. Other languages use
other sets of prefixes and suffixes to form
new words from other words, sometimes with
phonological changes (such as ”morpholo-
gies”, where ”ys” turns into ”ies”). Some
languages use infixes or other exotic meth-
ods for forming words.

Systems that want to process text in a lan-
guage need to understand all these words.
A simple and straightforward approach is to
make a dictionary that lists all words. How-
ever, this is ugly from a theoretic point of
view. Many of the methods that form new
words are regular, and it should be possible
to build a model of these methods and use
it.

It is also impractical to list all words, es-
pecially in languages with rich morphological
processes. For example, nearly every Latin

verb has approximately 150 forms, but these
can usually be formed from just three stems.
Even in English, which has relatively poor
morphological processes, listing all words is
unlikely to work in practice. An interesting
example(Sproat, 1992) involved Associated
Press newswire text from a 10 month pe-
riod. Even when the words from all the texts
expect those of the last day of the period
were collected in a dictionary, there were still
many words on the final day that weren’t in
the dictionary. Many of these involved new
forms of words that were in the dictionaries.

Thus, morphology aims at modelling how
words are formed, and the job of a morpho-
logical parser is to extract information from
words using this model. There are many ap-
plications of this, and different applications
need different types of information. One
type would be information about gender,
number, tense, etc., which could be used to
find the meaning of a word, or to aid part-of-
speech tagging. Other applications include
spell checking, or text-to-speech, where mor-
phology can provide information about mor-
pheme boundaries and pronunciation.

2 Two-level morphology

One standard way of writing a morphological
parser is to use so called two-level morphol-
ogy. This was originally done by Kosken-
niemi in the KIMMO system for Finnish.

The first level in two-level morphology is,
roughly, a ”dictionary” with idealized mor-
phological rules. The second level is a set
of phonological rules for rewriting idealized
forms of words into their real forms.

The ”dictionary” can be represented as a
web of tries. A trie is a tree where each
node has a child for each letter. This makes
it possible to find the node for a word effi-

79

ciently: just start at the root and recursively
go to the child corresponding to the next
letter. Morphological rules are handled by
connecting many tries; the node for a stem
won’t have children for all the possible end-
ings. Instead, it will have a link to a separate
trie that contains these endings. This way,
only one trie is needed for each (idealized)
paradigm, and it is still possible to find the
node for a complete word efficiently.

The phonological rules are represented as
finite state automatons that accept or reject
a pair of strings. One of the strings would be
a real form of a word, and the other would be
an idealized form as found in the dictionary.
The automaton would accept the pair if the
dictionary form matches the real form.

When parsing words, these two levels run
in parallel. The dictionary trie is searched
recursively starting at the root. At each
node, the idealized form (so far) is compared
to the real form using the automaton to see
if the idealized form might correspond to the
real form. If it doesn’t, the search need not
continue below that node. (Since the phono-
logical rules might include large changes, the
system might have to search a few levels
down dead-ends before the automaton can
reject the pair.)

There are many practical details in imple-
menting such a system, but this is only a
brief description. A more extensive descrip-
tion can be found in my source for this sec-
tion (Sproat, 1992).

3 Morphology in Latin

Morphology in Latin is extensive: nearly ev-
ery word indicates number and gender, there
are many cases, many paradigms, and many
obscure forms of verbs.

However, the structure is fairly simple:
words are formed by adding suffixes to a
stem. There are no phonological rules (ex-
cept some vowel length changes, but since
I’m working with written texts, that doesn’t
affect my parser). Completely new words are
can be formed using prefixes, but these were
included in my dictionary and thus didn’t
cause any problems. Stems are formed in
more complex ways, but again, listing all
stems isn’t hard (e.g. a verb may need 3–
4 stems, but no more).

(It is perhaps worth noting that classic
Latin is a language where it would be possi-
ble to simply build a list of all words. Being
a dead language, no new texts will be writ-
ten in it, so if you collected all words in all
texts, you’d trivially get perfect coverage on
all texts.)

During the work on my parser, I used
primarily two Latin grammar references:
Grammatica Nova (Larsson and Plith,
1992), and Latin Grammar (Conrad, 2004).

4 Morphological parser for
Latin

I wrote a morphological for Latin. It is based
on the dictionary level of the two-level mor-
phology and doesn’t include any phonolog-
ical rules. The trie structure is defined in
trie.h and the main source is in latin1.c.

When the program is, it reads the data
files specified on the command line. Each
data file defines a trie: the words contained
in it, which other tries it links to, and some
other interesting information (e.g. the mean-
ing of a stem, and tense/case/etc. informa-
tion for endings).

The parser function is parse(). The parse
is done in three steps. First, the tries are
searched for the unmodified word.

If no parses are found and the word ends in
”que”, the ”que” is removed and the search
is attempted again. ”que” is a word that
is sometimes attached to other words as a
suffix. Since it can be attached to all kinds
of words, it was convenient to special case
this word here.

If no parses are found in the second search,
the parser tries to parse the word as a roman
numeral.

Writing and debugging the parser was
fairly easy. Most of the time in the project
was spent gathering and working on the data
that the parser uses.

4.1 Data

When the parser is run, it is given a list of
files with data that is used to build and link
together the tries. There are two basic kinds
of tries: stems and endings.

4.1.1 Endings

The ending tries were built by hand by me
using Latin grammar resources (Larsson and

80

Plith, 1992) (Conrad, 2004). While it would
have been possible (and straightforward) to
simply make long lists of all endings from a
grammar book, there are many regularities
in the endings, and I tried to exploit this.

As an example, almost all verb forms use
one of three sets of endings to indicate per-
son. Thus, instead of having to list 6 endings
for each combination of verb conjugation,
tense, active/passive, etc., only the first part
of the ending is listed along with a link to
the trie with person endings corresponding
to this combination. (In fact, in some cases
I cheat and do this even when some forms
don’t follow one of the three patterns. In
those cases, I also list the exceptional forms,
so the parser still recognizes all valid forms;
the drawback is that it will also recognize
some ill-formed words.)

With some support for handling phonolog-
ical rules, it would have been possible to ex-
ploit even more near-regularities. Unfortu-
nately, the near-regular endings don’t seem
to follow regular phonological rules. For ex-
ample, the ending for both nominative plu-
ral and genitive singular second declension
nouns is ”-i”. For second declension nouns
whose stems end in ”i”, such as ”gladius”,
the ”ii” in genitive singular is contracted to
a single ”i”, ”gladi”, while the ”ii” in nomi-
native plural isn’t, ”gladii”.

To handle this in a two-level morphology,
it would have been necessary to introduce
new ”magic” letters, e.g. several variants of
”i”, identical except that some would com-
bine with other ”i”:s and some wouldn’t.
Thus, you still wouldn’t really be able to ex-
ploit the regularities since you’d have to ex-
plicitly list which ”i” would be used in differ-
ent endings. To me, this doesn’t appear to
be any nicer than simply listing all endings
from a theoretical point of view.

4.1.2 Stems

The stems were collected from a dictionary
built from the word list of another morpho-
logical parser for Latin (Whitaker, 2004).
This dictionary included over 30000 entries,
and while it was written in traditional dic-
tionary form, it included enough information
about the words to extract the stems and
connect them to my ending tries.

The program gen roots dict 1 parses the

Author Number of words Coverage
Caesar 51624 91%
Vergilius 63748 77%

Table 1: Parser results

dictionary and builds the data files used by
my parser. The program can handle about
25000 of the entries in the dictionary. Ex-
tending the coverage is straightforward but,
at this stage, time consuming since the re-
maining words are spread across many small
paradigms.

5 Results

I tested my parser on ”Commentariorum
Libri VII de Bello Gallico” by Caesar, and
the Aeneid by Vergilius (both texts from
”Corpus Scriptorum Latinorum” (Camden,
2003)). The results are in table 1.

While developing the parser, I tested and
analyzed the results of the parser on parts of
the first chapter of the text by Caesar. These
results were used to guide the development;
they told me which words and paradigms
that would increase coverage the most. Since
the results from the Caesar text was used for
this, this is likely part of the reason why the
coverage is much better on the Caesar text.
Another reason could be that the dictionary
I extracted stems from was, according to its
documentation, originally built using Cae-
sar’s texts.

On average, there were about 2.5 parses
of each successfully parsed word. Many of
these seem to be cases where several differ-
ent genders/cases of a word have the same
ending.

I have examined correctness by man-
ually examining some randomly selected
words, and by systematically testing some
paradigms, and to the limits of my knowl-
edge of Latin, all parses are valid (and usu-
ally, if a word is parsed at all, the correct
parse is among the parses found).

References

David Camden. 2003. Cor-
pus scriptorum latinorum,
http://www.forumromanum.org/literature/index.html.

81

Eric Conrad. 2004. Latin grammar,
http://www.math.ohio-state.edu/ econ-
rad/lang/latin.html.

Lars A. Larsson and H̊akan Plith. 1992.
Grammatica Nova. Bonniers.

Richard Sproat. 1992. Morphology and
Computation. ACL-MIT Press.

William Whitaker. 2004. Words 1.97,
http://users.erols.com/whitaker/.

82

POS Tagger for Spanish

Carlos Miguel Gómez Gracia

Héctor Yela Reneses

A continuación vamos a mostrar el
trabajo obtenido a partir de la realización
del citado proyecto en la Universidad de
Lund (Suecia) la asignatura de Language
Processing and Computational Linguistics
(EDA 171).

1. Introducción:
En primer lugar, vamos a dar la

idea general sobre la que se ha desarrollado
nuestro proyecto. Para hacer eso, lo primero
que debemos decir, es que un llamado POS
Tagger es un programa cuya principal
función es la de extraer información de un
Corpus (texto de gran dimensión en el que
cada palabra presenta información adicional
de su estructura) para la realización de unas
estadísticas que podrá utilizar en nuevas
aplicaciones.

En nuestro caso, dichas estadísticas
han sido usadas para encontrar las posibles
etiquetas de cada palabra en nuevos textos
(en nuestro caso, las etiquetas serán las
distintas categorías gramaticales) y elegir la
más adecuada en cada caso.

Gracias a esta herramienta,
mediante un entrenamiento adecuado de
nuestra base de datos, deberíamos ser
capaces de etiquetar de forma adecuada
cualquier frase que pretendamos evaluar.
Ese entrenamiento será después clave en
nuestro proyecto, porque podremos
observar como difieren bastante los
porcentajes de éxito si el fragmento de texto
que se pretende etiquetar pertenece o no al
Corpus que ha servido para entrenar.

Una vez dadas estas pinceladas que
dan una idea general del propósito de
nuestro proyecto, pasamos a explicar de un
modo más detallado el mismo en los
siguientes apartados.

2. Desarrollo del proyecto:

Nosotros hemos tratado, en primer
lugar, nuestro Corpus. Éste procede del

departamento de lenguaje natural de la UPC
(Universidad Politécnica de Cataluña).

La estructura del mismo constaba
de una palabra por línea en la que aparecían
de modo sucesivo la propia palabra original
del texto, la palabra raíz de la que procede
la misma y un conjunto de etiquetas en el
que se podían identificar algunas de las
propiedades de las palabras, como son su
categoría gramatical, el género al que
pertenecen o su número. En el caso de que
la palabra fuese una forma verbal, también
podíamos identificar su propio tiempo
verbal. Algunos ejemplos de esta forma
original del Corpus que estamos
explicando, podrían ser:

No No RN
Quiero querer VMIP1S0
Decir decir VMN0000

En cualquier caso, para el propósito

que le hemos asignado a este proyecto, nos
ha sido suficiente con utilizar solamente las
primera letra de cada una de estas etiquetas
originales, que es la que nos indica la
categoría gramatical a la que pertenece la
palabra presente en el texto. De este modo,
hemos podido distinguir los diferentes tipos
de palabras que, según su etiqueta, nos
encontraremos a la hora de hacer el análisis.
Han quedado como sigue:

A Adjetivo
S Preposición
N Nombre
V Verbo
R Adverbio
D Determinante
Y Abreviatura
I Interjección
P Pronombre
Z Números
C Conjunción
F Puntuación
X Desconocido

83

W Fechas

Una vez que fue definida con
precisión la parte del Corpus sobre la que
íbamos a trabajar, se procedió a recoger
datos que resultaran de interés para los
posteriores cálculos de probabilidades. De
este modo, fueron cuatro los elementos que
decidimos almacenar en nuestra base de
datos:

• C(w): Número de ocurrencias de la

palabra w.
• C(t): Número de ocurrencias de la

etiqueta t.
• C(w, t): Número de ocurrencias de la

palabra w etiquetada con t.
• C(t1, t2): Número de ocurrencias del

bigrama de etiquetas (t1, t2), que
consiste en la aparición de una palabra
etiquetada con t1, seguida de otra
etiquetada con t2.

Algunos ejemplos del cálculo del

número de palabras en el Corpus son estos:

3 corral
5 corre

3 correcto
1 corrector

10 corredores
3 corren
3 correr

1 correrse
9 corresponde

También mostramos a continuación

un ejemplo de la distribución de las
etiquetas contabilizadas en un fragmento
del Corpus, donde se puede ver como
algunas de ellas aparecen muchas mas
veces que otras.

A 7886
C 6660

N 22254
P 6249
R 5514
S 14216
V 13795
W 207
Z 233

Una vez que fuimos capaces de

realizar correctamente la contabilización de
palabras y etiquetas, procedimos a aplicar
alguna de las fórmulas que nos habían sido

proporcionadas durante el curso para el
cálculo de diversas probabilidades. De este
modo, y debido a que tras una reunión con
el profesor que ejercía como tutor de
nuestro proyecto decidimos usar el
algoritmo de Viterbi, las probabilidades que
calculamos fueron las siguientes:

• Probabilidad de transición:

P(ti | ti-1) = C(ti-1, ti) / C(ti-1)
• Probabilidad de estado para palabras

conocidas:
P(wi | ti) = C(wi, ti) / C(ti)

• Probabilidad de estado para palabras
desconocidas:
P(wi | ti) = 1

Este algoritmo de Viterbi del que

hemos hablado, determina el camino
subóptimo que debe seguir para cada nodo
en el autómata, descartando el resto de
nodos, mientras lo atraviesa. Esta autómata
es el que se construye teniendo en cuenta
las posibles etiquetas que pueden presentar
las palabras ambiguas del texto.

En el proyecto desarrollado, la
probabilidad de transición que hemos usado
se ha calculado mediante bigramas, por lo
que nuestro porcentaje de acierto cuando
aparecen palabras desconocidas ronda el
80%. En el caso de que hubiésemos usado
trigramas para su cálculo, este resultado
hubiese mejorado hasta el 90%
aproximadamente.

Además de los cálculos de los
que he hablado, para elevar el porcentaje de
acierto al etiquetar las palabras, hemos
usado también un conjunto de simples
reglas que en castellano se pueden aplicar
de un modo sencillo, pero que serían muy
difíciles de identificar en el tipo de análisis
que habíamos desarrollado. Unos de los
casos más complejos de este tipo que
hemos encontrado es el de la palabra “que”.
Es un caso muy común su uso en cualquier
texto en castellano y no resulta nada fácil
distinguir con simples estadísticas cuando
debemos identificarlo como un pronombre
o como un determinante. Por ello, al hacer
un análisis de cuáles eran las palabras en las
que más errores se producían, pudimos ver
que ésta era con bastante diferencia la que
más problemas daba. Aún así, y a pesar de
la introducción de estas reglas todavía sería
necesario hacer un análisis gramatical mas
profundo para su correcto etiquetado.

84

3. Análisis del código

Básicamente lo que hace nuestro
código es analizar el corpus adquiriendo
estadísticas, uno de los programas analiza
todo el corpus mientras que el otro omite
analizar la parte que luego usaremos como
comprobante.

Una vez obtenidas estas
estadísticas, que luego servirán para
calcular probabilidades, utilizaremos el
algoritmo de Viterbi para ir etiquetando las
palabras con su correspondiente etiqueta.

Finalmente comprobamos con la
parte del texto que hemos elegido, el
porcentaje de acierto y, en el caso de que
existan palabras desconocidas, calculamos
el porcentaje para los dos tipos de palabras.

Todo este código del que estamos
hablando ha sido estructurado de un modo
claro y ordenado, de modo que cualquier
posible ampliación que se desee realizar
sobre el mismo no precise mas que un
simple vistazo a los comentarios que en
cada fragmento del mismo hemos situado.
Este hecho también nos ha sido de gran
ayuda durante la realización del proyecto,
para tener claro en todo momento el lugar
en el que realizábamos cada operación
sobre el Corpus.

Sirva como ejemplo de la
adecuada estructura del código alguna de
sus partes:

($ini, $end) = @ARGV;
@mytags = ('A', 'R', 'D', 'N', 'V', 'I', 'Y', 'S', 'P', 'Z', 'C', 'F', 'X', 'W');
open(FILE, "corp.txt") || die "Could not open file corp.txt";
$cnt = 0;
$auxiliar = ""; #fragmento con las palabras sin etiquetar
$comprobante = ""; #fragmento para comprobar tags

#COMPROBAMOS QUE LOS ARGUMENTOS SEAN CORRECTOS
if($ini < 0 || $end >= 106124 || $ini >= $end){
 print "There is a wrong with the arguments\n";
}

else{
 #RECORREMOS EL FICHERO, OBTENEMOS EL TROZO A ANALIZAR Y
LLENAMOS LA BD
 while ($line = <FILE>){
 @linea = split(/ /, $line);

 #CAMBIAMOS LAS MAYUSCULAS POR MINUSCULAS EN LA PALABRA
 $linea[0] =~ tr/A-ZÅÀÂÄÆÇÉÈÊËÎÏÔÖÙÛÜ/a-
zåàâäæçéèêëîïôößùûüÿ/;

 #OBTENEMOS EL TAG DE LA PALABRA
 @palabra = split(/ */, $linea[2]);

 #OBTENEMOS LA FRECUENCIA DE CADA PALABRA
 if(!exists($words{$linea[0]})){
 $words{$linea[0]} = 1;
 }
 else{
 $words{$linea[0]}++;
 }

 #OBTENEMOS LA FRECUENCIA DE CADA TAG
 if(!exists($tags{$palabra[0]})){
 $tags{$palabra[0]} = 1;

85

 }
 else{
 $tags{$palabra[0]}++;
 }

 #OBTENEMOS LA FRECUENCIA DE LA DUPLA PALABRA TAG
 if(!exists($wordandtag{"$linea[0] $palabra[0]"})){
 $wordandtag{"$linea[0] $palabra[0]"} = 1;
 }
 else{
 $wordandtag{"$linea[0] $palabra[0]"}++;
 }

 #OBTENEMOS LAS FRECUENCIAS DE BIGRAMAS DE TAGS
 if($cnt != 0){
 if(!exists($bigramtag{"$tagant $palabra[0]"})){
 $bigramtag{"$tagant $palabra[0]"} = 1;
 }
 else{
 $bigramtag{"$tagant $palabra[0]"}++;
 }
 }

 #OBTENEMOS LAS FRECUENCIAS DE TRIGRAMAS DE TAGS
 if($cnt > 1){
 if(!exists($trigramtag{"$tag2ant $tagant $palabra[0]"})){
 $trigramtag{"$tag2ant $tagant $palabra[0]"} = 1;
 }
 else{
 $trigramtag{"$tag2ant $tagant $palabra[0]"}++;
 }
 }

 #OBTENEMOS LAS FRECUENCIAS DE (W1,T1,T2)
 if($cnt != 0){
 if(!exists($mixgramtag{"$wordant $tagant $palabra[0]"})){
 $mixgramtag{"$wordant $tagant $palabra[0]"} = 1;
 }
 else{
 $mixgramtag{"$wordant $tagant $palabra[0]"}++;
 }
 }

 #LLENAMOS EL FRAGMENTO SI ES NECESARIO
 if($cnt >= $ini && $cnt <= $end){
 $comprobante .= "$palabra[0]\n";
 $auxiliar .= "$linea[0] ";
 }

 #GUARDAMOS LA ULTIMA PALABRA DEL FRAGMENTO PARA SABER SI
ES UN PUNTO
 if($cnt == $end){
 $ultima_palabra = $linea[0];
 }

 $tag2ant = $tagant;
 $tagant = $palabra[0];

86

 $wordant = $linea[0];
 $cnt = $cnt + 1;
 }

 #METEMOS EN WORDANDTAG PARA CADA PALABRA LA LISTA DE TAGS
POSIBLES
 #CUIDADO LUEGO CON LAS PALABRAS SIN TAG; LAS UNKNOW!!!!!!!
 foreach $word (sort keys %words){
 $lineatags = "";
 for ($j = 0; $j <= $#mytags; $j++){
 if(exists($wordandtag{"$word $mytags[$j]"})){
 $lineatags .= "$mytags[$j] ";
 }
 }
 $tagsforword{$word} = $lineatags;
 }

87

4. Resultados

Una vez explicado como hemos
calculado las diversas probabilidades para
realizar un etiquetado correcto y el
algoritmo usado, ya podemos explicar que
han sido 2 los programas que hemos
elaborado en nuestro proyecto.

Por una parte, el primero lo que
hace es introducir todo el Corpus en la base
de datos para, posteriormente, proceder a
analizar una parte del mismo en el que no
se van a encontrar palabras desconocidas.
Es el fichero llamado POSinc.pl y los
resultados obtenidos por él se acercan al
98% de etiquetados correctos. Para invocar
a dicho programa es necesario hacerlo del
siguiente modo:

perl –w POSinc.pl lineIn lineOut > exit.txt

 En el otro programa llevado a

cabo, el texto es entrenado por una amplia
parte del Corpus para después analizar la
parte restante, apareciendo de este modo
palabras desconocidas. El porcentaje de
éxito roza el 80% y esta en el fichero
llamado POSdestex.pl. La manera de
invocar este programa es:

perl –w POSdestex.pl lineIn lineOut
>exit2.txt

Este último además nos devuelve

el porcentaje de aciertos de las palabras
conocidas y el de las desconocidas por el
trainer. Para las palabras conocidas el
porcentaje ronda el 88% y para las
desconocidas el 25%.

5. Conclusiones y posibles mejoras

De nuestro experimento y de los
resultados obtenidos podemos deducir que
un POS que funciona con bigramas y sin
casi tratamiento para las palabras
desconocidas es una buena herramienta
pero no óptima, ya que con un tratamiento
sobre esas palabras desconocidas de las que
solo acertamos una cuarta parte ahora y con
una leve mejoría sobre las conocidas
(posiblemente con trigramas, aunque se
podria dar el caso que los porcentajes no
mejorasen acordes con el esfuerzo y la
complejidad requerida para utilizarlos)
podríamos aumentar nuestra efectividad
quizás hasta un 90%.

Todo y así necesitaríamos de un
corpus mayor para conocer el alcance de
nuestros resultados y poder trabajar en una
posible mejora, habría también que
comparar los resultados de nuestro proyecto
empleado sobre otras lenguas, ya que
quizás el castellano es una lengua más
sencilla de Taggear que el inglés.

En cualquier caso, la conclusión
que nosotros podemos sacar tanto de la
realización del proyecto en sí, como del
conjunto de la asignatura, es muy positiva,
ya que ninguno de los dos habíamos tenido
anteriormente experiencia alguna con el
lenguaje de programación PERL y en
España no se utiliza de un modo común.

De hecho, las herramientas que
habíamos podido llegar a usar para tratar
textos eran algunas como Lex, Yacc o
Visón, y siempre en asignaturas que tenían
una estrecha relación con el mundo de los
compiladores, nunca con el fin que le
hemos aplicado en este proyecto.

6. Agradecimientos
Por último, nos gustaría

agradecer a CLiC Centre de Llenguatge i
Computació (UB) el hecho de habernos
permitido la utilización de su extraordinario
Corpus de aprendizaje en español, ya que
sin él, no habría habido proyecto, ni
resultados ni nada.

Por supuesto, también debemos
acordarnos y dar las gracias tanto a la
persona que se ha encargado de tutorarnos
este proyecto, Richard Johansson, como al
profesor encargado de las clases de teoría,
Pierre Nugues. Nos han ayudado a sacar
adelante esta tarea, especialmente en la
parte que nos resultaba más nueva para
nuestros conocimientos, todo lo relacionado
con el algoritmo de Viterbi. También
agradecer a aquella gente de la Universidad
de Lund que permite tantas facilidades a los
alumnos para trabajar cómodamente, tanto
a nivel de medios como de horarios.

Ya para acabar, sólo queda
presentarnos de un modo mas formal. Este
proyecto ha sido realizado por:

• Carlos Miguel Gómez Gracia, alumno

del Centro Politécnico Superior
(Zaragoza, España).

• Héctor Yela Reneses, alumno de la
Universidad Politécnica de Cataluña
(Barcelona, España).

88

Part-of-Speech Tagger for Swedish

Simon STÅHL
Computer Science, Lund University

sys03sis@ludat.lth.se

Abstract

A Part-of-Speech (POS) tagger is a tool that
automatically resolves the ambiguities that
would occur if a text was tagged with the help
of a dictionary. Automatic tagging of texts is
used in many applications (grammar checkers,
etc.), and quite high accuracy can be achieved.
This document describes a stochastic POS
tagger that uses a unigram version of the
Viterbi algorithm. The overall idea behind the
stochastic POS tagger and the Viterbi
algorithm is also described.
The unigram tagger is evaluated using a small
corpus of just below 100 000 words, and the
results indicate that a larger corpus would
have yielded greatly improved accuracy.

1 Introduction

There are many applications that needs a text to
be tagged with Parts-of-Speech (POS), the lexical
categories of words and symbols in a text, and
there are several ways to do this tagging. The most
primitive approach is to determine the POS of a
word by looking it up in a dictionary. This
unfortunately leaves us with a lot of ambiguities,
since many words have more than one possible
POS.

Early POS taggers resolved these ambiguities by
using hand coded rules, but writing these rules is
both time demanding and complex. Newer rule
based taggers derives rules automatically from a
hand annotated corpus.

Other POS taggers uses stochastic models. The
ambiguities is resolved using statistics, derived
from a hand annotated corpus. The probabilities of
the possible tag sequences of a given word
sequence is calculated, and the one with the
highest probability is chosen. This is approximated
using N-grams (bigrams and trigrams mainly),
since statistics of long sequences is impossible to
obtain.

The Viterbi algorithm can be used to optimize
the probability calculation of the tag sequences by
discarding sub-sequences that can not be part of
the tag sequence with the highest probability. This
makes the stochastic POS tagger less time and

memory consuming than if it would have to
calculate all possible paths.

This document describes a stochastic POS
tagger, using the Viterbi algorithm. The current
implementation uses only unigrams, which makes
the result noticeably less correct than a bigram or
trigram implementation.

Chapter two describes the POS tagger with its
statistics and probabilities. In the third chapter the
Viterbi algorithm is described, and in chapter four
the results are discussed.

2 The POS tagger

2.1 Statistics

All statistics are derived automatically from a
hand annotated corpus. This training of the POS
tagger only needs to be done once, since the
statistics is saved to file to be used when tagging.
The statistics derived is:

Cn – The number word tokens.
C(w,t) – Occurences of word w tagged with t.
C(t) – Occurences of the tag t.
C(t1,t2) – Occurences of the tag bigram t1,t2.
C(t1,t2,t3) – Occurences of the tag trigram t1,t2,t3.

Since the current implementation only uses
unigrams, no bigram or trigram statistics is saved,
as would be the case in a more advanced
implementation.

2.2 Probabilities

The probability of a tag sequence T for a given
word sequence is:

P T P W∣T 

That is, the probability of the tag sequence in it
self multiplied with the probability of the word
sequence knowing the tag sequence. The tag
sequence with the highest probability is chosen to
tag the word sequence with.

The probabilities P(T) and P(W|T) are
approximated using N-grams, most often trigrams,
backing off to bigrams (and unigrams) in the case

89

of missing data. The trigram approximations of the
probabilities are:

P T ≈P t1P t2∣t1∏
i=3

n

P t i∣t i−2 , t i−1

P W∣T ≈∏
i=1

n

P wi∣t i

These probabilities are estimated with the
statistics from the hand annotated corpus:

P t i=
C t i

C n

P t i∣t i−1=
C t i−1 , t i
C t i−1

P t i∣t i−2 , t i−1=
C t i−2 , t i−1 , t i
C t i−2 , t i−1

P wi∣t i=
C wi , t i
C t i

Since the current implementation only uses
unigrams, the probability P(T) is approximated
further, on the expense of less correct tagging. The
unigram approximation of P(T) is:

P T ≈∏
i=1

n

P t i

The resulting unigram approximation of a tag
sequence is:

P T P W∣T ≈∏
i=1

n

P t iP wi∣t i

The unigram approximation only selects the
most common tag of a word, and does not take any
previous tags into consideration when selecting
tags.

3 The Viterbi algorithm

The Viterbi algorithm is a dynamic
programming algorithm that optimizes the tagging
of a sequence, making the tagging much more
efficient in both time and memory consumption.

In a naïve implementation we would calculate
the probability of every possible path through the
sequence of possible word-tag pairs, and then
select the one with the highest probability. Since
the number of possible paths through a sequence
with a lot of ambiguities can be quite large, this
will consume a lot more memory and time than
neccesary.

Since the path with highest probability will be a
path that only includes optimal subpaths, there is
no need to keep subpaths that are not optimal.
Thus the Viterbi algorithm only keeps the optimal
subpath of each node at each position in the
sequence, discarding the others.

4 Results

The tagger was tested with a corpus of just
below 100 000 Swedish words. The original idea
was to test it with the full corpus (with
approximately 1.2 million words), but this
unfortunately proved to be too time demanding,
both when training the tagger and when the
statistics was loaded before tagging.

A test set of just below 25 000 words was
tagged by the tagger, that had been trained on the
small (100 000 words) corpus, and the results were
compared with a copy of the test set that was hand
annotated. The tagger was able to tag 74.6% of the
words correctly, which is way below what could
be expected. As a comparison, Sjöbergh (2003)
report an 87.3% accuracy when using an unigram
tagger trained on a corpus of 1.1 million words.

The reason for this difference in accuracy is
probably mainly because of sparse data, many
words in the test set are not found in the small
corpus, and this is not handled by the tagger.
71.6% of the erroneous taggings were, as a matter
of fact, tagged with the tag UKN, which means
that the tagger was not able to find any possible
tags for that word. This indicates that a larger
corpus would have given a result closer to that of
Sjöbergh (2003).

5 Conclusion

The implemented POS tagger only uses unigram
probabilities, which means that it never takes any
sequence of tags into consideration, only selects
the most common tag of a word. It does not try to
tag unknown words in any way, it just tags them as
UKN, unknown, and it was trained on a small
corpus of just below 100 000 Swedish words. But
with the limitations of both the tagger and the
small corpus in mind, it gave relatively good
results, 74.6% correct tagged words.

The large percentage, 71.6%, of the erroneous
taggings, that were tagged with the tag for unseen
word, indicates that a larger corpus would give a
higher percentage of correctly tagged words. A
faster version of the tagger would have been able
to be trained on the larger corpus, but the current
version would have taken days to process it.

Extending the tagger to use bigrams and
trigrams would also improve the correctness, and
would be the next natural step. This would take
sequences of tags into consideration, which is

90

important in natural languages.
The handling of unseen words is non-existent in

the current implementation, and even a naïve
algorithm to handle this would improve the results.

References

Pierre Nugues. 2004. An Introduction to Language
Processing with Perl and Prolog. Lund
University, Lund, Sweden.

Johan Carlberger and Viggo Kann. 1999.
Implementing an efficient part-of-speech tagger.
Royal Institute of Technology, Stockholm,
Sweden.

Jonas Sjöbergh. 2003. Combining POS-taggers for
improved accuracy on Swedish text. KTH Nada,
Stockholm, Sweden.

University of Leeds, Viterbi algorithm:
http://www.comp.leeds.ac.uk/roger/HiddenMark
ovModels/html_dev/viterbi_algorithm/s1_pg1.ht
ml

Wikipedia, Viterbi algorithm:
http://en.wikipedia.org/wiki/Viterbi_algorithm

Luz Abril Torres Méndez. 2000. Viterbi Algorithm
in Text Recognition. McGill University,
Montreal, Quebec, Canada:
http://www.cim.mcgill.ca/~latorres/Viterbi/va_
main.html

91

92

Collocations Computed from the Web

Tomasz Adam Maksymilian WYSOCKI
Engineering Physics, Lund Institute of Technology

Ehrensvärdsg. 22, 212 13 Malmö, Sweden
pogodno@gmx.de

Abstract
This paper describes a prototype system im-
plemented for verifying the correctness of
all verb-preposition-collocations found in a
given text. The verification is done using
statistics from the world’s largest corpus -
the Internet. The tool used for obtaining
these statistics is the Google Web APIs ser-
vice1. The probability of correctness is com-
puted according to the concepts of propor-
tional score, t-score and mutual information.

1 Introduction
1.1 Preface

Almost each and every one of us has tried to
learn a foreign language at some point in our
lifes, being more or less successful in doing
so. The obstacles that one has to conquer
in the process of learning a natural language
are more or less complex, depending on ones
mother tongue, learning ability, other lan-
guages of which one already has command
etc. What should a person do when ex-
posed to a new, unfamiliar expression? Try-
ing to express something in German, linguis-
tic rules valid for English could always be
applied. A word-for-word translation could
also be tried. The attained result might be
acceptable, but in most cases it would not.
Regarding fixed expressions, or collocations,
one can almost be sure of the non-feasibility
of a literal translation. Collocations have of-
ten a very long history and can be very spe-
cific for the given language. They are linguis-
tic entities that one has to learn by heart, or
continue to be ignorant. In this paper I con-
centrate on the collocations of a verb and a
preposition, e.g. “depend on”. The following
sections describe the prototype of an appli-

1Google Web APIs service.

cation helping the user in checking if such
a collocation was written correctly or not.
The lexicon used for verification is the Inter-
net and the tool employed is Googles Web
APIs service. As measures for the proba-
bility of correctness, the concepts of propor-
tional score, t-score and mutual information
are applied.

In the following, whenever the word collo-
cation is stated, it will have the meaning of
verb-preposition-collocation only.

1.2 Background

In order to verify the correctness of a col-
location, one could ask a native speaker of
that language, but after a while he would
get tired of being asked these things over and
over again. Instead, one might try consult-
ing a dictionary, or checking the frequency of
the collocation in a large text corpus. This
last alternative is what the application im-
plemented in this project makes use of. The
corpus used for verification is the largest co-
hesive and searchable existing for the time
being - the Internet. Using any search engine
on the Web, one can look up the collocation
in doubt, and check the amount of hits gen-
erated. Then the process could be repeated,
substituting another preposition for the orig-
inal one. Applying the concept of propor-
tional score, the conclusion would then be
that the proper preposition to be used in
that collocation is the one generating most
hits. In the next section this very method,
together with two others, will be described.

Google, known for its popular search en-
gine, provides a service for software devel-
opers, allowing the applications of each of
them to state 1000 automated queries per
day. This service offers many of the options
found in the original Web-based search en-
gine of Google’s. In this project, the Google93

Web APIs service is used constructing a java-
application for checking the collocations in a
text.

2 Approach

2.1 System

The sentences one would like to verify should
be saved in a text file and tagged using a
part-of-speech tagger (e.g. the MXPOS Tag-
ger2, as done in this project). The input
fed to the java-program implemented in this
project is a tagged text file. The application
recognizes as verbs all the words labeled with
either of the tags VBZ, VBN, VBG, VBP
and as prepositions all the words labeled
with the tag IN (these are the tags used by
the MXPOST). The probability for each col-
location found is then calculated using one
of the three scoring methods described be-
low and the figures obtained using Google’s
Web APIs service.

The result is then sent to the standard out-
put. The printout presents the probability
for the collocation with the original preposi-
tion. Additionally, if there is a preposition
giving higher probability, it is suggested as
the more proper one. Otherwise, the second
best preposition is presented along with the
original one.

2.2 Obtaining Probabilities

When calculating the probability of a col-
location (e.g. “depends on”) being correct,
the following figures have to be known:

c(v), the amount of hits for the verb
”v” (“depends”);

c(pi), the amount of hits for the preposition
“pi” (“on”);

c(v, pi), the amount of hits for the ex-
pression “v pi” (”depends on”).

The collocation (consisting of the verb
v and the preposition pi) considered to be
the most correct one is the one having the
largest probability πi, which is defined as

2Maximum Entropy Part-Of-Speech Tagger.

πi = score(v,pi)∑
j

score(v,pj)

where

∑
i πi = 1

The list of prepositions considered by the
application is

L = {as, at, by, for, from, in, of
off, on, than, to, upon, with}

Figures for each of those prepositions
are obtained just once, in one of the initial
steps of the algorithm.

The number N , representing the total
number of words in English texts on the In-
ternet is roughly estimated to equal around
11 billion. This figure is obtained by check-
ing the frequency of such words as “in”, “on”
and “of” in a large, fixed-size text corpus,
then checking the amount of those words on
the Internet, multiplying the both figures for
each word, and taking the average among all
of them.

2.3 Scoring Methods

The application uses one of the three most
common scoring methods for calculating the
probabilities.

2.3.1 Proportional Score

The proportional score is the same as the
amount of hits obtained for the collocation,
that

scorep(v, pi) = c(v, pi)

2.3.2 T-Score

The t-score is defined by

scoret(v, pi) =
c(v,pi)− 1

N
c(v)c(pi)√

c(v,pi)

The t-score shows in what extent the asso-
ciation between two words v and p is non-
random. In case of a high t-score, the result
can be assumed to be quite confident.94

2.3.3 Mutual Information

The mutual information is defined by

scoret(v, pi) = log2 N c(v,pi)
c(v)c(pi)

The mutual information puts the probability
of observing the collocation “v p” in com-
parison with the probabilities of observing v
and p independently. This implies that if the
collocation occurs often compared with the
occurrence of the words v and p, it should
be considered as probable.

3 Examples
The following sentences are examples of
those used for verification of the system.

1. The weather depends on the climate.

2. The rate depends of the initial values.

3. The health of children depends at least
partially on their access to health ser-
vices.

4. Lato was substituted for Maradona.

5. The luxurios champagne was substi-
tuted with less expensive, but even more
sofisticated bavarian wheat beer.

4 Results
The final results obtained for the sentences
from the previous section were the same
for each method, although the probabilities
differed widely.

1. The weather depends on the climate.

Method c t m
Probability (%) 77 48 27

Second best: depends upon

Method c t m
Probability (%) 16 22 23

2. The rate depends of the initial values.

Method c t m
Probability (%) 1 4 8

Suggestion: depends on

Method c t m
Probability (%) 76 49 27

3. The health of children depends at
least partially on their access to health
services.

Method c t m
Probability (%) 0 1 2

Suggestion: depends on

Method c t m
Probability (%) 76 48 27

4. Lato was substituted for Maradona.

Method c t m
Probability (%) 50 29 18

Second best: substituted by

Method c t m
Probability (%) 18 18 15

5. The luxurios champagne was substi-
tuted with less expensive, but even more
sofisticated bavarian wheat beer.

Method c t m
Probability (%) 12 14 14

Suggestion: substituted by

Method c t m
Probability (%) 49 29 18

The most time-consuming part of the pro-
gram is the communication with Google. If
this procedure could be made faster, it would
actually be feasible to include this feature
into some word-processing software in order
to make it easier to process a larger mass of
text.

5 Discussion

As seen in the previous section, all the three
methods delivered exactly the same results.
The single issue that differs between them95

is the confidence in the result being unques-
tionably correct.

Using the proportional score, the result
space contains in each case a single signif-
icant peak, making it easy to distinguish the
correct (according to this method) preposi-
tion.

The mutual information delivers several
peaks having similar values, the highest of
them still being the correct solution.

The level of confidence of the t-score
method lies somewhere in-between the two
others.

The third sentence is actually erroneous,
although the system finds it to be correct.
This is due to the fact that the sentence con-
sists of a principal clause (The health of chil-
dren depends on their access to health ser-
vices.) and a subordinate clause (at least
partially) and the commas are left out in
the source file. Even if the commas would
be there, Google does not make any differ-
ence between ”depends at” and ”depends,
at”, thus the results would be identical.

It is free for anyone to construct a webpage
of his own, in the language and with the con-
tents of his choice. Due to this nature, the
Internet contains a lot of noise. This con-
tributes to the fact that much of the virtual
substance, the collocations in general, con-
tains grammatical errors.

The errors observed in the contents of a
webpage are correlated with the native lan-
guage of its author. It his highly probable,
that the members of a language group make
the same mistakes, applying for instance the
concept of literal translation of expressions
and collocations. If the language group is
large, the texts produced by its members
could cause significant noise, as it is corre-
lated. The largest noise peaks will probably
origin from such large languages as Spanish,
French and Chinese, whereas the noise pro-
duced by members of minor language groups
would not be significant, although notice-
able. Since the mass of English text con-
structed by its native speakers is much larger
than the single native groups’, this noise
should not reach the amplitude of the real,
correct signal.

The situation would look somewhat dif-
ferent if our language of interest would be

other than English. A small language is al-
ways strongly exposed to such noise, because
one false entry makes a large contribution to
the total corpus in this tongue.

There are always errors made by the na-
tives as well, but this should not be corre-
lated enough to give peak noise, it would
rather be an amplification of the basic noise
level. If an error convicted by the native
speakers would become significant, it should
rather be considered as synonym with the
original one rather than incorrect.

The system is partly optimized in order to
delimit the processing time and the amount
of requests to Google. The check of the
amount of hits for the single prepositions is
done only once, at the startup of the sys-
tem. Still, one run is performed for the verb
and the collocation for each sentence, even
if they have been checked before. The sys-
tem could be modified to remember previous
searches in order to save time and enquiry-
credits. Such a procedure would though in-
crease both the memory space needed and
the internal running time of the system.
However, the large limitation of the costly
server connection-time would cause the net
save in running time to be positive.

The system is easily extended to cover
other scoring methods. Constructing a sub-
class to the already written one and adding
the desired methods is all that is needed.

Since Google’s search service is not limited
to searches in the English language only, the
system could easily be modified in order to
handle almost any other tongue. The issue
of tagging the text remains, though part-
of-speech taggers for several different lan-
guages are available on the Internet itself.
The tags indicating the verbs and the prepo-
sitions would have to be the same as used by
the MXPOS tagger, otherwise the method
extracting the collocations would have to be
overwritten.

6 Conclusions

As we could see, the system arrives at the
correct conclusions for each of the examples
used for verification. Although, the exam-
ple space is small and extended testing is
required in order to obtain the confidence-
statistics for the system.96

It is also necessary to develop a model,
which would combine the results yielded by
all the methods. For example, in case of the
three methods having the same outcome (as
in the examples presented in section 5), the
delivered answer could be considered to be
certain.

The essential conclusion is that, using the
Internet as language source and Google’s
APIs service as searching tool, it is possible
to construct an effective linguistic assistant,
not only for English, but also for almost any
language. Such an application must also not
be limited to handle mere verb-preposition-
collocations, but also other expressions, or
even spell checking. To make such a system
practical, one would have to incorporate the
system into word-processing software. This
would make it much easier and faster to ac-
cess. To increase the speed even further,
the server connection time would have to be
delimited in order to yield a feasible run-
ning time. This could be solved by keeping
a local record storing previous searches. It
would also be necessary to higher the limit
of searches allowed, as a standard-size text
would require many more than 1000 queries.

7 References
Google Web APIs service, 2004,
http://www.google.com/apis/

Maximum Entropy Part-Of-Speech Tagger
(MXPOST), 2004,
http://www.cis.upenn.edu/˜adwait/
statnlp.html

NuguesPierre, Language Processing and
Computational Linguistics, Lecture Notes,
LTH, 2004

97

98

Institutionen för Datavetenskap

http://www.cs.lth.se

Pr
od

uk
tio

n:
 J

on
as

 W
is

br
an

t
•

20
05

	reports.pdf
	petter.pdf
	antonio.pdf
	stephane.pdf
	jonas_koraljka.pdf
	myrtille_robert.pdf
	stefan.pdf
	jorgen.pdf
	johan.pdf
	bjorn.pdf
	simon_markus.pdf
	johan_tomas_bibi.pdf
	maria_mans.pdf
	alexander.pdf
	carlos_hector.pdf
	simon.pdf
	tomasz.pdf

