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Statistical Noun Group Detector

Antonio CALZADA
Department of Computer Science

Lund University
dat95jca@hotmail.com

Abstract

Statistical noun group detectors and chunkers
provide  powerful  means  of  detecting
syntactically correlated non-overlapping parts
of sentences.
This  report  describes  discoveries  made
exploring  statistical  noun  group  detection
based  on  Support  Vector  Machines  (SVM)
applied on data from the CoNLL-2000 shared
task.

1 Introduction

Text  chunking  consists  of  dividing  a  text  in
syntactically  correlated  parts  of  words.  For
example,  the  sentence  He  reckons  the  current
account deficit will narrow to only # 1.8 billion in
September . can be divided as follows: 

[NP He ] [VP reckons ] [NP the current account
deficit ] [VP will narrow ] [PP to ] [NP only # 1.8
billion ] [PP in ] [NP September ] .

The  shared  tasks  of  CoNLL provide  excellent
reference material and results.

In the  shared  task of  CoNLL-2000 full  phrase
part chunking is explored.

In shared task of CoNLL-1999 NP bracketing is
explored.  This  consists  in  identification  of  all
noun-phrase structures  allowing multiple  levelled
groups  where  a  for  example  a  noun-phrase  may
be identified as being decomposable into smaller
noun-phrases.

Noun  group  detection.  Also  known  as  noun
phrase  (NP)  chunking  is  a  simple  and  robust
alternative  to  full  parsing  for  segmenting  a  text
into syntactically correlated parts.

While this report specifically explores detection
of noun groups, many times the same methods can
be applied to other group detection problems like
full  phrase  part  detection  and  identification  of
names of companies and people in texts.

Because  statistical  methods  and  learning
algorithms are  used  instead  of for  example hand
made  rules,  the  implementation  can  easily  be

adapted to different languages and types of text.

2 Segmentation and labelling

Segmentation and labelling are two of the most
common  operations  in  natural  language
processing.  These  two  operations  are  strongly
related.  While  segmentation  divides  a  stream of
characters  into  linguistically  meaningful  pieces,
labelling classifies those pieces. 

There  are  many  different  ways  a  text  can  be
segmented,  most  notably:  bulletins,  pages,
sections, sentences, phrase parts, words and word
stems.

Segmentation  might  be done at  more than one
level.  When  classifying  news  bulletins  it  might
suffice to  have two levels of segmentation. First
the  text  would  be  segmented  into  bulletins  and
then  into  sub-segments  of  keywords  and  non-
keywords. This would contrast full parsing, where
text  is  segmented  into  hierarchical  structures  of
unlimited depth.

Labelling  is  characterized  by  the  set  of  labels
used  and  their  meaning.  It  may  range  from
sentence identification by enumeration to tagging
using  an  extensive  set  of  part-of-speech  (POS)
tags.

3 SVM

Support Vector Machines (SVMs) are used for
solving  classification  and  regression  problems,
very much like neural networks.

They  are  trained  using  data  sets  of  attributes
(features)  and  corresponding  target  value  (class
label). A trained SVM model can then be fed sets
of features that it will attempt to classify correctly.

The SVM model training works by mapping the
training vectors  into a  higher  dimensional  space.
During  training  the  SVM  engine  attempts  to
maximize the margin between critical values and a
separating  hyperplane.  See  (Drawing  1)  for  an
illustration  where  the  dark  line  represents  a
projection of the hyperplane dividing the dataset.
The thinner dotted lines mark the distance between
the plane and the closest data point.
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There are a number of configuration parameters
that  can be tuned  for  the  task at  hand,  the  most
common are kernel function, γ and C. 

The  heart  of  the  SVM  engine  is  a  pluggable
kernel  function  controlling  the  creation  of  the
hyperplane.  Some  examples  are:  linear,
polynomial,  radial  basis  function  (RBF),  and
sigmoid.

Depending on the type of the function, a number
of configuration parameters may be available. The

γ  parameter  is  common  to  most  kernel
functions.

Since it may not be possible to place the plane
so  it  correctly  classifies  the  training  data  it  is
allowed to incorrectly classify training values but
at the cost of a penalty that is to be minimized. The
severity  of  this  penalty  is  controlled  by  the  C
parameter.

4 NP identification using SVM

The  basic  steps  for  applying  SVM  to  NP
detection are:
– Selecting appropiate features.
– During training:
– Scale and encode features for train data.
– Select kernel function and trim parameter.
– Train SVM model.

– During testing:
– Scale and encode features for test data.
– Let SVM model classify test data.
– Decode classification labels.

Since SVM works with points in a mathematical
space the words and tags in the natural language
material needs to be encoded into numbers.

SVM  like  most  learning  algorithms  thrive  on
information.  But  it's  important  that  both  the
training  data  and  the  encoding  is  not  biased
fooling SVM into identifying patterns that are not
applicable to the test data.

5 Test, training and evaluation 

The  material  I  used  is  the  same  as  used  at
CoNLL-2000 and in  turn  originally  produced  by
(Ramshaw and Mitchell, 1995). 

The corpora contain one word per line and each
line  contains  six  fields  of  which  the  first  three
fields are relevant: the word, the part-of-speech tag
assigned by the  Brill  tagger  and the correct  IOB
tag showing phrase par limits. 

Words can be inside a NP (I) or outside a NP

(O). In the case that one NP immediately follows
another NP, the first word in the second base NP
receives tag B.

The source corpora of the data is sections of the
Wall  Street  Journal  (WSJ),  part  of  the  Penn
Treebank  (Marcus  et  al.,  1993).  Sections  15-18,
211727 tokens  are  used  as  training material  and
section 20, 47377 tokens as test material.

Three values are used to measure performance:
• precision,  percentage  of  detected  noun

phrases that are correct ,
• recall,   percentage  of  noun phrases  in  the

data that were found by the classifier,
• and  F-beta,  provides  a  collected

measurement  of  the  previous  two  values
evaluated  as  (2*precision*recall)/
(precision+recall)

Results are measured up against a baseline value
provided by a simple unigram tagger (tagging IOB
tags instead of  POS tags).

6 The Demo Program

The  purpose  of  the  demo  program  is  to
demonstrate  how  an  arbitrary  text  provided  the
user is tagged and NP chunked by the implemented
methods.

The  demo  is  implemented  as  an  interactive
console program. Once it is started an introductory
message  and  a  prompt  is  shown.  The  prompt
accepts the commands described in (Table 1).

The  tagger  used  is  a  simple  back-off  tagger
composed  of  in  order  of  preference:  a  trigram
tagger, a bigram tagger, a unigram tagger, and as a
last result defaulting to the NN tag.
Table 1Demo program commands

command Description
chunk Chunks the provided text.

Tagger and SVM engine
has to be loaded.

create_svm
[word count]

Creates a SVM engine and
trains it using CoNLL-2000
train data. A word count
can be provided to limit the
size of the corpora used.

create_tagger
[word count]

Creates a tagger and
populates it with data from
the CoNLL-2000 train data.
A word count can be
provided to limit the size of
the corpora used.

evaluate_tagger Evaluates the currently
loaded tagger.

exit Exits the program.

Drawing 1 SVM Classification optimization
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help
[command]

Shows either available
commands or information
about a command if
provided.

history Provides a list of executed
commands.

load_svm Loads a svm model from
provided filename or
svm.pkl if none given.

load_tagger Loads a tagger from
provided filename or
tagger.pkl if none given.

save_svm
[filename]

Saves a svm model to
provided filename or
svm.pkl if none given.

save_tagger
[filename]

Saves a tagger to provided
filename or tagger.pkl if
none given.

shell
[command]

Executes the provided
command in a spawned
shell.

tag text Tags the provided text
using the loaded tagger.
Also saves the output to the
file tagged.txt.

test Creates a tagger and a SVM
engine and then tags and
chunks a test text.

! [command] Same as the shell command.

7 Results

Building  on  the  baseline  (F-beta  =  79.99)
implementation by using n-tagger showed showed
some improvements that quickly tapered off with
tagger complexity. 

Using SVM on half the training set with C=64
and  γ=64 produced F-beta=80.99 when not using
context based features. When adding the previous
context  based  POS  tag  to  the  features  F-beta
improved to 86.60.

8 Conclusion

Although  my  results  are  not  that  great,  they
show that just adding some context data shows a
good  improvement.  Providing  more  an  better
features would give very good results.
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Requirements Analysis

Stephane Clinchant
ENSEEIHT

Lund University
stephane.clinchant@netcourrier.com

Abstract

This paper presents the attempts to adapt the
minimal edit cost algorithm for sentences in or-
der to compare two requirements. These re-
quirements are two short texts strongly related
we want to compare. What is similar ? What
is new ? are the questions we want to answer.

1 Introduction

One of the first and fundamental activities in
a software process is requirement analysis. The
system’s services constraints and goals are es-
tablished by consultation with system users and
defined in a manner which is understanbled by
boh users and developpement staff. Domain un-
derstanding , Requirement collection , Classifi-
cation , Conflict Resolution , Prioritization and
requirement validation are main activities in re-
quirement analysis. This project is related to
classification: this activity takes the unstruc-
tured collection of requirement and organized
them into coherent clusters. In market driven
software development there is a strong need for
support to handle congestion in the require-
ment enginneereing process. To meet the mar-
ket demands it is important to have an effective
and efficient requirement engineereing process
to deal with a numerous flow of incoming re-
quirements.

2 Aim of the project

This project was suggested by Obigo a mobile
phone software company. An analyst work on 2
sets of requirements: the old requirements and
the new requirements, which could be for exam-
ple :

Old: SMS messages may contain up
to 140 characters
New: SMS messages must contain
240 characters including ISO charac-
ters.

A part of the analysts’ work is spent on
matching pairs of old and new requirements and
identifying changes. His first task is to link sim-
ilar requirements, to detect requirements refer-
ring to the same need , functionnality. It is a
classification activity to find the structure and
the relations between the requirements. The
second task is to find the change , the new
constraints , the difference between the related
requirements. In the example, the important
changes here are may → must, 140 → 240 and
a new constraint: including ISO characters.

This project aims at improving requirement
analysis and saving time of Obigo’s analysts.
We focused on sequential sets of requirements
and compare the new and the old ones. To
streamline analysis , the following process was
proposed :

• Use the tool of Johan Natt och
Dag, ReqSimile to find the similar
requirements

• Find the difference, the change
between the pair of requirements
:this is the aim of this project.

The language processing project was to im-
plement an algorithm to detect and quantify
the changes between two similar requirements.
Thus, the analysts would be able to explore
quicly the sets of requirements, find relations
and detect the changes.

3 Minimun Edit Cost Algorithm and
Alignments

The idea to explore in order to compare two
short texts was to try to adapt the minimun
edit cost algorithm for sentences and provide
an alignment to compare them. Alignments
and the minimun edit cost algorithm (MCA)
are strongly related since the minimun edit cost
produce an alignment. A definition of an aligne-
ment could be a sequence of operation which

13



transforms a sequence of symbols (the source)
into an other (the target). Operations acts on
symbols , can be copy (of symbols), insertion,
deletion, substitution and have a cost. Letters
are the symbol type for the classical minimun
edit cost algorithm. A sequence of symbols is
a word and the algorithm measure the distance
between two words. Symbols can also be ADN
bases in order to compare genomes. In this
project symbols are words in the same language.
But what is important to keep in mind is that
an alignment is a way of matching elements of
the source with the target. Here is an example
of a possible alignment for the previous require-
ments

[copy(sms),copy(messages),subs(may,must),
del(up),del(to),subs(140,240),
copy(characters),ins(including),ins(iso),
ins(characters)]

The MCA is part of dynamic programming and
gives alignments with the minimal cost. It is
significant to underline the fact that there ex-
ists most of the time several possible align-
ments for one source and one target.The MCA
equations stand for the possibilities a sequence
source can be transformed into the sequence
target. Basically there are 3 ways to do this.
Suppose we have two sequences [a1, . . . , an] and
[b1, . . . , bn]. First we can suppress an and trans-
form [a1, . . . , an−1] into [b1, . . . , bn]. A sec-
ond way to proceed is : if an = bn or if we
substitute an by bn we only need to trans-
form [a1, . . . , an−1] into [b1, . . . , bn−1]. Lastly ,
if we know how to transform [a1, . . . , an] into
[b1, . . . , bn−1], we just need to insert bn.

More formally, if E is the edit cost of two
sequence and c(.) the cost of an operation The
minimun edit cost algorithm is defined by these
equations:

E([a1, , an], [b1, , bn]) =

min






E([a1, , an−1], [b1, , bn]) + c(del(an))
E([a1, , an−1], [b1, , bn−1]) + c(subs(an, bn))

E([a1, , an−1], [b1, , bn−1]) + c(ins(bn))

E([a1, , ak], [ ]) = k E([ ], [b1, , bk]) = k

The costs of operation in the classical algorithm
are

cost(ins) = 1 cost(del) = 1
cost(copy) = 0 cost(subs) = 2

To get the alignment , a matrix is filled with
the cost of intermediary transformed sequences.

Then , an alignment is obtained by a path in
this matrix.

4 Hypothesis

To investigate the adaptation of MCA , I first
limit my approach by not doing any linguistic
process but just to use and apply the the basic
algorithm to observe basic results. For exam-
ple, we could say that the insertion of the word
”and” costs zero because it does not bring sig-
nificant information in the new requirement.So
I did not try to tune this algorithm linguisti-
cally. One of the most important observation, is
that there are several possible alignments.When
I developped my algorithm, my goal was to con-
struct all the possible alignments and to choose
the best one with an heuristic.There is one sim-
ple reason for multiple alignment. In the ex-
ample of requirements, the word ”characters”
occurs two times in the new requirement. So
the ”character” from the old requirement can
be linked in two different places in the new re-
quirement.

5 Factorization

Another reason is if we use the classical MCA
we will obtain similar alignments which leads
to the same matching of words. If x and y are
two symbols, inserting x then deleting y is the
same than deleting y then inserting x which is
the same than substituting y by x.

ins(x), del(y) ∼ del(y), ins(x) ∼ subs(y, x)

We get the same matching of words but we are
only intereted in a reduced form, the short-
est alignment among its similarity class. So
I decided to suppress the substitution opera-
tion from the algorithm so that it produces
sequences of operations which are only inser-
tion, deletion or copy. The next step was to
factorize , to reduce the alignment in order to
find the set of possible and interesting align-
ment. copy(x), subs(y, w) is the same than
copy(x), ins(w), del(y) but the first form is the
best to keep. If we want to reduce an aligne-
ment, we have to consider more complicated
similarity forms. As I suppressed the substitu-
tion operation, I can obtain alignement whose
parts are such that:

ins(x1), del(y1), ins(x2), del(y2), . . . , ins(xk), del(yk)

I need to factorize it and the problem was there
was several way to do it. For example if we
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have:

ins(x1), del(y1), ins(x2), del(y2)

This can be factorized in two ways:

subs(y1, x1), subs(y2, x2)

ins(x1), subs(y1, x2), del(y2

and we can not know which form is the best. If
F is the Factorization function, the simple case
are

F (Copy :: tail) = Copy :: F (tail)

F (Ins :: Ins :: tail = Ins :: F (Ins :: tail)

F (Del :: Del :: tail = Del :: F (Del :: tail)

F (Del :: Ins :: a :: tail = Subs :: F (a :: q)

where a = Copy or Ins

F (Ins :: Del :: a :: tail = Subs :: F (a :: q)

where a = Del or Copy
The complicated case is whenever there is a
sequence of ins, del or a sequence of del,ins.
Wether the number of couple ins,del be pair or
not , there is always two possibilities to under-
stand and to factorize this sequence:

• Take the first pair of ins,del (or
del,ins) and group the other pairs
after. If the number of sequence is
unpair there is one operation left.

• Take the first operation and form
the first pair with the second and
the thrid operation. If the num-
ber of sequence is pair there is one
operation left.

6 Results

So I developped a component for reducing align-
ment and I obtained 18 factorized alignment for
the requirement example. I should have worked
on heuristic at this time but I developped a sim-
ple GUI to display alignment and the matching
of words with color codes. I had one idea about
a heuristic at this time: alignments wih inser-
tions at the end are more likely to be better
than the others because people tend to add new
elements at the end of a requirement when they
rewrite them.

Then, I ran my algorithm on real require-
ments from Obigo which were much longer and I
obtained something like 8 thousands alignments

! It was a exponential and combinatorial prob-
lem. To face this, I had to think to new ways
to proceed:

• The first idea is to ”to divide and conquer”
and split the requirement in sentences and
align sentences first and then align words.

• Drop the idea of finding the ”best” align-
ment among the set of all possible align-
ment but just take one alignment with an
heuristic.

I only had time to explore the second idea:
my heuristic was to favorize insertion at the end.
I had also a new idea : highlight the new words
in the new requirement. New words in the re-
quirement show the analyst which part of the
requirement has been changed and need to be
read. All the copy operation in the alignment
show what is identical in the requirements.

7 Conclusion

Aligning two sentences is a very difficullt task if
we do not take into acccount linguistic informa-
tion. In translation where they also align sen-
tences they exploit the structure of the sentence
and linguistic information to find an alignment.
But what the analyst is interested in , is to see
what part of the requirement are identical and
what is new. Taking one alignment is a sim-
ple and effective solution but there is work to
do on how to display graphically the difference
and the similarity of two text so that it is easy
to see for the human eye.
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Abstract 
 
Word sense disambiguation is the 
process of automatically clarifying the 
meaning of a word in its context. It has 
drawn much interest in the last decade 
and much improved results are being 
obtained.   

In this paper we take the so-called 
Lesk approach. In our case, definitions 
of the senses of the words to be 
disambiguated, as well as of the ten 
surrounding nouns, adjectives and 
verbs, are derived and enriched using 
the WordNet lexical database. 

Two possible implications of this 
project could be that the results are 
dependent on the characteristics of a 
test document and on the 
characteristics of glosses, which needs 
to be further investigated. The average 
precision performed worse (0.45) than 
baseline precision (0.60) which was 
based on always selecting the most 
frequent sense. However, the presented 
approach has several limitations: a 
small sample, and a big number of fine 
senses in WordNet, many of which are 
not that distinguishable from each 
other. The future work would include 
experimenting with different variations 
of the approach.  
  
1 Introduction 
 
Word sense disambiguation is the 
process of automatically clarifying the 
meaning of a word in its context. For 
example, the word contact can have  

 
 
 
nine different senses as a noun, and 
two different senses as a verb.  

Word sense disambiguation has 
drawn much interest in the last decade 
and much improved results are being 
obtained (see, for example, 
(Senseval)). It can be important for a 
variety of applications, such as 
information retrieval or automated 
classification (for an example of the 
latter, see Jones, Cunliffe, Tudhope 
2004).  

Different approaches to word sense 
disambiguation have been taken. Many 
are based on different statistical 
techniques. Some require corpora that 
are tagged for senses and others 
employ unsupervised learning. In this 
paper we take the so-called Lesk 
approach (Lesk 1986), which involves 
looking for overlap between the words 
in given definitions with words from 
the text surrounding the word to be 
disambiguated. In our case, definitions 
of the senses of the words to be 
disambiguated, as well as of the ten 
surrounding nouns, adjectives and 
verbs, are derived and enriched using 
the WordNet lexical database 
(WordNet). The sense definition 
chosen as correct is the one that has the 
largest number of words in common 
with the definitions of the surrounding 
words. A version of Lesk algorithm in 
combination with WordNet has 
recently been reported for achieving 
good word sense disambiguation 
results (Ramakrishnan, Prithviraj, 
Bhattacharyya 2004). 
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In this paper we conduct a pilot 
experiment, which is a part of a larger 
project that employs word sense 
disambiguation for improving accuracy 
of automated classification.  

In the following chapter (2 
Methodology) the approach is 
described in detail. Results are 
presented and the third chapter (3 
Results), and in the last chapter 
conclusions are given and the future 
work is suggested.  
 
2 Methodology 
 
2.1. Introduction 
In the paper a pilot experiment is 
conducted, that is a part of a larger 
project in which this word sense 
disambiguation approach would be 
applied for improving accuracy of 
automated classification. 
 The Lesk algorithm has first been 
implemented in its simple form by M. 
Lesk (1986). It is based on the 
assumptions that when two words are 
used in close proximity in a sentence, 
they must be talking of a related topic 
and, if one sense can be used by each 
of the two words to refer to the same 
topic, then their dictionary definitions 
must use some common words 
(Banerjee 2002, p 1). This approach 
involves looking for overlap between 
the words in dictionary definitions with 
words from the text surrounding the 
word to be disambiguated. The 
problem of this approach is that 
dictionary definitions often do not have 
enough words for this algorithm to 
work well, which can be overcome by 
using the WordNet lexical database 
(WordNet) (ibid.), because it contains 
different types of relationships between 
words, such as, for example, 
syononymy and hyper/hyponymy.  
 
 
 

2.2. Creation of glosses from 
WordNet 
 
In the research conducted by G. 
Ramakrishnan, B. Prithviraj and P. 
Bhattacharyya (2004), different types 
of relationships in WordNet have been 
experimented with. It showed that the 
best results are obtained when 
concatenating the descriptions of word 
senses with the glosses of its first- and 
second-levels hypernyms (ibid., p. 
218). We adopted their approach. For 
example, the word contact in WordNet 
has nine senses for the noun, and two 
senses for the verb: 

The noun contact has 9 senses in 
WordNet: 

 
1. contact -- (close interaction; "they kept 
in daily contact"; "they claimed that they 
had been in contact with extraterrestrial 
beings") 
2. contact -- (the state or condition of 
touching or of being in immediate 
proximity; "litmus paper turns red on 
contact with an acid") 
3. contact -- (the act of touching 
physically; "her fingers came in contact 
with the light switch") 
4. contact, impinging, striking -- (the 
physical coming together of two or more 
things; "contact with the pier scraped paint 
from the hull") 
5. contact, middleman -- (a person who is 
in a position to give you special assistance; 
"he used his business contacts to get an 
introduction to the governor") 
6. liaison, link, contact, inter-group 
communication -- (a channel for 
communication between groups; "he 
provided a liaison with the guerrillas") 
7. contact, tangency -- ((electronics) a 
junction where things (as two electrical 
conductors) touch or are in physical 
contact; "they forget to solder the 
contacts") 
8. contact, touch -- (a communicative 
interaction; "the pilot made contact with 
the base"; "he got in touch with his 
colleagues") 
9. contact, contact lens -- (a thin curved 
glass or plastic lens designed to fit over 
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the cornea in order to correct vision or to 
deliver medication) 

 
The verb contact has 2 senses in 

WordNet: 
 
1. reach, get through, get hold of, contact -
- (be in or establish communication with; 
"Our advertisements reach millions"; "He 
never contacted his children after he 
emigrated to Australia") 
2. touch, adjoin, meet, contact -- (be in 
direct physical contact with; make contact; 
"The two buildings touch"; "Their hands 
touched"; "The wire must not contact the 
metal cover"; "The surfaces contact at this 
point") 

 
For each sense, we take the 

description given in the brackets, e.g. 
for the seventh noun sense it is: 
(electronics) a junction where things 
(as two electrical conductors) touch or 
are in physical contact; "they forget to 
solder the contacts." 

Then we extract two nearest 
hypernym levels of the word. The 
resulting gloss for the seventh sense of 
the noun contact would be: 

 
contact, tangency --
 ((electronics) a junction where things (as t
wo electrical conductors) touch or are in p
hysical contact; "they forget to solder the c
ontacts") 
       => junction, conjunction --
 (something that joins or connects) 
           => connection, connexion, connect
or, connecter, connective --
 (an instrumentality that connects; "he sold
ered the connection"; "he didn't have the ri
ght connector between the amplifier and th
e speakers") 

 
Words in the form bank_building 

have been converted into their 
components, i.e. in this example into 
bank building for easier later 
comparison. 

Finally, while comparing, all words 
containing three characters and less are 
left out. This was done in order to 

leave out frequent words such as 
articles or pronouns; when there were 
more than one occurrences of a word, 
only one was retained. The final gloss 
for the seventh sense of the word 
contact would be: 
 
amplifier between conductors conjunction 
connecter connection connective 
connector connects connexion contact 
contacts didn't electrical electronics forget 
have instrumentality joins junction 
physical right solder soldered something 
speakers tangency that they things touch 
where 
 

The glosses were prepared using 
Prolog, since WordNet is available in 
Prolog (Obtaining WordNet). 
 
2.3. Pre-processing the documents 
Fifteen documents were selected and 
downloaded from the World Wide 
Web. They had to be prepared for the 
algorithm. First, they were converted 
into .txt format. Then they were pre-
processed into Penn Treebank (Penn 
Treebank project) tokens using a sed 
Unix script (Tokenizer.sed). The part-
of-speech tagger was MXPOST 
(MXPOST). Finally, regular 
expressions were used to put one word 
per line. 
 
2.4. Comparing for overlapping 
words 
From the pre-processed document, 
words to be disambiguated were 
extracted, together with senses of 
surrounding words. The surrounding 
words were simply five nouns or 
adjectives or verbs preceding the word 
to be disambiguated, and five nouns or 
adjectives or verbs following it. If a 
noun/adjective/verb was not in the 
WordNet, the next closest one was 
chosen. 

Every sense of the word to be 
disambiguated was compared to each 
sense of the surrounding words. A 
number of combinations was derived 
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and scores were assigned to them, 
based on the number of the 
overlapping words. For example, if a 
word to be disambiguated had two 
senses, and it was surrounded by two 
words, one having three different 
senses, and the other having two 
different senses, the number of derived 
combinations was 12, out of which six 
were for the first sense of the word to 
be disambiguated, and the other six 
were for the second sense of the word 
to be disambiguated. The sense chosen 
was the one in which group of six there 
was the combination with the highest 
score out of all the 12 combinations.  

 The Lesk algorithm itself was 
implemented in Prolog.  
 
2.5. Sample 
Three words to be disambiguated have 
been selected: bank, contact, and 
m/Mercury. Although all of these 
words have more than two senses, the 
aim of this pilot experiment was to 
disambiguate between the two major 
senses: 
 
bank:  

1) depository financial 
institution (two documents 
in the sample)  

2) sloping land, especially the 
slope beside a body of 
water (three documents in 
the sample) 

 
contact:  

1) close interaction between 
people (two documents in 
the sample) 

2) a junction where things (as 
two electrical conductors) 
touch or are in physical 
contact (three documents in 
the sample) 

 
 
 
 

m/Mercury:  
1) mercury: Hg, metallic 

element (three documents 
in the sample) 

2) Mercury: the planet. (two 
documents in the sample) 

 
For each word five documents have 

been manually selected, out of which 
two of them had one main meaning, 
and three another. 
 
3. Results 
 
On our small sample, the average 
precision performed worse (0.45) than 
baseline precision (0.60) which was 
based on always selecting the most 
frequent sense. However, this result 
should not be taken for granted, since 
the sample of three words and 15 
documents is too small for any 
trustworthy results. 
 Instead, we could use some 
qualitative analysis:  

1) The word bank has 18 senses in 
WordNet. The precision for all 
the five documents was 
relatively bad: 0.25, 0.16, 0.27, 
0.30, and 0.5. In all the 
documents the often assigned 
sense was that of a piggybank, 
which might have to do with 
the fact that its gloss contains a 
lot of frequent words, such as 
usually, with, that, from, some.  

2) The word contact has 11 senses 
listed in WordNet. The 
precision for the five 
documents was the following: 
0.08, 1, 0.6, 0.625, and 0.92. 
This good result is partly due to 
the fact that we merged 
together two rather closely 
related senses, that of contact as 
communicative interaction, and 
that of contact as close human 
interaction. We were able to do 
this since the main aim of the 
experiment was to distinguish 
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between two totally unrelated 
senses of contact (see 2.5). 
While in one example we 
obtained 23 correct senses out 
of 25 occurrences, in another 
only 3 out of 38 were correctly 
assigned and in this case the 
extracted senses were not 
related to the topic of electrical 
contact. 

3) The word m/Mercury has four 
senses listed in WordNet. The 
precision for the five 
documents was the following: 
0.82, 0.5, 0.66, 0, and 0.05. The 
three first numbers are quite 
good results and all refer to 
discovering the sense of 
mercury as a metallic element. 
Not-so-good results in one of 
the other two documents is due 
to the fact that the document 
was discussing the temperature 
of the planet of Mercury, which 
produces the third sense of the 
word mercury in WordNet, 
about temperature. 

 
4. Conclusion 
 
Two possible implications of this 
project could be that the results are 
dependent on the characteristics of a 
test document and on the 
characteristics of glosses, which needs 
to be further investigated. However, 
the presented approach has several 
limitations: a small sample, and a big 
number of fine senses in WordNet, 
many of which are not that 
distinguishable from each other. 

In order to determine which 
solution is best, the future work would 
include conducting experiments with: 
• WordNet preparation and 

document pre-processing (create a 
collection-specific stop-word list, 
apply stemming, do part-of-speech 
tagging on WordNet glosses, 
exclude examples from glosses 

which are in quotation marks, 
replace the ten-surrounding-word 
frame with a paragraph/sentence 
frame; experiment with different 
combinations of WordNet 
relations); 

• modify algorithm (the role of tfidf 
in precision, taking into account 
the number of words per gloss, 
experiment with different similarity 
measures); and 

• utilize WordNet Domains (Domain 
Driven Disambiguation), a file that 
contains synsets annotated by 
domain labels, such as Medicine, 
Architecture and Sport. 
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Abstract

Nowadays, hundred millions of SMS are sent every-
day all around the word and become common in
our everyday-life. Then, the efficiency of text entry
method in mobile phones is more and more impor-
tant. As a previous team project already worked
on, in order to improve it by using bigram predic-
tion, we decided to continue their work and improve
it. In this paper, we describe the system, which is
called HMS[3], and how we improved it. This im-
proved version will be called HMS2005. Firstly, the
code was reviewed to make it work in English or
in whatever language. Secondly, the code was re-
viewed to make it work quicker and usable. Finally,
we added a key, which stops the prediction and falls
back to T9 when typing. For the tests, we involved
7 international persons and measured the time and
the number of key pressed needed to entry a text.
We showed that keys pressed needed were reduced
of 20%, but time-consuming was increased of 15%.
However, we noticed a difference between people
who were or not trained by the new system, which
can false the final results. This could be measure
in good conditions of a real experience.

1 Introduction

To enter SMS with our mobile phones, we use to use
methods we are offered, like T9. But these are not
perfect yet and can be optimized to be more usable,
more flexible, more efficient, easier to learn, quicker
type a SMS message, with less stress etc.

We chose to work on this subject in order to im-
prove the way to write SMS messages. A previ-
ous team of 3 Swedish students (Hasselgren, Mont-
nemery, Svensson) have had already worked on it
in this course and their system was named HMS
[3]. We studied how they built it and how to im-

prove it. Our improved version is called HMS2005
and can be found as an applet at this address:
http://www.orbstation.com/hms2005.

After, we analysed the different methods already
existing and began to code.

2 Evolution of different meth-
ods

With a keyboard of 12 keys, we can measure the
efficiency of different methods using the number of
keystrokes per character or KSPC[4] and the time-
consuming to entry the text.

Since the beginning of SMS messages, several
predictive text entry methods were developed, in
order to improve the efficiency of the multi-press
method. In this method, the user has to press once
a key to type the first letter of the key, twice for the
second, three times for the third et cetera. It is still
used but requires more than one of keystroke per
character and takes time. We will present 3 other
predictive text entry methods.

2.1 T9, by Tegic

This method is a single-press method using uni-
grams. The user presses once key per character
and the program matches the sequence to words
in a dictionary. In many cases, only one word is
possible given the sequence, otherwise, a list with
other possibilities is suggested and the user chooses.
The KSPC is then reduced roughly to 1 and is less
time-consuming, whereas the beginning of using it
is quite disturbing. Many mobile phones use this
method nowadays.

But other implementations are iTAP by
Motorola[2] and eZiText by Zi Corporation[1],
which suggest the next word you intend to type.

1
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2.2 HMS (for Swedish), Lund Insti-
tute of Technology, Sweden

This method is a single-press method using uni-
grams and bigrams, i.e. two consecutive words[3].
It was developed by 3 students of LTH, Lund (Swe-
den), and uses context. Typing a sequence of
keys, the system considers the previous constant
word typed, matches it in the dictionary of bigrams
(which gives the most frequent words which can
follow this word), and gives in real-time the en-
tire word it could be. In this implementation, the
bigrams are always prioritized over the unigrams.
Available for Swedish, this method reduced KSPC
of 7% on SMS messages and 13% on News[3].

2.3 Other methods

There are other methods, like LetterWise[5] or
Less-tap[6].

LetterWise is a system that does not use a stored
dictionary of words, but a small database of pre-
fix information to disambiguate user keystrokes
(Eatoni Corporation, 2003). Its published KSPC
is 1.1500[5].

Less-tap method uses a remapped keyboard as
a complement for single-press or multi-press meth-
ods. Since the keyboard is built on the alphabetical
order, it does not take in account the frequency of
the most common characters used in different lan-
guages. For example in English, ”e” is the most
common character used, but is in the second place
on his key and shares it with ”d” and ”f”. The
keyboard could be remapped, mixing all characters
and their order, to reduce the KSPC required to
1.4412[6]. However, this proposal could be difficult
to be accepted by people who use to use the actual
keyboard.

3 Dictionary and corpus

3.1 Dictionary compilations

Our first aim was to make it work in English, and
independent of the language. To achieve this it
was important that the data files were stored in an
internationalizable and platform independent way.
Hence we, quite naturally, chose to use Unicode.
After that we collected a dictionary of English uni-
grams. We could have chosen between 2 dictionar-

ies available on the Oxford’s documents which are
publically available. The first was small (254 kb,
about 27000 words) and contained most common
abbreviations, places and names, but did not con-
tain all the inflected words. The second was big
(3 Mb, 10 millions words), and was a mixed file of
all Moby’s dictionaries available, with all inflected
words, abbreviations, places and names. The first
was too small to be used, not enough complete, and
the second was too big, requires too much memory
and given too many not common words. So we de-
cided to use one between both as a compromise. We
found a dictionary on the web (UK English wordlist
v1.01, from the website of Brian Kelk, Cambridge,
UK: http://www.bckelk.uklinux.net/) contain-
ing inflected forms, and we combined it with the
small one, containing most common abbreviations,
names and places. The final dictionary is now 686
kb for 67 485 words.

3.2 Corpus collection and statistics
calculation

A suitable corpus for text entry on mobile phones
should contain mostly everyday English. However,
must corpora are compiled from either news or lit-
erature and the language use from these two sources
can differ quite much from everyday use. There-
fore we decided to collect our own corpus. After
some contemplation we decided that Usenet con-
tains large volumes of text which quite close to ev-
eryday use. The problem with Usenet is that it
also contains a large amount of, for us, unwanted
content such as spam and binaries. However, cer-
tain news groups are more likely to contain usable
text than others and hence we decided to limit our
sampling to 118 subgroups of alt.politics, alt.society
and soc. From these groups we collected 57 181
messages over a period of nineteen days. This was
then compiled into a corpus of roughly ten million
words.

First the uni- and bi-gram statistics were cal-
culated from the corpus at runtime. Obviously
this slowed down the application considerably as it
could take over 2 minutes to compile all statistics
with all n-grams present, see section 3.3. In order
to avoid this lag when the application started it was
decided to precompute all statistics. This was done
through the use of a Python script which read in
the normalized corpus and created one data file for
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each desired n-gram, such as uni-, bi- and so forth.
In our case we decided to only use uni- and bi-grams
as the frequency of trigrams and higher was too low
to yield any noticable effect. The application and
its support scripts are however designed in such a
way that adding support for higher n-grams is easy
to do, see section 5.1.

3.3 Memory considerations

We noticed early on that this application requires
a lot of memory. As a matter of fact in our ini-
tial revisions of the dictionary and statistics files
it required up to 300 MB of RAM. It is important
to note here, also, that the memory requirements
are largely due to the fact that the data struc-
tures are written more with the aim of being easy
to understand and maintain rather than to opti-
mize memory consumption. Furthermore Java in
itself creates a fairly large overhead when it comes
to memory usage. However, we decided that we
needed to reduce the amount of data used in the
application. This was done by both limiting the
size of the dictionary to only include more common
words, less pronouns and so fourth. Furthermore a
frequency cut-off was applied to both the unigrams
and bigrams. Entities with a frequency of xx and
yy respectively were removed. This measure en-
sured that the application consumed less than the
96 MB limit which is standard for Java applets.

Naturally the reduction of the dictionary and the
cut-off reduces the accurary of both the uni- and
bi-gram prediction but it is our distinct impression
that it does not degrade the performance of the
application by a great deal. One would of course
have to conduct more thourough investigations of
this matter to draw a more firm conclusion. Fur-
thermore we believe that the fact that the applica-
tion can run without problems both as an applet
and from the command line is more important than
the accuracy gained from lowering the cut-offs and
increasing the dictionary size.

4 Combining bigram statis-
tics, prediction and T9

First, we made a system using bi-gram statistics,
prediction and unigram statistics at the same time,

for each key pressed. The bigrams were obvi-
ously prioritized over the unigrams. But a problem
was high-lighted: many times when typing a short
word, longer words were given instead of having
words with only the length of the number of key
pressed, because of the prediction. For example,
typing ”of” after ”no”, the words given before ”of”
were ”next”, ”need”, ”means”, ”news”, ”mention”,
”new”, ”mercy” and ”official”. Itincreased a lot the
number of KSPC, to go down in the list in order to
select it, whereas using T9, ”no” appears first in the
list. Then we decided to add a key, the ”yes” key,
which allows stopping the prediction and restricts
the length of words given to the number of key al-
ready pressed. In the previous example, pressing
this key would have reduced the list of words given
to ”me”, ”ne” and ”of”, because we pressed only 2
keys.

This kind of key is not natural at the beginning to
using it, but permits to combine advantages of both
HMS and T9 methods, i.e. prediction with bigrams
and statistics of unigrams without prediction.

Moreover, we added two checkboxes, which are
”prediction” and ”context” and work in real-time.
With them, the system is flexible and the user can
choose to use the different advantages of HMS. In
that sense, we can differentiate the 2 advantages
of HMS compare to T9. With both check-off, the
system works like T9. It is useful, then, to be able
to choose the right method for the right word. The
user can switch from one to the other when typing,
to take the best advantage of the different meth-
ods (for example, we will choose ”context-on” and
”prediction-off” to use T9 with context, or choose
”context-on” and ”prediction-on” to write a long
sentence in a good language, or choose ”context-
off” and ”prediction-off” for short words, et cetera).

Finally, we added a functionality usually well ap-
preciated by the users: the ability to learn. That
means that each time a word is selected, its fre-
quency is increased by 1. Then, more and more,
the most common words used by the user become
the first in the list and it is easier and quicker for
him, decreases the KSPC.

However, as the system is settled and reloaded
each time, it is not possible to save the scores of
each user.

3
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5 Implementation

As mentioned earlier one of our goals was to enable
the application to be as flexible as possible when it
comes both the depth of n-grams used and to have
structures that are language independent. Of these
the latter is the largest importance if this is do be
deployed in real use. This is achieved by making the
data structure in the application abstract enough
to allow for different key pad encodings without
having to rewrite any code. How this is done is dis-
cussed in section 5.1. One prerequisite for the data
structure to work in this manner is to be able to
translate a press on a button into a set of charac-
ters, e.g. the button labeled ”2” on the keypad, see
figure 1, represents the characters ”a”, ”b”, ”c” and
”2”. By reversing this, e.g. saying that ”a” maps
onto the button ”2”, we can encode a word as a se-
ries of key presses given a certain encoding scheme,
or key map. By stating that the buttons each have
an index and that the first button is ”1” with index
0. By using this the word ”hello” would in English
be encoded as the following sequence 3-2-4-4-5.

Another important aspect of any application is
its user interface. In our case There was not really
much choice as to how the application should look
as its task was to mimic the front, or user interface,
of a mobile phone and there is already a de facto
standard for this. Hence the GUI is laid out with a
text area above a keypad which the user can press
with the mouse. One addition is the list of proposed
words to the right of the text area and keypad.
Furthermore we added two checkboxes to turn word
prediction and context awareness on and off. The
user interface of HMS2005 can be seen in figure 1.

5.1 Data structure

The application stores its data about words and
their probabilities (unigrams) as well as bigrams in
a common structure, a word tree. In the tree the
nodes are connected by arcs which represents one of
the buttons labeled 1 through 9, see figure 1. Each
node also can contain a list of words which this
node is said to represent. Furthermore the tree can
optionally contain a link to a different word tree for
each word, more on this later. And last, and quite
naturally a node can have up to nine references
to subtrees. Hence if we take the example with
”hello” from above we would, starting from the

Figure 1: The user interface of HMS2005

root node, take the fourth arc followed third and
so forth. After the sequence has been followed we
would have reached the node containing the word
”hello”. With this solution word prediction just
becomes the task of compiling a list of words from
the subtree of the current node as well as the list
of words contained in the node.

We can use this basic structure to include bigram
information as well by, as hinted earlier, for each
word in a node also link to another word tree, the
bigram tree. When a word has been accepted by
the user the bigram tree corresponding to that tree
is stored. As the user types the next word the ap-
plication traverses both trees with the same input
and when the prediction lists are generated the list
from the bigram tree is prepended to the unigram
list. Of course this method could be repeated an
arbitrary number of times to provide which ever n-
gram depth desired. A schematic view of the data
structure can be seen in figure 2.
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Figure 2: The data structure used in HMS2005
with the path leading to ”hello” highlighted

The data for the application is stored as plain
text lists with one entity per line and where each
line consists of either just a word, for the dictionary,
or the frequency followed by one or more words
for uni- and bi-grams. When the application starts
these are added to the tree in a such a way that only
words in the dictionary are allowed, this to avoid
unwanted words from the corpus to enter the tree.
Of course this approach slow the loading process if
there are many unwanted words but as the loading
time was acceptable after cut-offs were applied, see
section 3.3, we decided to keep this approach as it
simplified our work.

The time consumption of this data structure de-
pends largely of the length of the words stored. Of
course going from one node to another can be done
in constant time hence going from the root node
to a certain node and finding a word within that
node can be done in O(n + m) time where n is the
length of the word and m is the number of words
within the destination node. When building a word
prediction list the application has to first visit each

node in the subtree and for each node a word list
has to be compiled consisting of the words in that
node concatenated with the words of that node’s
subtree. If we assume that adding a word to a list
is O(1) this phase will run in O(nm) time where n
is the number of nodes and m the number of words.
The next phase will be sorting the list according to
some criterion, usually frequency but it could also
be alphabetically, and depending on the sorting al-
gorithm used this can vary greatly. If we employ an
fairly efficient sorting algorithm this phase can be
done in O(n log n) time which would yield a total
running time of O(nm + n log n). This can be op-
timized further of course, for example storing the
words pre-sorted within the structure, but as the
aim of this implementation is clarity and demon-
stration rather than efficiency and speed this must
be considered adequate.

6 Evaluation

To evaluate our new method, we chose 2 factors of
measurement: number of KSPC and time to entry
the text.

We did first a ”different participants for the same
sentence” evaluation, i.e. each participant entries
the same sentence in order to compare between par-
ticipants, and secondly a ”same participant for dif-
ferent sentences” evaluation, i.e. each participant
entries 2 different sentences in order to compare
between sentences.

A total of 7 participants were involved, typing
firstly a sentence both in HMS and T9 (in this or-
der), and secondly another sentence in the same
way. The sentences were ”I study at the University
of Lund” and ”Hello I hope you’re fine and don’t
forget our meeting in Lund tomorrow morning”.

Typing 2 different sentences was important be-
cause for the first one, people were disturbing by
the new system, using it for the first time and try-
ing to learn how it worked. There were friendlier
with it for the second sentence.

The results were quite positive. Firstly, in terms
of keystrokes per character, we highlighted an im-
provement of 20% (that means that you need 20%
less key pressed to write the message). We can con-
sider it as an average because we kept all the mis-
takes done by the users, which sometimes increase
the KSPC instead of reducing it.

5

27



Secondly, in terms of time, we highlighted a
weakness of 15% (that means that you need 15%
more time to write the message). The problem
is that the system disturbs the user at the begin-
ning, mostly because of short words and because
you have to remember the letters you have already
typed.

Comparing trained and not trained people (both
of us and other users), we noticed that for the more
experienced users the time consumption of HMS
and T9 were roughly the same although the KSPC
for HMS was lower. Furthermore, we noticed a
big difference in time consumption when it came
to trained and untrained people. We measered a
200% speed increase for trained people and this can
probably be explained by the fact that as you get
used to using the bigram prediction you get more
confident that the system will predict the correct
word. Naturally this is probably also true for new
users of T9.

But the most important thing which reduces the
efficiency of the system is the length of words. HMS
reduces a lot the KSPC for long words but not for
short words. This can be seen in table 1.

word T9 HMS
tomorrow 8 kp 4 kp

in 2 kp 3 kp

Table 1: Key press Comparision

The problem is that when typing short words,
long words are proposed first and you have to press
one key more (the ”Yes” key or the ”T9” key) to
restrict the length or stop the prediction. This
increases KSPC and time consumption and could
be optimized. It can be seen from the following
two figures, figure 3 and figure 4, how the KSPC
changes as the word length increases.

7 Conclusions

As we have seen, we tried to improve the HMS sys-
tem, which is a predictive text entry method using
context. We first made it works in English, collect-
ing an English dictionary and a corpus of the closest
language from SMS language we could. After, we
improved it by adding a key which can stop the
prediction and come back to the T9 method. This

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5

4

 

K
S

P
C

Figure 3: Word length versus KSPC for HMS

key permits to take both advantages of HMS and
T9 methods when typing. Then we made the sys-
tem intelligent by learning the words the most used
by the user (without reload the system). After an
evaluation, we showed an improvement of 20% us-
ing the KSPC as the measurement, and a decrease
of 15% using the time as the measurement.

7.1 Improvements

But of course, this system can be optimized and im-
proved again. Firstly, to be closer to the existing
mobile phones, numbers, punctuation and special
characters could be added in the keyboard. This
could be used to do longer and more complex exper-
iments and could be closer to the reality. Secondly,
our results are not as closed to the reality as they
could be because of the corpus we used to calculate
the bigrams. We wanted to use free corpora of SMS
but none exists yet today, so we used corpora from
Usenet. This kind of corpora of SMS are collecting
by researchers just now, because the technology is
new and these corpora are needed to extend the re-
searchs. We found one corpus of english SMS from
Singapore, but not really useful because of strange
words or names sometimes. Thus, we think that
in a few years, more SMS copora will be available
for researchs and evaluation will be closer to the
reality.
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Figure 4: Word length versus KSPC for T9
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Abstract 

This report is the result of the project part 
of a course in computer linguistics. The 
assignment was to develop a java pro-
gram that tags proper nouns using statis-
tical methods. To do this, a Support 
Vector Machine was used and the main 
part of the project was to find out what 
parameters to send into the SVM to get a 
good result. 

To evaluate the system the precision and 
recall values of a corpus were calculated. 

1 Introduktion 

Syftet med denna rapport är att beskriva hur sta-
tiska metoder kan användas i ett system för att 
tagga egennamn i en text. En träningstext an-
vänds för att lära systemet vilka taggar som skall 
användas och i vilken kontext som dessa oftast 
befinner sig i. Informationen kan sedan användas 
för att tagga en liknande text. 

Till skillnad från tidigare arbete som ”Name 
Extraction in Car Accident Reports for Swedish”1 
används inga gazetteers2 eller regler som till ex-
empel reguljära uttryck. Detta ger främst de två 
fördelarna att systemet blir generellt och kan på 
så sätt användas i många olika sammanhang samt 
                                                           
1 Ett projekt som tidigare utförts på LTH i kursen ”Språkbe-
handling och Datalingvistik”, precis som detta projekt. Se 
referenser. 
2 Gazetteer – lista med ord och motsvarande tagg som sys-
temet har lagrad. 

att den implementerade koden blir mycket enkla-
re att felsöka och få översikt över. Koden med 
reguljära uttryck blev mycket svårhanterlig och 
det var mycket svårt att hitta fel samt att lägga till 
nya uttryck. Dock har även detta nya system ut-
vecklats för att fungera så bra som möjligt på 
texter om trafikolyckor, precis som tidigare 
nämnda arbete. Detta har påverkat en del val av 
parametrar som används för att känna igen kon-
texten för en viss tagg. 

Parametrarna som plockas ut från det ord som 
skall taggas och dess kontext matas in i LIBSVM 
som är ett programpaket för att känna igen möns-
ter. Uppgiften i projektet var att hitta de paramet-
rar som skulle matas in i LIBSVM för att få bästa 
möjliga resultat. 

Först kommer denna rapport nämna möjliga 
användningsområden för systemet och därefter 
beskrivs LIBSVM kortfattat. Sedan kommer de 
olika parametrarna som skickas in i detta pro-
grampaket behandlas noggrant och till sist görs 
analys av hur storleken på systemets träningskor-
pus påverkar resultatet samt en evaluering av 
korrektheten vid taggning som systemet produce-
rar. 
 

2 Bakgrund 

System för att tagga egennamn kan till exempel 
användas till program som behandlar texter och 
behöver information om de olika orden i texten 
för att sedan på något sätt kunna tyda vad me-
ningen betyder. CarSim3, som är ett text-till-
scenomvandlingsprogram för trafikolyckor, är ett 
exempel på program som har användning av att 
                                                           
3 Pierre Nugues, 2004. Se referenser. 
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veta vilka ord som är egennamn. Då kan det ta 
reda på vem som är inblandad i olyckan, var den 
inträffade och så vidare. 
 

3 LIBSVM 

LIBSVM bygger på Support Vector Machines 
som är en statistisk metod för att känna igen 
mönster. För att klassificera försöker SVM hitta 
en hyperyta i rymden av möjliga indata. Denna 
hyperyta försöker dela de positiva exemplen från 
de negativa. Delningen görs på ett sådant sätt att 
hyperytan får så långt avstånd som möjligt till de 
närmsta av de positiva och negativa exemplen. På 
så sätt kan en klassificering göras korrekt för 
testdata som är nära men inte identisk till trä-
ningsdatan. För mer information om SVM se 
”Chih-Chung Chang and Chih-Jen Lin, 
LIBSVM: a library for support vector machines, 
2001”, ”A Tutorial on Support Vector Machines 
for Pattern Recognition” och en hemsida från 
Microsoft Research CCSP Group på adressen 
http://research.microsoft.com/~jplatt/svm.html. 

 

4 Parametrar 

För att få idéer på vilka parametrar som kan ge 
bra resultat har bland annat artiklarna ”Introduc-
tion to the CoNLL-2003 Shared Task: Language-
Independent Named Entity Recognition”, ”Na-
med Entity Recognition through Classifier Com-
bination” och ”Named Entity Recognition with a 
Maximum Entropy Approach” studerats. Dessa 
användes som en utgångspunkt för vilka paramet-
rar som med stor sannolikhet borde ingå. Därefter 
har felaktiga taggningar i resultatet studerats för 
att komma på nya parametrar som skulle kunna 
användas. Dessa har sedan testats för att se om de 
gör en positiv eller negativ inverkan på resultatet 
för att kunna avgöra om de skall användas re-
spektive förkastas. På så sätt har en iterativ me-
tod använts för att komma fram till slutresultatet. 

I Tabell 1 finns en sammanställning av de pa-
rametrar som gjorde en positiv inverkan på resul-
tatet och därför ingår i systemet. 
 

Tabell 1. De olika parametrarna som används och deras relativa inverkan på resultatet. Vid framtag-
ningen av värdena i tabellen användes en träningskorpus på 9502 ord och en testkorpus på 3805 ord. 
Värden större än 1 betyder att då parametern används så ökar värdet. Om en parameter är bra så skall 
den alltså ha värden som är större än 1 i kolumnerna ”Korrekta taggningar”, ”Precision” och ”Recall” 
medan värdet för ”Feltaggningar” skall vara mindre än 1 (förklaring till precision och recall finns i 
stycke 6). 

Parametertyp 
Korrekta 

taggningar: Feltaggningar: Precision: Recall: 
Ordets suffix 1,12 0,82 1,10 1,12 
     - Längden 4 1,02 0,93 1,03 1,02 
     - Längden 3 1,01 1,01 0,99 1,01 
     - Längden 2 1,03 0,95 1,02 1,03 
     - Längden 1 1,01 0,98 1,01 1,01 
Föregående och efterföljande ord 1,07 0,84 1,11 1,07 
     - Ordet innan föregående 1,00 0,95 1,02 1,00 
     - Föregående ord 1,02 0,95 1,02 1,02 
     - Efterföljande ord 1,04 0,93 1,03 1,04 
Inledande stor bokstav 1,06 0,89 1,02 1,06 
Ordklassinformation 1,04 0,93 1,03 1,04 
Frasinformation 1,03 0,95 1,02 1,03 
Efterföljande är ett nummer 1,03 0,95 1,01 1,03 
Efterföljande ord har stor bokstav 1,04 0,91 1,05 1,04 

32



4.1 Ordets suffix 

Suffix av det ord som skall taggas gav positivt 
resultat upp till längden fyra. Hela ordet används 
även som parameter men suffix kan få fram gene-
rella mönster på orden för de olika taggarna som 
inte enbart själva ordet kan. En möjlig anledning 
till att suffix av längden fem inte gav något för-
bättrat resultat är att inte träningsdatan var till-
räckligt omfattande för att LIBSVM skulle kunna 
känna igen mönster av längden fem. 

Suffix av längden ett (sista bokstaven) skulle 
man kunna tro var för generell för att användas. 
Dock var så inte fallet som visas i Tabell 1. Detta 
kan förklaras med samband som till exempel att 
gatunamn ofta slutar på bokstaven n vilket är sis-
ta bokstaven i ”gatan” och ”vägen”. 

Suffix av längden två hade en större inverkan 
på resultatet men någon direkt förklaring till detta 
är svårt att ge. Dock är ju denna mindre generell 
än endast en bokstav vilket gör att mönster är 
lättare att upptäcka. 

Suffix av längden tre är bra för att upptäcka 
mönster i efternamn vilka ofta slutar på ”son”, 
som till exempel ”Andersson” och ”Johnson”. 

Suffix av längden fyra gav även ett positivt 
resultat. En möjlig förklaring till det positiva re-
sultatet är till exempel samband som att städer 
ofta slutar på ”borg” som i ”Helsingborg” och 
”Ludviksborg”. 

Suffix av längden fem gav som tidigare inget 
förbättrat resultat. Dock skall det observeras att 
så är fallet när även alla de andra suffixen an-
vänds. Om alla de andra ej används medan suffix 
av längden fem används så ger denna en positiv 
inverkan på resultatet jämfört med om inget suf-
fix alls används. 
 

4.2 Föregående och efterföljande ord 

För att kunna utnyttja ett ords kontext används 
föregående och efterföljande ord som parametrar. 
Dessa medför att programmet tar hänsyn till i 
vilket sammanhang som ordet befinner sig i. 

Testning har visat att systemet fungerar bäst då 
de två föregående orden var för sig samt det ef-
terföljande ordet används som parametrar. Trä-
ningsdatans begränsade storlek kan ses som en 
anledning till att systemet inte fungerar bättre 
med ännu fler föregående och efterföljande ord 
som parametrar. Om det skall vara möjligt att se 

mönster på ett längre avstånd från ordet som skall 
taggas så måste systemet tränas mer eftersom 
orden får ett mindre och mindre samband med 
ordet som skall taggas ju längre avståndet är. 

Ett exempel på en mening där kontexten har 
stor betydelse är ”Mannen och kvinnan åkte till 
Malmö.” som innehåller typiska ord för en viss 
sorts tagg innan ordet ”Malmö”. Om orden 
”åkte” och ”till” befinner sig innan ett ord är det 
stor sannolikhet att ordet skall taggas med en 
tagg som LOCATION eller CITY, beroende på 
vilka taggar som systemet har tränats med. Ett 
exempel på en ytterligare mening är ”Jag vill ha 
glass, sade Johan” där ordet ”sade” innan ”Jo-
han” kan hjälpa systemet att tagga rätt eftersom 
ord efter ”sade” med stor sannolikhet skall ha en 
tagg av typen PERSON. 

Ett försök med bigram som parameter, det vill 
säga de två föregående orden tillsammans, gjor-
des även med ett misslyckat resultat som följd. 
Att skicka in orden var för sig som parametrar 
gav mycket bättre resultat. Återigen borde detta 
bero på träningsdatans storlek eftersom det finns 
många fler variationer av bigram än av orden var 
för sig. 

Efterföljande ord kan även ha stor betydelse 
för att systemet skall ha möjlighet att tagga rätt. I 
meningar som ”De med svårast skador flyttades 
till Falu lasarett.” kan system har svårt att tagga 
”Falu lasarett” som LOCATION om det inte vet 
om att ordet ”lasarett” kommer efter ”Falu”. 
Tabell 1 visar även att det efterföljande ordet in-
verkar mer på resultatet än de två föregående var 
för sig. 

 

4.3 Inledande stor bokstav 

En typisk egenskap för ett egennamn är att det 
inleds med stor bokstav. Därför används en pa-
rameter som kan anta värdena ”true” och ”false” 
som anger om ordet inleds med stor bokstav eller 
inte. Tabell 1 visar dock att parametern inte har 
så stor betydelse som man skulle kunna tro. Detta 
beror till största del på att den inte säger så 
mycket vilken tagg som skall sättas utan mer att 
någon tagg överhuvudtaget skall sättas. Att ett 
ord inleds med stor bokstav avslöjar inte om det 
är en stad eller ett personnamn. 

Något som också måste observeras är att alla 
egennamn inte inleds med stor bokstav. Till ex-
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empel ordgruppen ”riksväg 13” som möjligtvis 
skall taggas som ROAD har inte stor bokstav i 
något av orden. 

 

4.4 Ordklassinformation 

Om texten som skall taggas även innehåller in-
formation om ordets ordklass hjälper detta även 
systemet att tagga korrekt. Ett egennamn har då 
oftast ordklasstaggen ”pm.nom” vilket hjälper 
systemet på samma sätt som inledande stor bok-
stav. Dock kan det förekomma fel i ordklasstag-
garna eftersom dessa antagligen är satta av en 
automatisk ordklasstaggare som inte är hundra-
procentig. Detta har nackdelen att man får in fler 
felkällor i resultatet men som Tabell 1 visar så 
har denna parameter ändå en positiv inverkan på 
resultatet. 

Den positiva inverkan som ordklassinforma-
tionen för med sig måste sättas i relation till den 
extra beräkningskraft som krävs för att köra ord-
klasstaggaren. Resultatet visar att ordklassinfor-
mationen inte har en så pass stor inverkan att den 
är nödvändig och därför kan systemet klara sig 
utan den då den ej finns tillgänglig. 

 

4.5 Frasinformation 

Precis som med ordklassinformationen kan tex-
ten som skall taggas först gå igenom en frastyp-
taggare som sätter ut frastypsinformation. 
Eftersom egennamn oftast taggas som substantiv-
fras kan detta hjälpa systemet att identifiera att en 
tagg skall sättas, dock ej vilken. Frastypinforma-
tionen medför även den att det finns en felkälla 
eftersom en frastyptaggare inte heller alltid tag-
gar korrekt. Denna parameter förbättrar ändå re-
sultatet, dock är inte förbättringen inte lika tydlig 
som med ordklassinformationen. 

Precis som med ordklassinformationen så visar 
resultatet i Tabell 1 att den extra beräkningskraft 
som krävs för att sätta ut frasinformationen inte 
alltid är motiverad. Frasinformation är alltså inte 
heller en nödvändighet men har en positiv inver-
kan på resultatet. 
 

4.6 Efterföljande är ett nummer 

Systemet kontrollerar om den grupp av tecken 
som befinner sig efter ordet som skall taggas är 
ett nummer. Denna information används som en 
parameter som kan anta värdena ”sant” eller 
”falskt”. Taggen används för att kunna märka 
upp taggar som ROAD där dessa ofta skrivs som 
till exempel ”riksväg 13”. För att systemet skall 
ha möjlighet att tagga ”riksväg” korrekt behövs 
informationen att ”13” är ett nummer. Detta är en 
parameter som är lite specialanpassad till den 
korpus med trafikolyckstexter som användes för 
att träna och testa systemet och har ingen märk-
bar betydelse på andra typer av korpus. 

 

4.7 Efterföljande ord har stor bokstav 

Denna parameter ökar systemets förmåga att tag-
ga personnamn korrekt. Till exempel ”Joakim” i 
”Joakim Palmkvist” har större sannolikhet att få 
rätt tagg när denna parameter används. Däremot 
så hjälper den ju inte när till exempel endast för-
namnet finns utskrivet i texten. Precis som para-
metern med kontrollen om efterföljande 
teckengrupp är ett nummer, så består även denna 
av antingen värdet ”sant” eller ”falskt” då efter-
följande ord har inledande stor bokstav respekti-
ve ej inledande stor bokstav. 

 

4.8 Föregående ords egennamnstagg 

Innan denna parameter användes hade systemet 
stora problem med det gjorde konstiga taggningar 
som till exempel för ”Udo Theil”: 

 
Udo I-PERSON 
Theil I-CITY 
 

Det vill säga taggningar som skulle innefatta fle-
ra ord fick istället olika taggar för de enstaka or-
den. Genom att även använde föregående ords 
tagg som parameter i systemet kunde taggningens 
kvalitet öka avsevärt vilken syns tydligt i Tabell 
1. Det är ju mycket mindre sannolikt att två ord 
efter varandra har olika taggar än att de båda har 
samma tagg. Då denna parameter används får 
”Udo Theil” sin korrekta taggning, det vill säga: 

 
Udo I-PERSON 
Theil I-PERSON 
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4.9 Kommentarer till val av parametrar 

Tester har även gjorts med lite mer avancerade 
parametrar. Försök att komma till rätta med pro-
blemet att personnamn inte fick någon tagg då 
inte både för- och efternamn fanns utskrivet har 
gjorts, tyvärr med misslyckat resultat. Denna pa-
rameter använde det faktum att då ett namn 
nämns i en artikel så står nästan alltid hela nam-
net utskrivet först, det vill säga med både för- och 
efternamn och dessa kunde systemet tagga kor-
rekt som PERSON. Dessa namn sparades sedan 
undan i en lista och för varje ord som skulle tag-
gas så kontrollerades det mot denna lista för att 
se om det tidigare taggats som namn. I så fall fick 
parametern värdet ”sant”, annars värdet ”falskt”. 
Resultatet blev dock att många taggningar där 
både för- och efternamn fanns med nu istället 
blev felaktiga och systemet blev inte heller bättre 
på syftet med taggen – att tagga personnamn som 
endast bestod av för- eller efternamn.  

Orsaken till detta är antagligen att parametern 
inte alltid är antingen ”sant” eller ”falskt” då sy-
stemet tränas eftersom första gången namnet fö-
rekommer är den ”falskt” och nästa gång är den 
”sant”. På så sätt förvillar istället parametern ef-
tersom den inte har samma värde för alla ord som 
skall taggas som PERSON. 

En lösning på problemet hade varit att inte gå 
via SVM och använda informationen som en pa-
rameter utan att själv tagga ord som PERSON då 

de finns med i listan. Då förloras dock syftet med 
systemet eftersom det inte längre blir generellt 
och all information som finns i de andra paramet-
rarna tas ingen hänsyn till. Det behöver ju inte 
vara ett personnamn bara för att det finns med i 
listan. Till exempel ”Berg” kan först finnas med i 
”Johan Berg” och sedan inleda en mening som 
”Berg är vackra att se på!”. 

Läxan som kan läras av detta är att man inte 
skall anstränga sig för mycket vid val av para-
metrar och hitta på komplicerade samband, utan 
ta med generella saker som finns i ordets närhet, 
det vill säga den typen av parametrar som finns 
med i Tabell 1. 

 

5 Träningskorpusens storlek 

Det är inte bara parametrarna som har en stor 
betydelse för hur resultatet blir utan även storle-
ken på träningskorpusen har en stor inverkan. 
Detta illustreras i Figur 1 och Figur 2 som visar 
hur antalet korrekta och felaktiga taggningar be-
ror av antal träningsord respektive hur precision4 
och recall5 beror av antalet träningsord. 

I figurerna syns att kurvorna fortfarande vid 
190000 ord inte har stabiliserat sig vilket betyder 
att en ännu större träningskorpus hade gett ett 
bättre resultat. Tyvärr fanns inte större tränings-
korpus tillgänglig för att vidare utforska hur stor 
den måste vara för att en ytterligare storleksök-
                                                           
4 Vad precision betyder beskrivs i stycke 6 
5 Vad recall betyder beskrivs i stycke 6 
 

 
 

Antal korrekta och felaktiga taggningar som 
funktion av antal träningsord
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Figur 1. Visar hur antalet korrekta och felaktiga taggningar beror av träningsdatans 
storlek 
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ning inte skall påverka resultatet. 
 

6 Resultat 

För att kunna evaluera systemet har en testkorpus 
med trafikolyckstexter, som innehåller 3805 ord, 
taggats manuellt vilket gav 182 taggar. Denna 
taggning jämfördes sedan med systemets produ-
cerade taggning. Innan dess tränades systemet 
med en annan trafikolyckskorpus innehållandes 
9502 ord och 436 taggar. Dock var denna trä-
ningskorpus maskinellt taggad vilket gör att det 
inte är helt korrekt och detta påverkar systemets 
resultat negativt. Dessutom är det inte tillräckligt 
stort för att systemet skall ha en chans att lära sig 
de olika taggarnas egenskaper. Med en större 
korpus som är korrekt taggat hade alltså resultatet 
varit bättre.  

Vid utvärderingen används följande vokabu-
lär: 
 

• Answer file – texten, maskinellt tag-
gad av vårt program.  

• Key file – texten, manuellt taggad. 
Denna text utgör definitionen på kor-
rekt taggning.  

• Recall – antalet korrekta taggar i 
Answer file dividerat med det totala 
antalet taggar i Key file.  

• Precision – antalet korrekta taggar i 
Answer file dividerat med det totala 
antalet taggar i Answer file. 

 
Systemet gav följande resultat: 

 
Antal korrekta taggningar: 
144 
Antal feltaggningar: 55 
Precision: 77.84% 
Recall: 79.12% 
 

Eftersom kvaliteten på den träningskorpus som 
användes inte var den bästa kan inte alltför stora 
slutsatser dras av detta resultat. Det ger dock en 
fingervisning på hur pass bra systemet är. 

Systemet har även testats på en korpus som in-
nehåller ekonomiska texter på engelska. Trä-
ningskorpusen innehöll ca 190000 ord och 
testkorpusen innehöll ca 23000 ord. Tyvärr var 
både tränings- och testkorpus maskinellt taggade 
vilket återigen gör att resultatet endas kan ses 
som en fingervisning. Då erhölls följande resul-
tat: 

 
Antal korrekta taggningar: 
1001 
Antal feltaggningar: 383 
Precision: 77.96% 
Recall: 76.41% 

 
Resultatet visar att systemet även fungerar väl på 
texter skrivna i andra språk än svenska samt 
andra typer av texter. Som en jämförelse kan man 
studera resultatet från CoNLL-2003 Shared Task6 
                                                           
6 Se referenser. 

Precision och recall som funktion av antal 
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Figur 2. Visar hur precision och recall beror av träningsdatans storlek 
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som gick ut på att tagga egennamn. Där fick det 
bästa systemet resultatet 

 
Precision: 88.99% 
Recall: 88.54% 
 

på engelska texter vilket är ett betydligt bättre 
resultat. Dock använde detta system, precis som 
de flesta andra som ställde upp, gazetteers vilka 
ej skulle användas i detta system eftersom det 
skall vara så generellt som möjligt. 

 

7 Slutsatser 

Vikten av valet av bra parametrar kan inte nog 
påpekas när man skall utveckla ett system som 
använder en statistisk metod som detta system. 
För att ta fram parametrar som fungerar bra mås-
te man testa sig fram. Dock kan man alltid ha en 
tanke i bakhuvudet som säger att generella para-
metrar som ligger i ordets kontext fungerar bäst. 
Man skall inte försöka hitta komplicerade sam-
band. 

Systemet som implementerades med hjälp av 
enbart statistiska metoder får tyvärr anses inte 
vara tillräckligt bra för kommersiell användning. 
Då måste precision och recall säkert upp till 97 % 
innan det kan anses intressant. Dit har systemet 
en lång väg. För att komma dit måste antagligen 
knep som gazetteers användas på bekostnad att 
systemens generallitet.  

 

Tack 

Jag vill tacka Richard Johansson för implemente-
ringen av interface till LIBSVM, allmänna tips 
samt stödet under projektets gång. 
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Abstract 
This paper presents some statistics on an 

implementation of Joakim Nivre's algorithm. The 
implementation in Prolog have a coverage of 100% 
because of the backtracking mechanism in Prolog. 
The rank of the correct graph within all produced 
graphs are not very good with this implementation. 
This paper also shows that the rank can be 
improved at the cost of the coverage. 

 

1 Introduction 
How hard is it to find the correct dependency 

graph from Swedish sentences? I will investigate 
an implementation of the algorithm described by 
Nivre [1]. The implementation itself was made by 
Pierre Nugues at Lunds Tekniska Högskola. I will 
try the implementation on an annotated Swedish 
Treebank called Talbanken. Talbanken is tagged 
using a probabilistic part-of-speech-tagger trained 
on the Stockholm Umeå Corpus (SUC). Talbanken 
consists of about 5000 sentences. 

2 The algorithm. 
Nivre's algorithm uses a basic shift reduce 

algorithm extended with some more parse actions: 
• Left arc - Adds an arc from head to left 

dependent if there is a dependency rule that 
allows it. 

• Right arc - Adds an arc from head to right 
dependent if there is a dependency rule that 
allows it. 

• Reduce - Pops the node on top of the stack 
if it has a head. 

• Shift - Pushes next word of the input onto 
the stack. 

The algorithm makes sure that the graph will be 
acyclic, connected, and projective. The algorithm 
will always find a graph for any sentence provided 
there are lexical rules for all dependencies in the 
sentence. The algorithm and its different actions 
are further described in Nivre [1]. 

 

2.1 The implementation of the algorithm. 
The implementation is done in Prolog 

programming language. Prolog uses a backtracking 
mechanism that allows the algorithm to produce a 
new alternative graph until the correct one is found 
or all alternatives are found. For example; if the 
dependency between two words can be determined 
by two different rules, Prolog will try the first rule, 
and if it does not produce a correct graph it will go 
back and try the other rule. 

3 Investigation of the implementation. 
The idea was to see if the algorithm always 

could find the correct graph. Prolog uses a 
backtracking mechanism that makes it possible to 
find several different graphs that can be generated 
from a single sentence. It would be interesting to 
see the rank of the correct graph within all the 
generated graphs. 

I started with a Treebank called Talbanken. It's 
an annotated Treebank with Swedish sentences. It 
contains information like index and class of the 
words, index for the sentence, and dependencies 
between words. I used that information to extract 
the dependency graph from Talbanken and 
compare that graph with the graph produced by 
nivre's algorithm. I wrote a perl script that extracts 
the sentences from Talbanken into a file that can 
easily be read by prolog, and I made a script that 
extracted the graphs as well. The algorithm needs a 
set of dependency rules that covers the 
dependencies in the sentences. If a rule was 
missing you would not be able to find the correct 
graph. Since all information is available in 
Talbanken, I wrote a perl script that extracts all the 
dependency rules as well. 

 
The test was then done in prolog. The testing 

program reads the first sentence and then uses the 
implementation of Nivre's algorithm to produce all 
possible dependency graphs. It then compares this 
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list of graphs with the dependency graph taken 
from Talbanken and writes the rank of the correct 
graph to a result file. If no correct graph was 
found, the rank would be set to zero. 

 
I immediately ran into problems with stack 

overflows. Making prolog do a list containing all 
possible graphs for a sentence required a lot of 
memory, especially if the sentence was long. I 
made changes in all three perl scripts so you could 
set a maximum sentence length. It would now be 
easy to only extract sentences up to a specific 
length along with the corresponding graphs and 
dependency rules. 

Tests with sentences of maximum length five 
showed that the coverage (number of correct 
graphs found) was 100%, and 74% of the correct 
graphs was ranked number one. 

 
I found that some of the sentences in Talbanken 

were only one word long. The reason is that there 
are for example titles inside the annotated text in 
Talbanken. One-word sentences will of course 
always produce the correct dependency graph since 
it is equal to an empty list. I decided to implement 
an option to skip over one-word sentences when 
extracting information. With the same sentences 
but excluding those consisting of only one word, I 
still got 100% coverage, but only 47% of the 
graphs were ranked number one. So I will from 
now on exclude one-word sentences. 

 
I tried with maximum sentence length ten, but it 

was not able to complete the algorithm due to 
memory shortage. The number of graphs generated 
from a sentence with ten words would be huge. I 
now understood that I would not be able to get 
ALL the graphs. I needed a way to limit the 
calculations. I started looking in the dependency 
rules direction, since every new rule would 
generate a large amount of graph combinations. 

 
I experimented with the 1098 first sentences 

from Talbanken and got these results: 
Maximum sentence length eight generated 252 

sentences and graphs, and 110 rules. 
100% coverage and 18% of the graphs ranked 

number one (average rank 387). 
 
The same 252 sentences and rules extracted for 

sentences of maximum 7 words, I got 93 rules, 
93% coverage and 20% of the graphs ranked 
number one (average rank 233). 

 
The same 252 sentences and rules extracted for 

sentences of maximum 6 words, I got 84 rules, 

88% coverage and 22% of the graphs ranked 
number one (average rank 202). 

 
The result shows that if you have fewer rules the 

rank will get better, but the coverage will decrease. 
 
Since talbanken is tagged by a probabilistic 

POS-tagger, some of the dependencies might be 
incorrect. Statistically, faulty dependency rules 
would be more common for longer sentences than 
for shorter. 

 
The dependency rules can be either left or right 

oriented and when checking for a matching rule 
inside the algorithm you will try both rules. This 
generates a lot of backtracking in prolog, and 
requires a lot of memory. Extracting the 
dependency rules from shorter sentences will 
provide the algorithm with fewer rules to match. 
This will of course lower the coverage of the 
algorithm since some rules might be missing 
completely, but it will increase the speed, lower the 
memory usage of the implementation, and increase 
the rank of the graphs that are correct. 

 
When you build a sentence you first make the 

core of the sentence, for example 'bilen röd'. Then 
you apply different rules to make the sentence 
more readable, for example linking the noun and 
adjective like 'bilen är röd'. You also add 
determiners like 'Den bilen är röd'. One of the last 
things you do before the sentence is complete is 
topicalization to restructure the phrases like 'bilen 
den är röd'. That would generate a dependency 
rule; 'From noun to determiner where determiner is 
to the right of the noun'. This looks like a strange 
rule, and it's not common at all. It would cause the 
implementation in prolog to make a lot of extra 
graphs for all sentences containing determiners. 
Topicalizations are more common in longer 
sentences than in shorter ones. This shows why the 
rank can be improved at the cost of the coverage 
by extracting the dependency rules from shorter 
sentences only. 

 
Another way of limiting the number of 

dependency rules would be to split up the data. 
Using smaller chunks of text from Talbanken, I 
suspected I could increase the rank. I also 
suspected that the coverage would go down since 
each rule would percentage wise be a larger part of 
the rules needed for 100% coverage. 

 
With 500 sentences from Talbanken and 

maximum sentence length eight, the perl script 
generated 102 sentences and 83 dependency rules. 
The test result I got now was: 
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100% coverage, 22% was rank one, average rank 
was 344. The same sentences but with rules 
extracted for sentences of maximum 7 words, I got 
61 rules, 84% coverage, 31% was rank one, 
average rank was 91. The same sentences but with 
rules extracted for sentences of maximum 6 words, 
I got 54 rules, 79% coverage, 35% was rank one, 
average rank was 81. 

 
With 200 sentences from Talbanken and 

maximum sentence length eight, the perl script 
generated 38 sentences and 42 dependency rules. 
The test result I got now was: 100% coverage, 39% 
was rank one, average rank was 88. The same 
sentences but with rules extracted for sentences of 
maximum 7 words, I got 32 rules, 79% coverage, 
53% was rank one, average rank was 38. The same 
sentences but with rules extracted for sentences of 
maximum 6 words, I got 25 rules, 66% coverage, 
60% was rank one, average rank was 23. 

 
Ultimately, you could extract the rules 

dynamically from Talbanken, giving a set of rules 
for each sentence. The algorithm would then use 
only the rules attached to a specific sentence. That 
would give 100% coverage and a very good rank. 
Of course this would not apply to real life cases, 
because you then need to have all rules available at 
all times, but it would give a good idea on how 
robust the algorithm is. 

 
There are more ideas on how to improve the 

rank of the dependency graphs. One of them would 
be to implement a probability check for the 
dependency rules within the algorithm. If the 
algorithm had two rules to choose from, it would 
choose the one which are most often used. 

 
Talbanken is tagged with features in addition to 

the part-of-speech tag. The feature is more granular 
than the part-of-speech tag and describe for 
example tense (present, preterite, supinum, and 
infinite) and degree (positive, comparative, and 
superlative). Keeping these features will make 
each dependency rule apply to less words. It would 
therefore be interesting to investigate the rank 
when keeping the features within the dependency 
rules. 

4 Conclusion 
The implementation of Nivre's algorithm is very 

robust and will always produce a graph provided 
that there are dependency rules covering the word 
classes in the sentences. The correct graph will 
always be produced because of the backtracking 
mechanism in prolog. Too many rules or faulty 

rules will make the implementation produce lower 
(worse) ranked graphs. 
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Appendix: 
Users manual. 
 
Files needed: 
conv_xml2sent.perl 
conv_xml2graph.perl 
conv_xml2drules.perl 
calcResult.perl 
nivre_2.pl 
readfiles.pl 
TalbankenMalt.xml 
 
TalbankenMalt.xml can be downloaded from 

http://w3.msi.vxu.se/~nivre/research/talbanken.htm
l 

 
Make sure you have an untouched version of the 

file TalbankenMalt.xml or at least a part of the 
original file that contains the sentences you wish to 
work with. 

 
If you want to limit the tests to only work with 

sentences up to a specific length, you need to edit 
the value of the variable sentence_length_limit. 
This is done in all three perl scripts (conv_xml2...). 
Please note that the script that extracts the 
sentences and the graphs need to have the same 
value. 

 
if you want to exclude sentences that are only 

one word long (they will always give correct 
graph) from the tests, you need to change the 
variable named $removeSingleWordSentences. 
The value true will make the perl script skip all 
one-word sentences. This variable needs to be 
changed in both conv_xml2sent.perl and 
conv_xml2graph.perl. This variable is not found in 
the dependency rules extraction script because 
there are no dependencies in a one-word sentence. 

 
NOTE: Make sure you work with the SAME 

input file when running the three different perl 
scripts. 

 
Convert the xml to sentences that nivres 

algorithm can read in prolog: 
perl conv_xml2sent.perl TalbankenMalt.xml 
This will produce a <Sentences> file. 
 
The dependency rules needed by Nivre's 

algorithm are extracted by a perl script: 
perl conv_xml2drules.perl TalbankenMalt.xml 
This will produce a <Dependency rules> file. 
 
The correct graphs as given by 

TalbankenMalt.xml is extracted by a perl script: 
perl conv_xml2graph.perl TalbankenMalt.xml 

This will produce a <Graphs> file. 
 
start prolog with: 
pl -G20m 
This increases the global stack size to 20 Mb (4 

Mb default). You might have to increase even 
more for longer sentences. 

 
consult needed files (algorithm, dependency 

rules, help predicates): 
consult([nivre_2,drules,readfile]). 
 
The command: 
readfiles(<Sentences>,<Graphs>,<Result>). 
should perform the tests and write the result to 

the <Result> file. 
 
Run the perl script called calcResult.perl to 

calculate the coverage, rank, and other statistics for 
the result: 

perl calcResult.perl result 
This will give the statistics in the terminal 

window. 
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Abstract

This paper explores the use of the naive Bayes
classifier as the basis for personalized spam fil-
ters. Various machine learning algorithms, in-
cluding variants of naive Bayes, have previously
been used for this purpose, but the author’s
implementation using word position based at-
tribute vectors gives very good results when
tested on several publicly available corpora.

The effect of various forms of attribute
selection—removal of frequent and infrequent
words, respectively, and by using Mutual
Information—is investigated. It is also shown
how n-grams, with n > 1, may be used to boost
classification performance. Finally, a weighting
scheme for cost-sensitive classification of vari-
able length attribute vectors is introduced.

1 Introduction

The problem of unsolicited bulk e-mail, or spam,
gets worse for every year. The vast amount of
spam being sent wastes resources on the Inter-
net, wastes time for users and may expose chil-
dren to unsuitable contents (e.g. pornography).
This development has stressed the need for au-
tomatic spam filters.

Early spam filters were instances of knowl-

edge engineering, using hand-crafted rules (e.g.
the presence of the string “buy now” indicates
spam). The process of creating the rule base re-
quires both knowledge and time, and the rules
were thus often supplied by the developers of
the filter. Having common and, more or less,
publicly available rules made it easy for spam-
mers to construct their e-mails to get through
the filters.

Recently, a shift has occurred, as more focus
has been put on machine learning for the auto-
matic creation of personalized spam filters. A
supervised learning algorithm is presented with
e-mails from the users mailbox and outputs a fil-
ter. The e-mails have previously been classified

manually as spam or non-spam. The resulting
spam filter has the advantage of being optimized
for the e-mail distribution of the individual user.
Thus it is able to use also the characteristics of
non-spam, or legitimate, e-mails (e.g. presence
of the string “machine learning”) during classi-
fication.

Perhaps the first attempt of using machine
learning algorithms for the generation of spam
filters was reported by Sahami et al. (1998).
They trained a naive Bayes classifier and re-
ported promising results. Other algorithms
have been tested but there seems to be no clear
winner (Androutsopoulos et al., 2004). The
naive Bayes approach have been picked up by
end-user applications such as the Mozilla e-mail
client1 and the free software project SpamAssas-
sin2, where the latter is using a combination of
both rules and machine learning.

Spam filtering differs from other text cate-
gorization tasks in at least to ways. First, one
might expect a greater class heterogeneity—it is
not the contents per se that defines spam, but
rather the fact that it is unsolicited. Similarly,
the class of legitimate messages may also span a
number of diverse subjects. Secondly, misclas-
sifying a legitimate message is generally much
worse than misclassifying a spam.

In this paper the results of using a variant
of the naive Bayes classifier for spam filtering,
will be presented. The effect of various forms
of attribute selection, will be explored, as will
the effect of considering not only single tokens,
but rather sequences of tokens, as attributes.
A scheme for cost-sensitive classification will
also be introduced. All experiments have been
conducted on several publicly available corpora,
thereby making a comparison with previously
published results possible.

The rest of this paper is organized as follows:

1http://www.mozilla.org/
2http://www.spamassassin.org/
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section 2 presents the naive Bayes classifier; sec-
tion 3 discusses the benchmark corpora used;
the experimental results are presented in sec-
tion 4; section 5 gives a comparison with pre-
viously reported results and in the last section
some conclusions are drawn.

2 The Naive Bayes Classifier

In the general context, the instances to be clas-
sified are described by attribute vectors A =
〈a1, a2 . . . , an〉. Bayes’ theorem says that the
posterior probability of an instance A being of
a certain class c is

P (c|A) =
P (A|c)P (c)

P (A)
. (1)

The naive Bayes classifier then assigns to an in-
stance the most probable, or maximum a poste-
riori, classification from a finite set C of classes

cMAP ≡ argmax
c∈C

P (c|A).

By noting that the prior probability P (A) in
Equation (1) is independent of c, we may rewrite
the last equation as

cMAP = argmax
c∈C

P (A|c)P (c). (2)

The posterior probabilities P (A|c) =
P (a1, a2 . . . , an|c) could be estimated di-
rectly from the training data, but are generally
infeasible to estimate unless the available
data is vast. Thus the naive Bayes as-

sumption—that the individual attributes are
conditionally independent of each other, given
the classification—is introduced:

P (a1, a2, . . . , an|c) =
∏

i

P (ai|c).

With this strong assumption, Equation (2) be-
comes the naive Bayes classifier:

cNB = argmax
c∈C

P (c)
∏

i

P (ai|c) (3)

(Mitchell, 1997).
In text classification applications, one may

choose to define one attribute for each word po-
sition in a document. This means that we need
to estimate the probability of a certain word wk

occurring at position i, given the target classifi-
cation cj : P (ai = wk|cj). Due to training data
sparseness, we introduce the additional assump-
tion that the probability of a specific word wk

occurring at position i is identical to the prob-
ability of that same word occurring at position
m: P (ai = wk|cj) = P (am = wk|cj) for all
i, j, k, m. Thus we estimate P (ai = wk|cj) with
P (wk|cj). The probabilities P (wk|cj) may be
estimated with maximum likelihood estimates,
using Laplace smoothing to avoid zero proba-
bilities:

P (wk|cj) =
Cj(wk) + 1

nj + |V ocabulary|
,

where Cj(wk) is the number of occurrences of
the word wk in all documents of class cj , nj

is the total number of word positions in docu-
ments of class cj and |V ocabulary| is the num-
ber of distinct words in all documents (Mitchell,
1997).

Note that during classification the index i in
Equation (3) ranges over all word positions con-
taining words also in the vocabulary, thus ig-
noring so called out-of-vocabulary words. For
a more elaborate discussion of the text model
used see Joachims (1997).

3 Benchmark Corpora

The experiments were be conducted on the
PU corpora3 and the SpamAssassin corpus4.
The four PU corpora, dubbed PU1, PU2, PU3
and PUA respectively, have been made publicly
available by Androutsopoulos et al. (2004) in
order to promote standard benchmarks. The
four corpora contain private mailboxes of four
different users in encrypted form. The messages
have been preprocessed and stripped from at-
tachments, HTML-tags and mail headers (ex-
cept Subject). This may lead to overly pes-
simistic results since attachments, HTML-tags
and mail headers may add useful information to
the classification process. For more information
on the compositions and characteristics of the
PU corpora see Androutsopoulos et al. (2004).

The SpamAssassin corpus (SA) consists of
private mail, donated by different users, in un-
encrypted form with headers and attachments
retained5. The fact that the e-mails are col-
lected from different distributions may lead to
overly optimistic results, e.g. if (some of) the

3The PU corpora may be downloaded from
http://www.iit.demokritos.gr/skel/i-config/

4The SpamAssassin corpus is available at
http://spamassassin.org/publiccorpus/

5Due to a primitive mbox parser, e-mails containing
non-textual or encoded parts, i.e. most e-mails with at-
tachments, are ignored completely in the experiments.
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spam messages have been sent to a particular
address, but none of the legitimate messages
have. On the other hand, the fact that the le-
gitimate messages have been donated by differ-
ent users may lead to underestimates since this
should imply greater diversity of the topics of
legitimate e-mails.

The sizes and compositions of the five corpora
are shown in Table 1.

corpus messages spam freq
PU1 1099 44%
PU2 721 20%
PU3 4139 44%
PUA 1142 50%
SA 6047 31%

Table 1: Sizes and spam frequencies of the five cor-
pora.

4 Experimental Results

As mentioned above, misclassifying a legitimate
mail as spam (L→S) is in general worse than
misclassifying a spam message as legitimate
(S→L). In order to capture such asymmetries
when measuring classification performance, two
measures from the field of information retrieval,
called precision and recall, are often used. De-
note with |S→L| and |S→S| the number of spam
messages classified as legitimate and spam, re-
spectively, and similarly for |L→L| and |L→S|.
Let NS and NL be the total number of spam and
legitimate messages, respectively. Then spam

recall(R) and spam precision(P ) are defined as

R =
|S→S|

NS

and P =
|S→S|

|S→S| + |L→S|
.

In the rest of this paper spam recall and spam
precision will be referred to simply as recall
and precision. Intuitively, recall measures ef-
fectiveness and precision gives a measure of
safety. One is often willing to accept lower recall
(more spam messages slipping through) in order
to gain precision (fewer misclassified legitimate
messages).

Sometimes accuracy (Acc) is used as a com-
bined measure

Acc =
|L→L| + |S→S|

NL + NS

.

All experiments have been conducted using
10-fold cross validation, i.e. the messages have

been divided into ten partitions6 and at each it-
eration nine partitions have been used for train-
ing and the remaining tenth for testing. The re-
ported figures are the means of the values from
the ten iterations.

4.1 Attribute Selection

It is common to apply some form of attribute
selection process, retaining only a subset of
the words—or rather tokens, since punctuation
signs and other symbols are often included—
found in the training messages. This way the
learning and classification process may be sped
up and memory requirements are lowered. At-
tribute selection may also lead to increased clas-
sification performance, e.g. since the risk of
overfitting the training data is reduced.

Removing infrequent and frequent words, re-
spectively, are two possible approaches. The
rationale behind removing infrequent words is
that this is likely to have a significant effect on
the size of the attribute set and that predictions
should not be based on such rare observations
anyway. Removing the most frequent words is
motivated by the fact that common words, such
as the English words “the” and “to”, are as
likely to occur in spam as in legitimate mes-
sages. Furthermore, this has the effect of mak-
ing sure that very frequent tokens do not dom-
inate Equation (3) completely.

Another possibility—used by Sahami et al.
(1998), Androutsopoulos et al. (2000) and An-
droutsopoulos et al. (2004)—is to rank the at-
tributes using Mutual Information(MI), and to
keep only the highest scoring ones. MI(X; C)
gives a measure of how well an attribute X dis-
criminates between the various classes in C, and
is defined as

∑

x∈{0,1}

∑

c∈C

P (x, c) log
P (x, c)

P (x)P (c)

(Cover and Thomas, 1991). The probability dis-
tributions are estimated using maximum likeli-
hood estimates with Laplace smoothing.

In the experiment tokens occurring less than
n = 1, . . . , 15 times were removed. The results
indicated unaffected or slightly increased preci-
sion at the expense of slightly reduced recall,
as n grew. The exception was the PU2 corpus,
where precision dropped significantly. The rea-

6The PU corpora come prepartitioned and the SA
corpus has been partitioned according to the last digit
of the messages decimal id.
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son for this may be that PU2 is the smallest cor-
pus and contains many infrequent tokens. On
the other hand, removing infrequent words had
a dramatic impact on the vocabulary size (see
Figure 1). Removing tokens occurring less than
three times seems to be a good trade-off between
memory usage and classification performance,
reducing the vocabulary size with 56–69%. This
selection scheme was used throughout the re-
maining experiments.
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Figure 1: Impact on vocabulary size when removing
infrequent words.

Removing the most frequent words turned
out to have a major effect on both precision
and recall (see Figure 2). This was most sig-
nificant on the largest and non-preprocessed SA
corpus where recall increased from 77% to over
95% by just removing the hundred most com-
mon tokens, but classification gained from re-
moving the 100–200 most frequent tokens on all
corpora. Removing too many tokens reduced
classification performance—again most notably
on the smaller PU2 corpus.

In the last attribute selection experiment MI-
ranking was used instead of removing the most
frequent tokens. Although the gain in terms
of reduced memory usage was high—the vo-
cabulary size dropped from 7000–35000 to the
number of attributes chosen to be kept, e.g.
500–3000—classification performance was sig-
nificantly reduced (see Figure 3). Since learning
and classification time is mostly unaffected—
MI still has be calculated for all attributes—I
see no reason for using MI-ranking, if memory
usage is not crucial7.

7Androutsopoulos et al. (2004) reaches the opposite
conclusion.

4.2 n-grams

Up to now each attribute has corresponded to
a single word position, or unigram. Is it possi-
ble to obtain better results by considering also
token sequences of length two and three, i.e. n-
grams for n = 2, 3? The questioned was raised
and answered partially in Androutsopoulos et
al. (2004). Although many bi- and trigrams
were shown to have very high information con-
tents, as measured by MI, no improvement was
found.

There are many possible ways of extending
the attribute set with general n-grams, e.g.
by using all available n-grams, by just us-
ing some of them or by using some kind of
back-off approach. The attribute probabilities,
P (wi, wi+1, . . . wi+n|cj), are still estimated us-
ing maximum likelihood estimates with Laplace
smoothing

Cj(wi, wi+1, . . . , wi+n) + 1

nj + |V ocabulary|

(see Section 2). Note that extending the at-
tribute set in this way will result in a total prob-
ability mass greater than one. Fortunately, this
need not be a problem since we are not estimat-
ing the classification probabilities explicitly (see
Equation (3)).

It turned out that adding bi- and trigrams to
the attribute set increased classification perfor-
mance on all the PU corpora, but not on the SA
corpus. The various methods for extending the
attribute set all gave similar results and I set-
tled on the simple version which just considers
each n-gram as an independent attribute8. The
results are shown in Table 2.

The precision gain was highest for the cor-
pus with lowest initial precision, namely PU2.
For the other PU corpora the precision gain was
relatively small or even non-existing. At first
the significantly decreased classification perfor-
mance on the SA corpus came as a bit of a
surprise. The reason turned out to be that
when considering all bi- and trigrams in the
non-preprocessed SA corpus, a lot of very fre-
quent attributes, originating from mail headers
and HTML, are added to the attribute set. This
had the effect of giving badly discriminating at-
tributes (e.g. some mail headers) and HTML, a
too dominant role in Equation (3). By removing

8This is clearly not true. The three n-grams in the
phrase “buy now”—“buy”, “now” and “buy now”—are
obviously not independent.
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Figure 2: Impact on spam precision and recall when removing the most frequent words.

more of the most frequent words, classification
performance was increased also for the SA cor-
pus (see Table 3). The conclusion to be drawn is
that mail headers and HTML, although contain-
ing useful information, shouldn’t be included by
brute force. Perhaps some kind of weighting
scheme or selective inclusion process would be
appropriate.

Finally, considering that extending the at-
tribute set with bi- and trigrams has a dramatic
effect on the vocabulary size, the gained classi-
fication performance is unlikely to compensate

for the increased memory requirements.

4.3 Cost-Sensitive Classification

Generally it is much worse to misclassify legit-
imate mails than letting spam slip through the
filter. Hence, it would be desirable to be able
to bias the filter towards classifying messages
as legitimate, yielding higher precision at the
expense of recall.

One way of biasing the filter is to multiply the
prior probability of legitimate messages by some
factor λ > 1 (Androutsopoulos et al., 2000;
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Figure 3: Attribute selection using Mutual Information on the PU corpora—spam recall and precision versus
the number of retained attributes. Included is also the precision and recall figures when only the 200 most
frequent words have been removed.

Androutsopoulos et al., 2004). This turns out
to have a very limited effect, since the expres-
sion in Equation (3) is dominated by the poste-
rior probabilities. Another problem is that this
weighting scheme is inappropriate to use with
word position based attribute vectors, as the
impact of the cost factor λ will vary with the
length of the document being considered.

To overcome these problems the following
simple weighting scheme was used; each pos-
terior probability P (wi|clegit) in Equation (3)
was multiplied with a weight w > 1. The re-
sult of using this “tuning knob” can be seen in
Figure 4.

5 Evaluation

Many different machine Machine Learning al-
gorithms besides naive Bayes, such as C4.5,
k-Nearest Neighbor and Support Vector Ma-
chines, have previously been used in spam fil-
tering experiments. There seems to have been
no clear winner, but there is a difficulty in com-
paring the results of different experiments, since

the used corpora have rarely been made pub-
licly available (Androutsopoulos et al., 2004).
This section gives a comparison with the imple-
mentation and results of the authors of the PU
corpora.

In Androutsopoulos et al. (2004), a variant
of naive Bayes was compared with three other
learning algorithms; Flexible Bayes, LogitBoost
and Support Vector Machines (SVM). All of the
algorithms used real valued word frequency at-
tributes. The attributes were selected by re-
moving words occurring less than five times and
then keeping the 600 words with highest Mutual
Information (see Section 4.1). As can be seen
in Table 4, the word position based naive Bayes
implementation of this paper achieved signifi-
cantly higher precision and better or compara-
ble recall on all four PU corpora. The results
were also better or comparable to the results of
the best-performing algorithm on each corpus.

In Androutsopoulos et al. (2000), the au-
thors used a naive Bayes implementation based
on boolean attributes, representing the pres-
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n-grams R P Acc
PU1

n = 1 98.12 95.35 97.06
n = 1, 2, 3 99.17 96.19 97.89

PU2
n = 1 97.14 87.00 96.20
n = 1, 2, 3 95.00 93.12 96.90

PU3
n = 1 96.92 96.02 96.83
n = 1, 2, 3 96.59 97.83 97.53

PUA
n = 1 93.68 97.91 95.79
n = 1, 2, 3 94.56 97.90 96.23

SA
n = 1 97.12 99.25 98.95
n = 1, 2, 3 92.26 98.70 97.42

Table 2: Comparison of classification results when
using only unigram attributes and uni-, bi- and tri-
gram attributes, respectively. In the experiment
words occurring less than three times and the 200
most frequent words have been removed.

n-grams f R P Acc
n = 1 200 97.12 99.25 98.95
n = 1, 2, 3 200 92.26 98.70 97.42
n = 1, 2, 3 5000 98.46 99.66 99.46

Table 3: Comparison of classification results on the
SA corpus when using only unigram attributes and
uni-, bi- and trigram attributes, respectively. In the
experiment words occurring less than three times
and the f most frequent words have been removed.

ence or absence of a fixed number of words.
The attributes were selected using Mutual In-
formation. In their experiments three different
cost scenarios were explored. Table 5 compares
the best results achieved on the PU1 corpus9

for each scenario, with the results achieved by
the naive Bayes implementation of this paper.
Due to the difficulty of relating the two differ-
ent weights, λ and w, the weight w has been
selected in steps of 0.05 in order to get equal
or higher precision. The authors deemed out
the λ = 999 scenario because of the low recall
figures.

9The results are for the bare PU1 corpus, i.e. the
stop-list and lemmatizer have not been applied. The
number of attributes have been optimized for each cost
scenario.
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Figure 4: Cost-sensitive classification on the PU1
and PU2 corpora—spam recall and precision versus
classification weight.

6 Conclusions

In this paper it has been shown that it is pos-
sible to achieve very good classification perfor-
mance using a word position based variant of
naive Bayes. The simplicity and low time com-
plexity of the algorithm, thus makes naive Bayes
a good choice for end-user applications.

The importance of attribute selection has
been stressed—memory requirements may be
lowered and classification performance in-
creased.

By extending the attribute set with n-grams
(n = 1, 2, 3), better classification performance
may be achieved, although at the cost of signif-
icantly increased memory requirements.

With the use of a simple weighting scheme,
precision may be boosted further, while still
retaining a high enough recall level—a feature
very important in real life applications.
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learner R P Acc
PU1

Androutsopoulos 99.38 89.58 94.59
Hovold 98.12 95.35 97.06
Flexible Bayes 97.08 96.92 97.34

PU2
Androutsopoulos 90.00 80.77 93.66
Hovold 97.14 87.00 96.20
Flexible Bayes 79.29 90.57 94.22

PU3
Androutsopoulos 94.84 93.59 94.79
Hovold 96.92 96.02 96.83
SVM 94.67 96.48 96.08

PUA
Androutsopoulos 94.04 95.11 94.47
Hovold 93.68 97.91 95.79
Flexible Bayes 91.58 96.75 94.04

Table 4: Comparison of the results achieved by
naive Bayes in Androutsopoulos et al. (2004) and
by the author’s implementation. In the latter, at-
tributes were selected by removing the 200 most fre-
quent words as well as words occurring less than
three times. Included is also the results of the best-
performing algorithm for each corpus, as found in
Androutsopoulos et al. (2004).

thanks also to Peter Alriksson and Pontus
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per.
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Abstract

This is a report about Hidden Markov Models,
a data structure used to model the probabilities
of sequences, and the three algorithms associ-
ated with it. The algorithms are the forward
algorithm and the Viterbi algorithm, both used
to calculate the probability of a sequence, and
the forward-backward algorithm, used to train
a Hidden Markov Model on a set of sequences,
raising the propabilites of these and similar se-
quences.

1 Introduction

The theories and methods of spoken language
processing have evolved much over the last years
and the field is one of the most interesting
of computer science. This report will explain
Hidden Markov Models, a graph-based data-
structure used to model and calculate probabil-
ities of sequences. The Hidden Markov Model
is used in almost every speech-recognition envi-
ronment.

2 The Model

2.1 The Markov Chain

The Hidden Markov Model data-structure is
based on a data-structure called the Markov
Chain. The Markov Chain is a directed,
weighted graph, where each node contains a
symbol from the output alphabet to wich it is
applied, and an initial probability. The graph is
complete i.e all nodes have vertices to all nodes,
including itself. The weight of each vertice is
the probability of a transition. Given a Markov
Chain and a sequence it is then easy to calculate
the probability of the given sequence by taking
the product of the initial propablity of the node
associated with the first symbol of the sequence
and all the transition-propabilites to the nodes
associated with the following symbols in the se-
quence. That is, for sequence S with of length
n, the propabilite of sequence S is

prop(S) = init(S1) ∗
n∏

i=2

(Si−1|Si)

where (i|j) is the transition-probability from
state i to state j.

2.2 The Hidden Markov Model

In the Hidden Markov Model there is no one-to-
one relation between the alphabet and the nodes
as in the Markov Chain, instead each node con-
tains every symbol in the alphabet and relates
each symbol with a probability. As a conse-
quence there is no longer a ”true” path through
the graph corresponding to a sequence, as there
often exists several possible paths. Therein
lay one of the problems of the Hidden Markov
Model, as the evaluation no longer is as simple
as in the Markov Chain. In most cases is there
even Ot possible ways through the graph cor-
responding to the same sequence, making the
calculations extensive.
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3 Algorithms

In the Hidden Markov Model there are basically
two problems, the evaluation and the training.
The evaluation problem is solved by two differ-
ent algorithms giving different probabilities of
a sequence. The first, the forward algorithm,
gives the sum of the probabilities of all possi-
ble paths through the graph. The Viterbi algo-
ritm gives the probability of the path with the
highest probability. The training is performed
by the forward-backward algorithm, wich trains
the Hidden Markov Model to give a set of sim-
ilar sequences a higher probability.

3.1 The Forward Algorithm

The forward algorithm calculates the probabil-
ity of a sequence by adding up the sum of prob-
abilities of all possible paths giving the right
outputsequence. To do this in an easy way I
first define the forward probability.

3.1.1 The forward Probability

Given a Hidden Markov Model, Φ, and a se-
quence X, it is possible to calculate the forward
probability α. αt(j) is defined as the probabil-
ity of being at node j at time t giving the output
in the sequence. Using a recursion this is fairly
easy to calculate using the formula:

αt(j) =

[ N∑

i=1

αt−1(i)aij

]
bj(Xt)

α1(i) = πibi(X1)

3.1.2 The Final Step

Having calculated the forward probability the
sum of all probabilities is easy to calculate.

P (X|Φ) =
N∑

i=1

αT (i)

This gives that P (X|Φ) is the sum over all
nodes, of being at that node after sending out
the output given in the sequence, ie the sum
of the probabilities over all possible path in the
graph.

3.2 The Viterbi Algorithm

The Viterbi algorithm calculates the probability
and the nodesequence of the most likely traver-
sion through the graph giving the expected out-
putsequence. This is implemented in my Hid-
den Markov Model but I have not investigated
it more closely as I rarely use it.

3.3 The Forward-Backward Algorithm

The forward backward algorithm trains the Hid-
den Markov Model by raising the probability of
the given sequence and thereby all sequences
similar to this. To calculate the new values for
a and b, labeled â and b̂, I first define two new
probabilities, the backward probability, β, and
the transition probability, γ.

3.3.1 The backward probability

Just as I defined the forward probability, I can
also defin the backward probability βt(i) that
is, the probability that after being at node i
at the time t, the model outputs the sequence
Xt+1...XT . Similar to the forward probability,
this can be calculated using a recursion as fol-
lows.

βt(i) =

[ N∑

j=1

aijbj(Xt+1)βt+1(j)

]

βT (i) =
1

N

3.3.2 The transition probability

The transtion probability γt(ij) is the probabil-
ity of taking the transition from node i to node
j at time t given a Hidden Markov Model and
an outputsequence. Using the prior defined for-
ward and backward-probabilities it can be cal-
culated as follows.

γt(ij) =
αt−1(i)aijbj(Xt)βt(j)∑N

k=1 αT (k)

This is interpreted as the forwardprobability
of being at node i after giving the output
X1...Xt−1 multiplied by the probability of tak-
ing the transition to node j and there give the
output Xt multiplied by the probability of go-
ing from node j and give the output Xt+1...XT

and dividing the hole product by the sum of all
possible paths giving that outputsequence.

3.3.3 Calculating â

To calculate âij, the new values meant to re-
place the prior value at aij,Itake the sum of all
transitions between node i and node j, at all pos-
sible times t and divide it with the sum of all
possible transitions from node i at all possible
times t.

âij =

∑T
t=1 γt(ij)∑T

t=1

∑N
k=1 γt(ik)
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3.3.4 Calculating b̂

It is possible to calculate b̂j(k) in a similar way
as the sum of all transitions to node j if Xt = Ok
and dividing it by the sum of all transitions to
node j.

b̂ =

∑
t∈(xt=Ok)

∑N
i=1 γt(ij)∑T

t=1

∑N
i=1 γt(ij)

3.3.5 Trainging on a set of sequences

These calculations can easy be extended to train
on a set of sequences instead of a single se-
quence. To do soIadd another dimension to the
γ so that γmt (ij) is the probability of going from
node i to node j at time t given the m’th se-
quence of the trainingset. he calculations are
still the same. Howether, the calculations for â

and b̂ has to be changed, so they are based on
the hole set. â and b̂ should instead be calcu-
lated as follows.

âij =

∑M
m=1

∑T
t=1 γ

m
t (ij)

∑M
m=1

∑T
t=1

∑N
k=1 γ

m
t (ik)

b̂ =

∑M
m=1

∑
t∈(xt=Ok)

∑N
i=1 γ

m
t (ij)

∑M
m=1

∑T
t=1

∑N
i=1 γ

m
t (ij)

3.3.6 Post calculations

After calculating â and b̂ you just exchange a
and b by them. In theory. On computers this
will be a problem as almost all evaluation then
will become zero as the values go beyond the
reach of a double floating point variable. To
cope with that, the easiest way is to define that
the values in a and b are not allowed to go be-
neath a value, in my case 1e-20. As computers
calculating values of this size almost always does
errors I normalize the values in a and b so that
the probabilities sum up to one.

3.3.7 Result of the forwardbackward
algorithm

Using this algorithm on fairly large traing-
ingset, it can train a Hidden Markov Model in
about five iterations and after that recognize se-
quences similar to those in the trainingset.

4 Appendix

4.1 Notation

The following notations are used in the calcu-
lations:
N is the number of nodes in the Hidden Markov
Model
O is the number of symbols in the outputal-
phabet
T is the number of symbols in a particular
outputsequnce
aij is the transitionprobability between node i
to node j
bi(x) is the probability of the output x at node
i
Xt is the output at time t in sequence X
πi is the initial probability of node i, ie the
probability that the sequence starts at node i
αt(i) is the forward probability defined in
chapter 3.1.1
βt(i) is the backward probability defined in
chapter 3.3.1
γt(ij) is the transition probability defined in
chapter 3.3.2
âij is the new transitionprobability used tem-
porary in the training, defined in chapter 3.3.3
b̂ij is the new outputprobability used temporary
in the training, defined in chapter 3.3.4
M is the number of sequences in a trainingset

4.2 The use of Hidden Markov Models
in Speech Recognition

Speech and sound is in computers often repre-
sented as PCM data or Pulse CodeModulation.
It is a sequence of values representing the pori-
tion of the membran on either the speaker or the
microphone. Unfortunatly this sequence con-
tains to much data to be evaluated by a Hidden
Markov Model so it has to be transformed be-
fore it is used this data structure. Usually the
PCM data is divided in frames of approxomatly
20 milliseconds and each frame the converted
to single number or a small vector of numbers.
There are multipla ways to do this step.

• Fast Fourier Transfom
A Fast Fourier Transform, or a FFT, is
a fast but inaccurate way of calculating
the energy of the sound at different fre-
quences. Picking the numbers of the right
frequences, this is a good way of turning
the PCM into a useful value.

• Linear Prediction Coding
The Linear Prediction Coding, or the LPC,
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is a way of creating a polynomial that,
given the prior values of the data, try to
predict the coming value.

• Energy
Adding up the absolute value of the PCM
data gives the total energy of a frame. This
is a useful as such, but if one take the differ-
ence between the frames insted hte values
give a better representation of the sound.
Especially if all the frames energies are sub-
tracted with the energy of the frame with
the highest energy, thus removing the pos-
sible error of different recording volumes.

After this is done, the values are made discrete
using a codebook to spread the values over all
the discrete symbols in the output alphabet.
This gives us a sequence of symbols, in my case,
integer between 0 and 255. It is then possi-
ble to do this for several recordings of the same
command, getting a set of sequences that can
be used to train a Hidden Markov Model. The
Hidden Markov Model can the be used to calcu-
late the probability of sequence extracted from
a sound recording i the same way as the traun-
ing set, and using a treshold, determine whether
the sound was the command or not. Using sev-
eral Hidden Markov Models, one per command,
this can be used to controll a computer using
speech commands.
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Abstract

The goal with our project was to implement a
grammar checker prototype. The work was in-
fluenced by the paper intelligent writing assis-
tance (Heidorn, 2000), which describes the Mi-
crosoft word grammar checking technique. Our
implementation uses a Perl script for text for-
matting and the Charniak parser for part of
speech and syntactic tagging. The analyzing
part was implemented in java.

1 Introduction

The goal with our project was to implement a
grammar checker prototype. The purpose with
a grammar checker is to check a text for gram-
matical errors that a grammar book would dis-
cuss. A grammar Checker can also include sup-
port for style checking (good writing style), but
this is not part of our system.

One of the first widely used grammar checker
was Writers Workbench (Macdonald et al.,
1982) which was developed for Unix systems
about 25 years ago. Today the built-in grammar
checker in Microsoft Word probably is the most
widely used one. It is based on the work that
was started by the natural language process-
ing (NLP) group at Microsoft Research in 1992.
Our work was influenced by the paper intelli-
gent writing assistance (Heidorn, 2000) which
describes the Microsoft Word grammar check-
ing technique.

The biggest difference between the Microsoft
Word and our solution is that Microsoft Word
is a total solution where all the necessary parts
for grammar checking are all built in, while in
contrast our solution is divided into three main
steps. The steps are text formatting, parsing
and analyze, which is taken care of by different
tools.

To start with we must tag the input data(the
text that should be analyzed); this is done by
a simple Perl script that just delimits the sen-

tences with a tag which makes the text ready
for parsing by the Charniak Parser.

The Charniak parser takes the tagged input
data and performs part of speech and syntactic
tagging based on the Penn Treebank (Marcus
et al., 1993) tagset. The result is a parse-tree
delimited by parenthesis.

Finally is the rule-based analyzing part im-
plemented in Java. We also developed a simple
GUI which simplifies the usage of the system.
Basically there is one input area for a Charniak
parse-tree and an output area that displays the
original text including suggested corrections.

2 Implementation

2.1 Overview
We have used three programs in our project;
one Perl-script for formatting the original text,
one parser that produces a tagged tree and our
own Java program which reads the output from
the parser, builds a tree and applies the imple-
mented rules and presents the result in a GUI.

2.2 Perl-script
The Perl-script delimits each sentence by adding
the <s> ... </s> tags. This format is required
by the Charniak parser.

2.3 Charniak parser
We chose the Charniak parser to do the part-of-
speech and syntactic tagging. Collins was the
other suggested parser but that was neglected
due to its much longer running time and the
fact that it was 10 times larger. The Charniak
parser takes the delimited sentences supplied by
the Perl-script and produces a tree in text form
where the branches and nodes are enclosed by
parentheses.
2.3.1 Penn Treebank style
The tagset used by the Charniak parser is the
one constructed by the Penn Treebank project
(Marcus et al., 1993), which is a large annotated
English corpus. The Penn Treebank tagset is
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based on the pioneering Brown Corpus which
consists of 87 tags. Other tagsets uses up to
around 200 tags. The Brown tagset was how-
ever pared down considerably. A key strategy
in reducing the tagset was to eliminate redun-
dancy by taking into account both lexical and
syntactic information. The resulting tagset con-
sists of 48 part-of-speech (see Appendix A, table
1) tags and 14 syntactic tags (see Appendix A,
table 2).

2.4 Grammar Checker
2.4.1 System
Our program consists of 3 classes and one main-
method. The main-method creates an instance
of a GUI-object which includes two event han-
dlers. The event handlers are bound to buttons,
one for choosing a file and the other for execut-
ing the implemented rules.

It is also in this event handler that the tree is
constructed through the method buildTree() in
the class CorpusHandler. This function returns
a PennNode-object which is the root of the tree.
By invoking methods on this root node different
rules can be applied and the modified content
can be requested which is then displayed.
2.4.2 Building the tree
The program starts with storing the text pro-
duced by the Charniak parser in a string. The
parentheses structure of the string is then used
to decide when new nodes should be created and
what they should contain. When a left paren-
thesis encountered, a new child is created and
it becomes the current node. The tag type for
the new node is the following word. There are
now three possibilities; if the next character is
a left parenthesis then a new node is created as
above, if its a right parenthesis then this closes
the node and the parent node is set to be cur-
rent node and if its neither of these then the
word is the content of the node i.e. a word in
the input sentence. In each node we also store
which depth in the tree it is in. This can then
be used in the search algorithms.
2.4.3 Rules
The rules are applied on each sentence and are
recursive. A finite state machine is used to
keep track of what to search for and when a
correction should be suggested. A special self-
constructed node type, FLAG, is inserted if an
error is found and it contains a text explaining
to the user what can be corrected. Our rules
are applied sequentially but they do not affect
each other. However the inserted FLAG-nodes

must be taken into consideration during the im-
plementation of further rules.

2.4.4 GUI
There are two events that can be triggered in
our program. First a file can be chosen by click-
ing the File-button and secondly the Submit-
button which creates tree, runs the algorithms
on it and finally prints the resulting tree and
text to the lower window. You can chose which
rules you want to apply by using the checkboxes
at the top. There is also an option to hide the
tree structure. See Apendix B for a screenshot
of the GUI when the system analyzes a simple
sentence.

3 Evaluation

3.1 Testing

Testing of the rules was done in parallel with
program construction, one rule at a time. Our
initial test samples were just single sentences
which had the errors that a specific rule should
trig on. After some modifications of the rules,
the system was behaving as expected for the
single sentences. Everything seemed to work
fine.

The real problems started when we tried a
larger test corpus. It turned out our rules were
to general and was trigged not only when there
was an error, but also when the sentences were
grammatically correct. The main reason for the
behavior was that we were analyzing too small
parts of the sentences; we focused at the part of
speech tags. This was solved by adding a depth
value to all nodes in our parse tree, which en-
abled us to adjust the rules in respect to bigger
text blocks, e.g. subordinate clauses.

The size of the test data was not large enough
to make any statistic analyses of the system ac-
curacy. A randomly chosen corpus downloaded
from internet indicated the system to work cor-
rect, finding the errors and in the same time not
trigging on any correct sentence.

4 Conclusions

Even though our grammar checker was inspired
by the one found in Microsoft Word, the meth-
ods are not the same. The one found in Mi-
crosoft Word utilizes a recursive algorithm ap-
plied to top nodes. Depending on the type of
the node, it applies the subset of rules that are
applicable for that type of top node. Our ap-
proach on the other hand uses a finite state ma-
chine that steps through the text word by word,
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in order. To determine whether we still are in-
side the same clause we use the depth attribute.
We check one rule at a time, sequentially, which
means we keep one object containing the current
state of our search. This object differ depend-
ing on the rule, and the type of node we search
for depend on the current state. When the final
state is reached and the requirements are met,
a ”FLAG”-node is inserted and the state ma-
chine is reset, or set to a specific state, depend-
ing on the rule. Our approach is of course more
expensive, but for our purpose if was sufficient
and resulted in code that is easier to understand
and maintain.

A problem we encountered that would have
made it even more difficult to utilize the Mi-
crosoft Word approach was that for incorrect
sentences the whole structure of the tree pro-
duced by the Charniak parser was altered. This
means that it is not sufficient to look at a cor-
rect sentence for patterns to which to look for.
We got around some of those issues by looking
at the text in order.
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Appendix A

1. CC Coordinating conjunction 25. TO to
2. CD Cardinal number 26. UH Interjection
3. DT Determiner 27. VB Verb, base form
4. EX Existential there 28. VBD Verb, past tense
5. FW Foreign word 29. VBG Verb, gerund/present perticiple
6. IN Preposition/subord. conjunction 30. VBN Ver, past participle
7. JJ Adjective 31. VBP Verb, non-3rd ps. sing. present
8. JJR Adjective, comparative 32. VBZ Verb, 3rd ps. sing. present
9. JJS Adjective, superlative 33. WDT wh-determiner

10. LS List item marker 34. WP wh-pronoun
11. MD Modal 35. WP$ Possessive wh-pronoun
12. NN Noun, singular or mass 36. WRB wh-adverb
13. NNS Noun, plural 37. # Pound sign
14. NNP Proper noun, singular 38. $ Dollar sign
15. NNPS Proper noun, plural 39. . Sentence-final punctuation
16. PDT Predeterminer 40. , Comma
17. POS Possessive ending 41. : Colon, semi-colon
18. PRP Personal pronoun 42. ( Left bracket character
19. PP$ Possessive pronoun 43. ) Right bracket character
20. RB Adverb 44. ” Straight double quote
21. RBR Adverb, comparative 45. ‘ Left open single quote
22. RBS Adverb, superlative 46. “ Left open double quote
23. RP Particle 47. ’ Right close single quote
24. SYM Symbol (mathematical or scientific) 48. ” Right close double quote

Table 1: The Penn Treebank POS tagset
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Tags

1. ADJP Adjective phrase
2. ADVP Adverb phrase
3. NP Noun phrase
4. PP Prepositional phrase
5. S Simple declarative clause
6. SBAR Clause introduced by subordinating conjunction or 0 (see below)
7. SBARQ Direct question introduced by wh-phrase
8. SINV Declarative sentence with subject-aux inversion
9. SQ Subconstituent of SBARQ excluding wh-word or wh-phrase

10. VP Verb phrase
11. WHADVP Wh-adverb phrase
12. WHNP Wh-noun phrase
13. WHPP Wh-prepositional phrase
14. X Constituent of unknown or uncertain category

Null elements

1. * ”Understood” subject of infinitive or imperative
2. 0 Zero variant of that in subordinate clauses
3. T Trace-marks position where moved whconstituent is interpreted
4. NIL Marks position where preposition is interpreted in pied-piping context

Table 2: The Penn Treebank syntactic tagset
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Image 1: Screenshot from the Java GUI.
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Abstract 
This paper presents work done in project 
form in the course Language Processing and 
Computational Linguistics given at Lund 
School of Technology during the fall of 
2004. The work develops and assesses a new 
dependency parser for Swedish, based on 
decision trees learned from corpora. To 
assess the parser, it is trained and tested on a 
subset of the MALT corpus and found to 
perform fairly well considering its stage of 
development.  

1  Introduction 

1.1  Project purpose 
 The given purpose of the project presented 
in this paper was to construct a software 
system for the automatic learning of 
grammar rules used by a certain text parser: 
the Nivre parser. The Nivre parser is a 
dependency parser developed by Joakim 
Nivre [1]. The Nivre parser uses a special 
kind of D-rules, namely directed D-rules, for 
parsing. 
   As it happened, we, the authors of this 
paper, decided to instead develop our own 
parser, a parser also using rules derived from 
corpora, but rules of a different kind, used in 
a different way. The automatic learning 
algorithm of our parser is decision tree 
induction algorithm, simple yet not 
powerless. 

2  Short introductions of theory 

2.1 Dependency Grammars  
 According to the book An Introduction to 
Language Processing with Perl and Prolog 
[3] dependency grammar is used for 
describing the structure of a language. It is 
especially good for describing languages 

where the word order is flexible. This is the 
case for Latin and Russian but not for 
English and Swedish. The rules can be 
helpful in translations or just for 
understanding the language. 
 Every word in a sentence is the dependent 
of one head with one exception. This 
exception is the head of the sentence, also 
called the root, which only have dependants. 
The head of the sentence is generally the 
main verb but can also in rare cases be a 
noun. These dependency rules are marked as 
arrows from the dependant to the head. The 
root is marked with an arrow pointed at the 
top of the screen. 
 The basic dependency rules are that a 
dependant links to its noun and a subject 
noun links to its main verb. Other rules are 
that determiners and adjectives are 
dependents to their noun and adverbs to their 
adjectives. One example is Figure 1. 
 

 
Figure 1. An example of how dependency 
grammar can look like 
 
 Here “ate” is the main verb and also 
called the root. The two nouns “I” and 
“cat” are the dependants of “ate” and the 
determiner “the” is the dependant of its 
noun “cat”.  

2.2 Decision tree induction 

2.2.1 The decision tree structure 
 Consider some object or situation to which 
some set of attributes is related. A decision 
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tree is a structure associating with each 
possible set of values of the attributes some 
value, thus constituting a function from the 
set of possible sets of attribute values to an 
arbitrary set. If the set of values associated 
with possible sets of attribute values is 
discrete, the values associated with possible 
sets of attribute values are called 
classifications.  
 A decision tree is a tree data structure. 
Each non-leaf node of a decision tree 
represents a test of one of the attributes of 
the attributes set and each outbound branch 
from a non-leaf node represents one of the 
possible values of the attribute tested in that 
node. Each leaf node of a decision tree 
represents a value assigned to some subset 
of the set of possible sets of attribute values. 
The value associated by a decision tree with 
a given set of attribute values is the value 
represented by the leaf reached when 
traversing the tree from root to leaf, in each 
node choosing branch according to the value 
of the attribute tested in that node. 
 Decision trees are simple yet somewhat 
expressive. Any Boolean function can be 
written in the form of a decision tree, though 
by necessity some, for example the majority 
function, are quite large in the form.  

2.2.2 The induction algorithm 

 Let an example of a function be a member 
of the domain of the function and the 
associated member of the codomain of the 
function. A set of sets of attribute values and 
values associated with these sets of attribute 
values can be regarded as a set of examples 
of some function whose domain comprise 
the attribute values and whose codomain 
comprise the associated values. The forming 
of a function consistent with the examples 
approximating the function exemplified is 
referred to as inductive inference. The 
formed function is called a hypothesis. 
 The algorithm in Figure 1 [2] forms a 
consistent hypothesis in the form of a 
decision tree for any set of examples which 
are examples of a classifying decision tree or 
some function that can be written in the 
form of a classifying decision tree. In Figure 
2, the goal predicate is an attribute whose 
value for any set of attribute values is the 
value associated with that set of attribute 
values. The algorithm applies Ockham’s 
razor and prefers the simplest hypothesis of 
a set of hypotheses all consistent with the 
examples. Forming the smallest consistent 
hypothesis is an intractable problem, though. 
The algorithm forms a smallish one. 
CHOOSE-ATTRIBUTE chooses the 
attribute which provides the most 
information, in the mathematical sense. 

 
 

Figure 2. An algorithm forming a smallish decision tree consistent with a set of examples. 

function DECISION-TREE LEARNING(examples, attributes, default) returns a 
decision tree 
 inputs: examples, set of examples 
  attributes, set of attributes 
  default, default value for the goal predicate 
 if examples is empty then return default 

else if all examples have the same classification then return the 
classification 

else if attributes is empty then return MAJORITY-VALUE(examples) 
else 
 best ← CHOOSE-ATTRIBUTE(attributes, examples) 
 tree ← a new decision tree with root test best 
 m ← MAJORITY-VALUE(examplesi) 

for each value vi of best do 
examplesi ← {elements of examples with best = vi} 
subtree ← DECISION-TREE-LEARNING(examplesi, 

attributes – best, m) 
add a branch to tree with label vi and subtree subtree 

return tree 
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3 The parser 

3.1 The decision trees generated 
and the parser algorithm 
 This section presents the parsing algorithm 
we have made. It uses four different decision 
trees in order to classify the correct part-of-
speech tags in a sentence.  
 We will first describe how the decision 
trees have been generated.  

3.1.1 Is-root 
 This tree is used to find the most probable 
root in the sentence. It has learned by 
looking at the part-of-speech tag and a 
context of two words on each side. In the 
example shown in Figure 3, a correct 
classified sentence is shown. The word ”är” 
is root in the sentence. So for every word in 
the sentence, we will add its part-of-speech 
tag and its context to the database together 
with a true/false that tells if its the root. 
Later in the parsing algorithm, the decision 
tree tries to classify when something is root 
and not. 
 

 
Figure 3. Is-root 
 
 The tree classifies 80% of all sentences 
(on an unseen domain) correct. When it 
fails, there are more than one candidate to be 
root (the most likely will be chosen). 

3.1.2 Find-head-1 
 This decision tree is trained by taking the 
part-of-speech (pos) tag and a context of one 
word on each side, and trains it to find the 
correct head to the pos-tag. The example in 
Figure 4 shows how the selection has been 
made. This is added for every word except 
root (since it doesn’t have any parent). 
 

Figure 4. Find head 1 
 

3.1.3 Find-head-2 
 This is an extension of Find-head-1 that is 
trained by looking at the pos-tag, a context 
of two words on each side, plus a context of 
one word on each side of the head. How this 
is used in practice is explained later, but you 
can see what the database looks like by 
viewing the example in Figure 5. 
 

Figure 5. Find head 2 
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3.1.4 Find-Direction 
 The database that is used to train this tree 
looks almost the same as the one used to 
train Find-head-2. In addition it also has the 
direction of the arrow (right/left) that is used 
as goal-attribute in the decision tree learning 
algorithm. This makes it able to classify the 
most probable direction. 

3.2 The parsing algorithm 
 This algorithm is used to demonstrate how 
we can use decision trees to classify all 
words/pos-tags in a sentence. It uses the four 
decision trees explained above. In practice it 
works in three different phases. It is at the 
moment quite simple, and could easily be 
expanded to use more decision trees and 
more advance functions. The following 
explains the three phases of the algorithm. 

3.2.1 Phase 1 
 The first phase uses only the find-root and 
find-head-1 trees described above. Its main 
goal is to find the most probable root, and all 
possible candidates for head for all words. 
The easiest way to show how this works is 
by using an example.  
 Lets say we want to find the head for the 
Swedish word “inkomsterna” (see Figure 6), 
this is a noun, and its closest neighbors is a 
determiner and a verb. We can ask find-
head-1 with this information, and it will 
answer by providing a list of the most 
probable neighbors, in this case verb 
(56.5%) and preposition (43.5%). The next 
thing we do is to go though all the words 
looking for prepositions and verbs, we add 
this to a list of potential parents. In this 
sentence the preposition at position zero, the 
verb at position three and seven would be 
added to the list of potential parents for our 
noun. We do this for all the words in the 
sentence. 
 
 

 

Figure 6. 

3.2.2 Phase 2 
 We now have a list of head-candidates for 
every word except the most probable root. 
The next step is to go through all the 
candidates in the list (and we do this for 
every word) and ask find-head-2 and find-
direction how probable that candidate is. 
Since find-head-2 is more accurate, its result 
gets higher ranked when choosing the 
candidate. In the example above, the 
preposition at position zero would get a 
score of 105, the verb at position three a 
score of 6.3 and the verb at position seven a 
score of 1.8. This means we will chose the 
preposition at position zero as our most 
probable head.  

3.2.3 Phase 3 
 After phase 2, the algorithm is almost 
complete, however there may still be easy 
found errors in the complete graph. For 
example, we know that two arrows may 
never cross each other (see Figure 7 “A 
crossing link”). If they do, at least one of 
them is pointing wrong. We use a simple 
method to find and remove all crossing 
arrows. 
 We also look for cycles in the graph (see 
Figure 8 “A cycle”), and use a method to 
break these. This step is not optimized, but 
works quite well. 

 
Figure 7. A crossing link 
 

 
Figure 8. A cycle 
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Form: av 
Links to: ge (x-link: false) 
-tree----------------------------------------- 
<pp:9> 
    <nn:12> 
        dt:10 
        jj:11 
----------------------------------------------- 
Pot.Parents: pp:9  
    vb:3 (106.33559) (pr: false) 
    vb:1 (106.33559) (pr: false) 
    nn:8 (105.58499) (pr: false) 
    nn:12 (61.73145) (pr: false) 
    nn:5 (5.5849915) (pr: false) 
    nn:0 (0.60047567) (pr: true) 
-rules---------------------------------------- 
vb (56.89655) 
     left (100.0) 
nn (41.37931) 
     left (99.60318) 
     right (0.39682543) 
rg (1.7241379) 
     right (100.0) 

3.2.4 The complete graph 
 On this page the program and its GUI is explained, and an example of a complete graph is 
shown in Figure 9. 
 

Figure 9. The complete graph
 

3.3 The program and how to use it.  
 This is what the GUI for our program looks 
like. In the list a sentence from the loaded XML 
file can be chosen. When loading a sentence to 
classify, the correct answer is shown at the top 
(red and blue arrows), and the result of our 
algorithm is shown at the bottom (green arrows 
for correct classifications, and red arrows for 
errors). So in this sentence, 2 errors are present 
(“endast” -> “ge”, and “av” <- “ge”). There is 
also another window (not showing here) that is 
used as log-tool. If we press a word, for example 
“av” the following info will show in the log-tool.  
 The first row in Figure 10 shows the chosen 
form, in this case “av”. The next tells us what 
“av” links to (in this case “ge”) and the “x-link: 
false” says its not crossing any other arrow. The  
tree shows all children (and their children) and 
also tells us if there are any cycles present. The 
next list shows all potential parents for “av”. As 
you can se, the verb at position 3 has gotten the 
highest score together with the verb at position 

1). The noun at position 8 (the correct one) has 
gotten just slightly less score. The “pr: false” 
tells us if the arrow goes past the root, in that 

case, it will 
get a penalty 
since its quite 
unlikely. The 
last list (rules) 
shows a more 
a abstract 
view of likely 
parents, telling 
us its is most 
likely to link 
to a verb. 

 
 
 
 
 

Figure 10. 

65



4 Performance analysis and 
conclusions 

4.1 The performance of the program 
 The program use approximately 800 
sentences as a practice set and about 300 
sentences as a test set. Best results are given 
when the program is training and testing on 
the same set of sentences i.e. the test set is 
300 sentences that are selected out of the 
800. In 300 sentences there are 
approximately 4000 arrows (there are 
approximately 8700 arrows in 800 
sentences) and the program gets about 86.7 
% of them correct and 73.5 % correct if the 
test set is new to the program. Sentences 
where all the arrows are correct is about 37.6 
% when the program is training and testing 
on the same set and 19.3 % else. The 
training set was later expanded to 5000 
sentences and the test set to 1300 sentences. 
But the result turned out to decrease. When 
testing on new sentences it gets about 70 % 
of the arrows correct which is a decrease by 
3.5%. This probably has to do with the 
decision trees that get overfitted. A solution 
to this problem could be to improve the 
pruning of the trees. 

4.2 Difficulties on the way  
 We started to use the neighbors of the 
dependant word to improve the program. 
Two neighbors to the right and two to the 
left were showing to be the most efficient so 
far. After this improvement we also added 
neighbors to the head word. The statistic 
improved by roughly 15 %.  
 To find the correct root in the sentence 
was harder then first expected. And when 
the program choused the wrong word as the 
root it generated more errors to the other 
arrows in the sentence. Improvements can 
still be done here.  
 Another problem that maybe is not that 
important, but contributes to lower the 
statistics, is that the arrow from the dot in 
the sentence more often is wrong than right.  
 In the beginning the program sometimes 
made loops which are not acceptable in 
dependency grammar. To solve the problem 

temporary an algorithm was made. The 
algorithm solves the problem with the loops 
(Figure 2) but not in the most efficient or 
most correct way. Here big improvements 
can be done. 
 

 
Figure 2.  An example of a loop  
 
 Crossing arrows was also a problem in the 
beginning but was easily fixed with a small 
algorithm.   

4.3 Future aspects, if more time was 
given 
 To find a better way to classify the root is 
a good start. The root is in most cases the 
main verb and to locate that easier it maybe 
would help to add some more attributes to 
the words. Such as how the verb is 
intransitive, transitive or ditransitive.  
 An improvement of the loop algorithm 
could be done by making the algorithm go 
trough all possible arrow changes before 
choosing. At the moment the algorithm 
picks out the first possible fit. 
 To examine how much improvement a 
larger training set will give has not given as 
good results as hoped for. This is because of 
the decision trees that get overfitted. A 
solution to this problem is maybe to get 
better pruning of the trees.  
 At the moment only the lexical categories 
are used as attribute to the words. To 
improve the program it could also examine 
how the most common words in a sentence 
relate to the other words. For example 
instead of using the attribute determiner to a 
very common word like “the” you could use 
the fact that the word “the” in most cases 
has the first noun to its right as the head. 
 To try the program on other languages 
would be an interesting project and not so 
hard to accomplish. The program is capable 
to read xml documents in a certain 
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predefined type and if given, it could train 
and test on a different xml database in a new 
language.    
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Abstract

Part-of-speech tagging is the process of associat-
ing each word in a text with it’s part-of-speech
category and possibly a set of morphosyntac-
tic features. This information is represented by
part-of-speech tags. This paper describes an
implementation of a part-of-speech tagger for
Swedish based on the Brill method. The ba-
sic idea is to apply a set of rules to an initial
annotation achieved using a simple algorithm.
The rules are found using transformation-based
learning applied to a manually tagged training
corpus. The paper also addresses the problem
of tagging unknown words, i.e. words that don’t
appear in the training corpus.

1 Introduction

1.1 Part-of-Speech Tagging

The first step in implementing a part-of-speech
tagger is to build a lexicon, where the part-of-
speech of a word can be found. Unfortunately
many words are ambiguous, and each word can
therefore have several classifications. As an ex-
ample, the word “note” can be either a noun
or a verb. It is the object of the part-of-speech
tagger to resolve these ambiguities, using the
context of the word. Another problem is the
handling of words that have no entries in the
lexicon.

There are basically two approaches to part-of-
speech tagging: rule-based tagging and stochas-
tic tagging. This paper describes an implemen-
tation using the rule-based approach, where the
rules are generated using transformation-based
learning.

1.2 Transformation-Based Learning

Transformation-based error-driven learning is a
machine learning method typically used for clas-
sification problems, where the goal is to assign
classifications to a set of samples. An initial
classification is produced using a simple algo-
rithm. In each iteration the current classifica-

tion is compared to the correct classification and
transformations are generated to correct the er-
rors. The output of the algorithm is a list of
transformations that can be used for automatic
classification, together with the initial classifier.

Figure 1: Transformation-based learning

There are two components of a transforma-
tion: a rewrite rule and a triggering environ-
ment. The rewrite rule says what should be
done (e.g. change the class from A to B) and
the triggering environment says when it should
be done (e.g. if the preceding sample is of class
C).

Transformation-based learning is used in
many different areas, and has proven to be a
very successful method in the field of natural
language processing. The algorithm was intro-
duced for POS tagging by Eric Brill in 1995.

2 Brill’s Learning Algorithm

The algorithm first assigns every word it’s most
likely part-of-speech, i.e. the most common tag
for that word. This initial annotation is com-
pared to a hand-annotated corpus, and a list of
errors is produced. For each error, rules to cor-
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rect the error are instantiated from a set of rule
templates. Each instantiated rule is evaluated
by computing it’s impact on the whole corpus.
The rules are compared by assigning each rule a
score, which is the difference between the num-
ber of good transformations and the number of
bad transformations the rule produces. The rule
with the highest score is applied to the text and
added to the result list. The transformed corpus
is then used to generate a new rule in the next
iteration. The algorithm stops when a certain
criteria has been fulfilled, e.g. the error rate is
below a specified threshold. The algorithm is
outlined in figure 2.

while (nbr of errrors > threshold)
for (each error)
for (each rule r correcting the error)

good(r) = nbr of good transformations
bad(r) = nbr of bad transformations
score(r) = good(r) - bad(r)

Apply the rule with highest score and
append it to the rule list

Figure 2: Pseudo code for Brill’s learning algo-
rithm

2.1 Rule Templates

The learning algorithm instantiates rules given
a set of templates. The rules change the
tagging of a word based on the tagging of the
neighbouring words, and are therefore called
contextual rules. The rule templates proposed
by Brill are presented below.

Change tag a to tag b when:

1. The preceding (following) word is tagged z

2. The word two before (after) is tagged z

3. One of the two preceding (following) words
is tagged z

4. One of the three preceding (following)
words is tagged z

5. The preceding word is tagged z and the
following word is tagged w

6. The preceding (following) word is tagged z

and the word two before (after) is tagged
w

where a , b, z and w are tag variables.

Instantiating a rule using one of these tem-
plates means that the variables are assigned tags

corresponding to the specific error to be cor-
rected.

3 Tagging of Unknown Words

A simple way of dealing with unknown words
is to assign them the most common part-of-
speech and then rely on the contextual rules to
correct the errors. There are however more so-
phisticated methods that can be used to achieve
higher accuracy. Brill suggests a special set of
rules to apply only to the unknown words, gen-
erated in basically the same way as the contex-
tual rules. These rules are applied after the ini-
tial tagging and before applying the contexual
rules.

3.1 Rule Templates

The rule templates used only for unknown
words changes the tag based on properties of
the actual word, and not based on the tagging
of neighbouring words. The following list
describes the templates designed by Brill.

Change the tag of an unknown word from a

to b when:

1. Deleting the prefix (suffix) x results in a
word

2. The prefix (suffix) of the word is x

3. Adding the prefix (suffix) x results in a
word

4. The preceding (following) word is w

5. The character c appears in the word

where x is a string of length 1 to 4.

4 Implementation

4.1 Corpus

The corpus used is the SUC 1.0 corpus, which
was developed as part of a joint research
project between the Departments of Linguistics
at Stockholm University and Ume̊a University
respectively. The POS tags used in the imple-
mentation are identical to the tags used in the
SUC project.

4.2 Previous Work

As a project for last year’s course a Java im-
plementation of the Brill tagger was written by
François Marier and Bengt Sjödin. It contained
the basic Brill algorithm and the contextual rule
templates, but was too slow for practical use.
This program has worked as a foundation for
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our implementation. Shorter running time and
handling of unknown words are the main im-
provements in this year’s implementation.

4.3 Optimization

Because of unexpected low accuracy of the im-
plemented tagger, it was suggested that the pro-
gram of last year might contain a bug. A set of
tests was performed, which resulted in the con-
clusion that the program worked correctly. The
reason for the bad results was instead that the
training algorithm was too slow. It was only
able to work on small texts, which could not
be expected to generate very good results. Our
first goal was therefore to optimize the program
to be able to run it on a large training corpus.

4.3.1 Problems Identified and Solved

After analyzing the code and extracting pro-
file information, we were able to identify the
main reasons for the slow running time of the
learner. First we found that a large percentage
of the running time was spent on string compar-
isons. This was because the POS tags were rep-
resented by strings, and the algorithm contains
many comparisons between tags. The problem
was solved by representing the tags by integers,
which are faster to compare, and introducing a
new class to handle the translation.

Secondly, we discovered that the rule evalua-
tion was done in an inefficient way. Rules were
evaluated by actually applying them to the text
and then counting the number of errors in the
resulting tagging. This meant that the whole
corpus had to be copied for every rule evalua-
tion. In our implementation we count the num-
ber of good and bad transformations without
applying it. Only the best rule is applied and
hence there is no need for copying.

Finally, a number of rules were instantiated in
linear time with respect to the number of words
in the training corpus. This had a great effect
on the total time complexity, and increased the
running time when using larger texts. In the
final implementation all rules are instantiated
in constant time.

To further improve the time complexity, all
rules are generated in the beginning of the pro-
gram, and not in each iteration. This means we
only consider rules that corrected errors in the
original tagging. Consequently, there is a risk
that selected rules introduce new errors that no
rule is able to correct. However, the output of
the algorithm was not affected by this change,
which indicates that these missed rules should

have been disgarded anyway.
4.3.2 Test Results

In order to demonstrate the process of the opti-
mization, a comparison has been made between
the running times of the learning algorithm of
the original program and three optimized ver-
sions. The versions have an increasing level of
optimization and the main changes added to
each version are presented below.

1. The tags are represented by integers in-
stead of strings.

2. All rules are instantiated in constant time.
All rules to consider are generated once.

3. The rules are evaluated by counting the
number of good and bad transformations.
Only the best rule is applied, which re-
moves the need for copying.

The programs were tested on a training cor-
pus of 23 000 words extracted from 10 files of
the SUC corpus. There are no unknown words,
since the dictionary was generated using the
whole SUC corpus. The algorithm was stopped
after 100 learned rules and the result was the
same for all programs.

All tests were performed on a Pentium M 1.4
GHz with 512 MB of RAM and Windows XP
Professional operating system.

Program version Running time
Original 585 min
Optimized 1 121 min
Optimized 2 14 min
Optimized 3 3 min

As seen in the table above, the final opti-
mized version is almost 200 times faster than
the original program. Since the time complex-
ity has improved as well, this ratio increases as
the training corpus grows. Figure 3 and 4 illus-
trate the difference in time complexity between
the two programs. Running time is plotted as
a function of training corpus size.

4.4 Handling of Unknown Words

The second part of the project was to devel-
ope a system for handling unknown words. In
the original program all words not present in
the dictionary were marked as unknown and
ignored. A first approach was to found out
which tag was the most common and tag ev-
ery unknown word with this tag. Disgarding
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Figure 3: Running time of the original program
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Figure 4: Running time of the optimized pro-
gram

closed word classes, the most frequent tag was
concluded to be “NN UTR SIN IND NOM”,
which represents a type of noun (see appendix
for details). This simple step correctly classified
about 15 % of the unknown words.

4.4.1 Initial Tagging

Although a few steps have been added to the
first approach, the initial tagging is still very
simple. The unknown words are divided into
three groups: numbers, proper nouns and com-
mon nouns. If the word contains digits it is
tagged as a number. If the it is capitalized and
not in the beginning of a sentence it is tagged
as a proper noun. All other words are tagged
with the most common tag, i.e. common noun.

Also more sophisticated methods were tested

to improve the initial tagging. For instance, we
tried to conclude some features based on word
endings. Although this improved accuracy, we
later decided to keep the initial tagger simple.
During the developement work of the learner of
unknown word rules, it became clear that these
types of problems could be better solved by gen-
erated rules than by our manually written rules.

However, one extra feature is part of the final
implementation. It was found that many of the
unknown words are compound words. As a re-
sult, we try to divide the unknown word in such
a way that the last part forms a known word. If
it succeeds, the unknown word is tagged with
the default tag for that word. As an exam-
ple, the unknown word “solstol” is tagged in
the same way as the known word “stol”.
4.4.2 Learning Rules for Unknown

Words

The handling of unknown words was done in the
way suggested by Brill. A program was written
for generating rules instantiated from the rule
templates described in section 3.1. The learn-
ing algorithm is very similar to the algorithm
described in figure 2, with the difference that
only errors concerning unknown words are con-
sidered. Another small difference is the way
of counting good and bad transformations of
a rule. The good and bad counts should only
increase once for each unique unknown word.
This prevents a rule that only corrects the tag-
ging of one unknown word from getting a good
count just because there are many occurrences
of that word. Also, the training corpus must
of course contain unknown words and should
therefore not be part of the corpus used to cre-
ate the dictionary.

The rules for unknown words process words
instead of tags, and therefore the algorithm for
unknown word rules is slower than the algo-
rithm for contextual rules. In addition, tests
showed that it is necessary to generate the rules
in each iteration in this case.
4.4.3 Tagging

The tagging is done in three steps.

1. Initial tagging

2. Application of unknown word rules

3. Application of contextual rules

4.5 System Overview

The class diagram below presents an overview
of the system.
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Figure 5: Class diagram

The system can be divided into two programs.
First the learning algorithm must be run (one
time for each type of rules). After that the rules
are generated and can be used in the program
performing part-of-speech tagging. Learner is
the main class of the learning program and Tag-
ger is the main class of the tagging program. As
can be seen in the class diagram, many classes
are used by both programs.

For clarity reasons some classes are omitted
in the diagram. These include the classes for
specific rule templates along with the WordDic-
tionary and TagDictionary classes used by most
other classes. The rule templates for contex-
tual rules are represented by 13 subclasses to
the class ContextualRule. In the same way the
unknown word rule templates are represented
by 9 subclasses to the class UnknownWordRule.

4.6 Class Descriptions

Learner is the main class of the learning pro-
gram and contains the general learning al-
gorithm. It is an abstract class that re-
quires the subclasses to implement some
parts of the algorithm.

ContextualRuleLearner is a subclass of
Learner and is responsible for the contex-
tual rule learning.

UnknownWordRuleLearner is also a sub-
class of Learner and is responsible for learn-
ing the unknown word rules.

Rule is the superclass of all rules. It contains
the abstract methods instantiate, predi-
cate, evaluate and apply.

ContextualRule is the superclass of all con-
textual rules.

UnknownWordRule is the superclass of all
unknown word rules.

RuleList is a class for maintaining a list of
rules.

CorpusReader is responsible for extracting
words and tags from the manually anno-
tated corpus.

InitialTagger is responsible for the initial tag-
ging of each word with it’s most common
tag. Unknown words are tagged according
to a few simple rules.

Tagger is the main class of the tagging pro-
gram. It takes an untagged text as input
and produces a tagged text as output.

Tokenizer is used by the Tagger to divide the
input text into tokens.

WordDictionary contains all words of the
training corpus. It is used for finding the
most likely tag for a word, investigating if
a word exists and searching for prefixes or
suffixes of words.

TagDictionary is responsible for the transla-
tion between the string and integer repre-
sentation of the part-of-speech tags.

4.7 User Instructions

Before running the learner och tagger programs,
the dictionaries must be created. This is done
by running the two Dictionary classes with
the directory containing the training corpus
passed as an argument. This creates the files
word dict.dat and tag dict.dat which are used
by the other programs. If the corpus is large, it
might be necessary to increase the heap size. An
example is shown below. Note that the package
name

se/lth/cs/BrillTagger

has been omitted in the examples to save space.

java -Xmx256M WordDictionary dir
java -Xmx256M TagDictionary dir

Now the two learning programs can be run.
The directory of the training corpus must be
passed as an argument. It is important that the
training corpus for UnknownWordRuleLearner
has not been used when creating the dictionary.
Files containing the generated rules are created.

java -Xmx256M ContextualRuleLearner dir

java -Xmx256M UnknownWordRuleLearner dir
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Finally the part-of-speech tagger is ready for
use. The argument is a file containing the un-
tagged text. The output is printed to standard
out.

java Tagger file.txt

In order to test the accuracy of the tagger, a
small testing program has been developed. It
works like the Tagger but takes a manually an-
notated corpus as input. That way it can com-
pute the accuracy of the tagging. The test pro-
gram is started with the following command,
where the argument can be either a file or a
directory.

java Test dir

5 Test Results

The implemented tagger has been evaluated by
computing the accuracy of the tagging on a test
corpus of 120 000 words, both with an open and
closed vocabulary. The time to learn the rules
have also been recorded. The tests were per-
formed on a Pentium M 1.4 GHz with 512 MB
of RAM and Windows XP Professional operat-
ing system.

5.1 Rule Learning

The contextual rules were learned in 9 hours
using a training corpus of 470 000 words. The
learner was stopped when 200 rules had been
generated. The dictionary was built using the
whole SUC corpus.

The learner of unknown word rules used a
training corpus of 230 000 words and was fin-
ished after 11 hours and 30 minutes. The whole
SUC corpus except the texts in the training cor-
pus was used to generate the dictionary. The al-
gorithm was stopped after 100 generated rules.

Figure 6 and 7 show the first ten rules learned
by each learner.

5.2 Closed Vocabulary Test

A closed vocabulary means that there are no
unknown words in the text to tag. Therefore
the whole SUC corpus could be used to build
the dictionary.

The results are presented as the percentage
of correctly tagged words after initial tagging,
which is called the baseline, and after applying
the rules. Only the contextual rules are applica-
ble here, since there are no unknown words. As
a comparsion it can be mentioned that an ac-
curacy of 97.0 % was reported by Brill, making
the closed vocabulary assumption.

From tag To tag Condition
IE SN Tag 1, 2 or 3 after is

VB PRS AKT
PN NEU SIN
DEF SUB/OBJ

DT NEU SIN
DEF

Tag 1, 2 or 3 after
is NN NEU SIN DEF
NOM

IE SN Tag 1, 2 or 3 after is
VB PRT AKT

JJ POS
UTR/NEU PLU
IND/DEF NOM

JJ POS
UTR/NEU SIN
DEF NOM

Tag 1, 2 or 3 before is
DT UTR SIN DEF

JJ POS
UTR/NEU SIN
DEF NOM

JJ POS
UTR/NEU PLU
IND/DEF NOM

Next tag is NN UTR
PLU IND NOM

NN NEU PLU
IND NOM

NN NEU SIN
IND NOM

Tag 1 or 2 before is
DT NEU SIN IND

HP - - - KN Tag 1 or 2 after is NN
UTR SIN IND NOM

DT UTR SIN
DEF

PN UTR SIN
DEF SUB/OBJ

Next tag is VB PRS
AKT

DT UTR/NEU
PLU DEF

PN UTR/NEU
PLU DEF SUB

Next tag is VB PRS
AKT

PN NEU SIN
DEF SUB/OBJ

DT NEU SIN
DEF

Tag 1 or 2 after is NN
NEU SIN IND NOM

Figure 6: The first ten contextual rules

From tag To tag Condition
NN UTR SIN
IND NOM

NN UTR PLU
DEF NOM

Suffix is “rna”

DT UTR SIN
IND

NN UTR SIN
DEF NOM

Suffix is “en”

PM NOM PM GEN Suffix is “s”
UO NN NEU SIN

DEF NOM
Suffix is “et”

NN UTR SIN
IND NOM

PC PRS
UTR/NEU
SIN/PLU
IND/DEF NOM

Suffix is “ande”

UO NN UTR PLU
DEF GEN

Suffix is “rnas”

AB NN UTR SIN
DEF GEN

Suffix is “ens”

DT UTR/NEU
PLU DEF

VB PRT AKT Suffix is “de”

JJ POS UTR
SIN IND NOM

NN UTR SIN
DEF NOM

Suffix is “n”

PM NOM NN UTR PLU
DEF NOM

Suffix is “rna”

Figure 7: The first ten rules for unknown words

Baseline: 91.92 %
Final accuracy: 95.18 %

5.3 Open Vocabulary Test

To test the performance of the tagger with an
open vocabulary, the test corpus could not be
part of the corpus used to build the dictionary.
The ratio of unknown words in the test corpus
were 7.44 %. The figures below show the per-
centage of correctly tagged known and unknown
words after the three main steps of tagging.

Accuracy after initial tagging (baseline)
Known words: 90.78 %
Unknown words: 59.67 %
All words: 88.46 %
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Accuracy after applying unknown word
rules
Known words: 90.78 %
Unknown words: 73.37 %
All words: 89.48 %

Accuracy after applying contextual rules
Known words: 94.41 %
Unknown words: 74.70 %
All words: 92.94 %

This can be compared to the accuracy claimed
by Brill. With a baseline of 92.4 %, he reported
accuracies of 96.3 % for all words and 82.0 %
for unknown words.

6 Conclusions

6.1 Optimization

The optimization of the original tagger was very
successful, resulting in a running time almost
200 times faster when using a training corpus
of 23 000 words.

6.2 Handling of Unknown Words

Unfortunately, most of the rules for unknown
words turned out to give very poor results. A
possible reason is that the rule templates were
developed with the English language in mind.
The rule template that gave by far the best re-
sults was the one that changes the tag depend-
ing on the suffix of the word. It resulted in very
reasonable rules like “Change from nominative
to genitive if the word ends with s”.

6.3 The Results

The final result of our work can be summarized
in the figures showing the accuracy of the tag-
ger. The resulting accuracy was computed to
95.18 % and 92.94 %, with a closed and open
vocabulary respectively. These figures are sig-
nificantly lower than the ones reported by Brill.
The main difference between our result and that
of Brill is the baseline, which is much lower in
our implementation (88 % compared to 92 %).
The difference between the baseline and the re-
sulting accuracy is about 4 percentage points for
both implementations. However, it may be dif-
ficult to make comparisons between the two im-
plementations since our is for the Swedish lan-
guage and Brill’s is for English.

7 Further Work

For future extenders of this work, the baseline
will presumably be the focal point of attention.

It may be interesting to examine why the base-
line in this and Brill’s implementation differs
and see if improvements can be made.

A way to further increase the accuracy of the
tagger, would be to introduce the lexicalized
rules also suggested by Brill. It is a set of con-
textual rule templates that make reference to
words instead of tags. However, according to
Brill, these rules only improve accuracy slightly
(0.2 percentage points).

Another interesting task would be to inves-
tigate in what ways the rule templates for un-
known words could be adjusted to make them
more suitable for the Swedish language.
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Appendix - The SUC 1.0 Corpus

Text Categories

The corpus consists of 500 text files, with approximately 2000 words each. Each
file has a unique name, containing information of which category the text falls
under. There are ten main text catagories and each of them has a number of sub-
categories. The distibution of files over the main categories are presented below.

Category Number of files
A. Press, Reportage 44
B. Press, Editorials 17
C. Press, Reviews 27
E. Skills, trades and hobbies 58
F. Popular lore 48
G. Biographies, essays 26
H. Miscellaneous 70
J. Learned and scientific writing 83
K. Imaginative prose 127

Format

The SUC 1.0 corpus is available in two different formats called SUC1A and
SUC1B. The format used in the project and described here is the SUC1A format.

The corpus is divided into text elements generally called tokens. Tokens
are normally words, but also include punctuations, numbers etc. Each token is
tagged with it’s part-of-speech category along with a number of morphosyntactic
features. The base form of the word is also part of the tag. Below is an example
of a tokenized and tagged sentence, with a reference number for each token.
Note that the swedish letters å, ä and ö are encoded }, { and |.

("<Det>" <1142>

(PN NEU SIN DEF SUB/OBJ "det"))

("<{r>" <1143>

(VB PRS AKT "vara"))

("<viktigt>" <1144>

(JJ POS NEU SIN IND NOM "viktig"))

("<att>" <1145>

(IE "att"))

("<inte>" <1146>

(AB "inte"))

("<st|ra>" <1147>

(VB INF AKT "st|ra"))

("<f}glarna>" <1148>

(NN UTR PLU DEF NOM "f}gel"))

("<under>" <1149>

(PP "under"))

("<h{ckningstiden>" <1150>

(NN UTR SIN DEF NOM "h{ckningstid"))

("<.>" <1151>

(DL MAD "."))
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Part-of-Speech Categories

All tags begins with one of the two letter codes representing the part-of-speech.

Code Swedish category Example English translation

AB Adverb inte Adverb
DT Determinerare denna Determiner
HA Relativt adverb när Relative Adverb
HD Relativ determinerare vilken Relative Determiner
HP Relativt pronomen som Relative Pronoun
HS Relativt possessivt pronomen vars Relative Possessive
IE Infinitivmrke att Infinitive Marker
IN Interjektion ja Interjection
JJ Adjektiv glad Adjective
KN Konjunktion och Conjunction
NN Substantiv pudding Noun
PC Particip utsänd Participle
PL Partikel ut Particle
PM Egennamn Mats Proper Noun
PN Pronomen hon Pronoun
PP Preposition av Preposition
PS Possessivt pronomen hennes Possessive
RG Grundtal tre Cardinal number
RO Ordningstal tredje Ordinal number
SN Subjunktion att Subjunction
UO Utländskt ord the Foreign Word
VB Verb kasta Verb

Morphosyntactic Features

Parentheses show that a feature only applies to some members of the part-of-
speech or that not all the values of a feature are applicable.

Feature Value Legend POS where feature applies

Gender UTR Uter (common) DT, HD, HP, JJ, NN, PC, PN,
NEU Neuter PS, (RG, RO)
MAS Masculine

Number SIN Singular DT, HD, HP, JJ, NN, PC, PN,
PLU Plural PS, (RG, RO)

Definiteness IND Indefinite DT, (HD, HP, HS), JJ, NN, PC,
DEF Definite PN, (PS, RG, RO)

Case NOM Nominative JJ, NN, PC, PM, (RG, RO)
GEN Genitive

Tense PRS Present VB
PRT Preterite
SUP Supinum
INF Infinite

Voice AKT Active
SFO S-form1

Mood KON Subjunctive2

Participle form PRS Present PC
PRF Perfect

Degree POS Positive (AB), JJ
KOM Comparative
SUV Superlative

Pronoun form SUB Subject form PN
OBJ Object form
SMS Compound 3 All parts-of-speech

77



78



Morphological parser for Latin

Alexander Malmberg
LTH

d00am@efd.lth.se

Abstract

Morphology describes how words are formed
in a language, for example by adding suffixes
or prefixes to existing words. In some lan-
guages, this process is very productive, and
it is thus important for computational lin-
guistics to be able to handle this. The pur-
pose of a morphological parser is to extract
information from the morphological struc-
ture of a word. In this paper, we examine
this problem and briefly look at the stan-
dard two-level morphology approach of han-
dling it. We also present a basic but working
morphological parser for Latin.

1 Introduction

Morphology is the study of how words are
formed. In many languages, the processes by
which new words are formed are very com-
mon. For example, in English, one can form
compound words, and it is common that plu-
ral forms of words are formed by adding ”s”
to the singular form. Other languages use
other sets of prefixes and suffixes to form
new words from other words, sometimes with
phonological changes (such as ”morpholo-
gies”, where ”ys” turns into ”ies”). Some
languages use infixes or other exotic meth-
ods for forming words.

Systems that want to process text in a lan-
guage need to understand all these words.
A simple and straightforward approach is to
make a dictionary that lists all words. How-
ever, this is ugly from a theoretic point of
view. Many of the methods that form new
words are regular, and it should be possible
to build a model of these methods and use
it.

It is also impractical to list all words, es-
pecially in languages with rich morphological
processes. For example, nearly every Latin

verb has approximately 150 forms, but these
can usually be formed from just three stems.
Even in English, which has relatively poor
morphological processes, listing all words is
unlikely to work in practice. An interesting
example(Sproat, 1992) involved Associated
Press newswire text from a 10 month pe-
riod. Even when the words from all the texts
expect those of the last day of the period
were collected in a dictionary, there were still
many words on the final day that weren’t in
the dictionary. Many of these involved new
forms of words that were in the dictionaries.

Thus, morphology aims at modelling how
words are formed, and the job of a morpho-
logical parser is to extract information from
words using this model. There are many ap-
plications of this, and different applications
need different types of information. One
type would be information about gender,
number, tense, etc., which could be used to
find the meaning of a word, or to aid part-of-
speech tagging. Other applications include
spell checking, or text-to-speech, where mor-
phology can provide information about mor-
pheme boundaries and pronunciation.

2 Two-level morphology

One standard way of writing a morphological
parser is to use so called two-level morphol-
ogy. This was originally done by Kosken-
niemi in the KIMMO system for Finnish.

The first level in two-level morphology is,
roughly, a ”dictionary” with idealized mor-
phological rules. The second level is a set
of phonological rules for rewriting idealized
forms of words into their real forms.

The ”dictionary” can be represented as a
web of tries. A trie is a tree where each
node has a child for each letter. This makes
it possible to find the node for a word effi-
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ciently: just start at the root and recursively
go to the child corresponding to the next
letter. Morphological rules are handled by
connecting many tries; the node for a stem
won’t have children for all the possible end-
ings. Instead, it will have a link to a separate
trie that contains these endings. This way,
only one trie is needed for each (idealized)
paradigm, and it is still possible to find the
node for a complete word efficiently.

The phonological rules are represented as
finite state automatons that accept or reject
a pair of strings. One of the strings would be
a real form of a word, and the other would be
an idealized form as found in the dictionary.
The automaton would accept the pair if the
dictionary form matches the real form.

When parsing words, these two levels run
in parallel. The dictionary trie is searched
recursively starting at the root. At each
node, the idealized form (so far) is compared
to the real form using the automaton to see
if the idealized form might correspond to the
real form. If it doesn’t, the search need not
continue below that node. (Since the phono-
logical rules might include large changes, the
system might have to search a few levels
down dead-ends before the automaton can
reject the pair.)

There are many practical details in imple-
menting such a system, but this is only a
brief description. A more extensive descrip-
tion can be found in my source for this sec-
tion (Sproat, 1992).

3 Morphology in Latin

Morphology in Latin is extensive: nearly ev-
ery word indicates number and gender, there
are many cases, many paradigms, and many
obscure forms of verbs.

However, the structure is fairly simple:
words are formed by adding suffixes to a
stem. There are no phonological rules (ex-
cept some vowel length changes, but since
I’m working with written texts, that doesn’t
affect my parser). Completely new words are
can be formed using prefixes, but these were
included in my dictionary and thus didn’t
cause any problems. Stems are formed in
more complex ways, but again, listing all
stems isn’t hard (e.g. a verb may need 3–
4 stems, but no more).

(It is perhaps worth noting that classic
Latin is a language where it would be possi-
ble to simply build a list of all words. Being
a dead language, no new texts will be writ-
ten in it, so if you collected all words in all
texts, you’d trivially get perfect coverage on
all texts.)

During the work on my parser, I used
primarily two Latin grammar references:
Grammatica Nova (Larsson and Plith,
1992), and Latin Grammar (Conrad, 2004).

4 Morphological parser for
Latin

I wrote a morphological for Latin. It is based
on the dictionary level of the two-level mor-
phology and doesn’t include any phonolog-
ical rules. The trie structure is defined in
trie.h and the main source is in latin1.c.

When the program is, it reads the data
files specified on the command line. Each
data file defines a trie: the words contained
in it, which other tries it links to, and some
other interesting information (e.g. the mean-
ing of a stem, and tense/case/etc. informa-
tion for endings).

The parser function is parse(). The parse
is done in three steps. First, the tries are
searched for the unmodified word.

If no parses are found and the word ends in
”que”, the ”que” is removed and the search
is attempted again. ”que” is a word that
is sometimes attached to other words as a
suffix. Since it can be attached to all kinds
of words, it was convenient to special case
this word here.

If no parses are found in the second search,
the parser tries to parse the word as a roman
numeral.

Writing and debugging the parser was
fairly easy. Most of the time in the project
was spent gathering and working on the data
that the parser uses.

4.1 Data

When the parser is run, it is given a list of
files with data that is used to build and link
together the tries. There are two basic kinds
of tries: stems and endings.

4.1.1 Endings

The ending tries were built by hand by me
using Latin grammar resources (Larsson and
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Plith, 1992) (Conrad, 2004). While it would
have been possible (and straightforward) to
simply make long lists of all endings from a
grammar book, there are many regularities
in the endings, and I tried to exploit this.

As an example, almost all verb forms use
one of three sets of endings to indicate per-
son. Thus, instead of having to list 6 endings
for each combination of verb conjugation,
tense, active/passive, etc., only the first part
of the ending is listed along with a link to
the trie with person endings corresponding
to this combination. (In fact, in some cases
I cheat and do this even when some forms
don’t follow one of the three patterns. In
those cases, I also list the exceptional forms,
so the parser still recognizes all valid forms;
the drawback is that it will also recognize
some ill-formed words.)

With some support for handling phonolog-
ical rules, it would have been possible to ex-
ploit even more near-regularities. Unfortu-
nately, the near-regular endings don’t seem
to follow regular phonological rules. For ex-
ample, the ending for both nominative plu-
ral and genitive singular second declension
nouns is ”-i”. For second declension nouns
whose stems end in ”i”, such as ”gladius”,
the ”ii” in genitive singular is contracted to
a single ”i”, ”gladi”, while the ”ii” in nomi-
native plural isn’t, ”gladii”.

To handle this in a two-level morphology,
it would have been necessary to introduce
new ”magic” letters, e.g. several variants of
”i”, identical except that some would com-
bine with other ”i”:s and some wouldn’t.
Thus, you still wouldn’t really be able to ex-
ploit the regularities since you’d have to ex-
plicitly list which ”i” would be used in differ-
ent endings. To me, this doesn’t appear to
be any nicer than simply listing all endings
from a theoretical point of view.

4.1.2 Stems

The stems were collected from a dictionary
built from the word list of another morpho-
logical parser for Latin (Whitaker, 2004).
This dictionary included over 30000 entries,
and while it was written in traditional dic-
tionary form, it included enough information
about the words to extract the stems and
connect them to my ending tries.

The program gen roots dict 1 parses the

Author Number of words Coverage
Caesar 51624 91%
Vergilius 63748 77%

Table 1: Parser results

dictionary and builds the data files used by
my parser. The program can handle about
25000 of the entries in the dictionary. Ex-
tending the coverage is straightforward but,
at this stage, time consuming since the re-
maining words are spread across many small
paradigms.

5 Results

I tested my parser on ”Commentariorum
Libri VII de Bello Gallico” by Caesar, and
the Aeneid by Vergilius (both texts from
”Corpus Scriptorum Latinorum” (Camden,
2003)). The results are in table 1.

While developing the parser, I tested and
analyzed the results of the parser on parts of
the first chapter of the text by Caesar. These
results were used to guide the development;
they told me which words and paradigms
that would increase coverage the most. Since
the results from the Caesar text was used for
this, this is likely part of the reason why the
coverage is much better on the Caesar text.
Another reason could be that the dictionary
I extracted stems from was, according to its
documentation, originally built using Cae-
sar’s texts.

On average, there were about 2.5 parses
of each successfully parsed word. Many of
these seem to be cases where several differ-
ent genders/cases of a word have the same
ending.

I have examined correctness by man-
ually examining some randomly selected
words, and by systematically testing some
paradigms, and to the limits of my knowl-
edge of Latin, all parses are valid (and usu-
ally, if a word is parsed at all, the correct
parse is among the parses found).
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POS Tagger for Spanish 

Carlos Miguel Gómez Gracia 
 

Héctor Yela Reneses 
 

 

 

 

A continuación vamos a mostrar el 
trabajo obtenido a partir de la realización 
del citado proyecto en la Universidad de 
Lund (Suecia)  la asignatura de Language 
Processing and Computational Linguistics  
(EDA 171). 

 
 

1. Introducción: 
En primer lugar, vamos a dar la 

idea general sobre la que se ha desarrollado 
nuestro proyecto. Para hacer eso, lo primero 
que debemos decir, es que un llamado POS 
Tagger es un programa cuya principal 
función es la de extraer información de un 
Corpus (texto de gran dimensión en el que 
cada palabra presenta información adicional 
de su estructura) para la realización de unas 
estadísticas que podrá utilizar en nuevas 
aplicaciones. 

En nuestro caso, dichas estadísticas 
han sido usadas para encontrar las posibles 
etiquetas de cada palabra en nuevos textos 
(en nuestro caso, las etiquetas serán las 
distintas categorías gramaticales) y elegir la 
más adecuada en cada caso. 

Gracias a esta herramienta, 
mediante un entrenamiento adecuado de 
nuestra base de datos, deberíamos ser 
capaces de etiquetar de forma adecuada 
cualquier frase que pretendamos evaluar. 
Ese entrenamiento será después clave en 
nuestro proyecto, porque podremos 
observar como difieren bastante los 
porcentajes de éxito si el fragmento de texto 
que se pretende etiquetar pertenece o no al 
Corpus que ha servido para entrenar. 

Una vez dadas estas pinceladas que 
dan una idea general del propósito de 
nuestro proyecto, pasamos a explicar de un 
modo más detallado el mismo en los 
siguientes apartados. 

 
2. Desarrollo del proyecto: 

Nosotros hemos tratado, en primer 
lugar, nuestro Corpus. Éste procede del 

departamento de lenguaje natural de la UPC 
(Universidad Politécnica de Cataluña).  

La estructura del mismo constaba 
de una palabra por línea en la que aparecían 
de modo sucesivo la propia palabra original 
del texto, la palabra raíz de la que procede 
la misma y un conjunto de etiquetas en el 
que se podían identificar algunas de las 
propiedades de las palabras, como son su 
categoría gramatical, el género al que 
pertenecen o su número. En el caso de que 
la palabra fuese una forma verbal, también 
podíamos identificar su propio tiempo 
verbal. Algunos ejemplos de esta forma 
original del Corpus que estamos 
explicando, podrían ser: 

 
No No RN 
Quiero querer VMIP1S0 
Decir decir VMN0000 

 
En cualquier caso, para el propósito 

que le hemos asignado a este proyecto, nos 
ha sido suficiente con utilizar solamente las 
primera letra de cada una de estas etiquetas 
originales, que es la que nos indica la 
categoría gramatical a la que pertenece la 
palabra presente en el texto. De este modo, 
hemos podido distinguir los diferentes tipos 
de palabras que, según su etiqueta, nos 
encontraremos a la hora de hacer el análisis. 
Han quedado como sigue: 

 
A Adjetivo 
S Preposición 
N Nombre 
V Verbo 
R Adverbio 
D Determinante 
Y Abreviatura 
I Interjección 
P Pronombre 
Z Números 
C Conjunción 
F Puntuación 
X Desconocido 
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W Fechas 
 

Una vez que fue definida con 
precisión la parte del Corpus sobre la que 
íbamos a trabajar, se procedió a recoger 
datos que resultaran de interés para los 
posteriores cálculos de probabilidades. De 
este modo, fueron cuatro los elementos que 
decidimos almacenar en nuestra base de 
datos: 

 
• C(w): Número de ocurrencias de la 

palabra w. 
• C(t): Número de ocurrencias de la 

etiqueta t. 
• C(w, t): Número de ocurrencias de la 

palabra w etiquetada con t. 
• C(t1, t2): Número de ocurrencias del 

bigrama de etiquetas (t1, t2), que 
consiste en la aparición de una palabra 
etiquetada con t1, seguida de otra 
etiquetada con t2. 

 
Algunos ejemplos del cálculo del 

número de palabras en el Corpus son estos: 
 

3  corral 
5  corre 

3  correcto 
1  corrector 

10  corredores 
3  corren 
3  correr 

1  correrse 
9  corresponde 

 
También mostramos a continuación 

un ejemplo de la distribución de las 
etiquetas contabilizadas en un fragmento 
del Corpus, donde se puede ver como 
algunas de ellas aparecen muchas mas 
veces que otras. 

 
A 7886 
C 6660 

N 22254 
P 6249 
R 5514 
S 14216 
V 13795 
W 207 
Z 233 

 
Una vez que fuimos capaces de 

realizar correctamente la contabilización de 
palabras y etiquetas, procedimos a aplicar 
alguna de las fórmulas que nos habían sido 

proporcionadas durante el curso para el 
cálculo de diversas probabilidades. De este 
modo, y debido a que tras una reunión con 
el profesor que ejercía como tutor de 
nuestro proyecto decidimos usar el 
algoritmo de Viterbi, las probabilidades que 
calculamos fueron las siguientes: 

 
• Probabilidad de transición: 

P(ti | ti-1) = C(ti-1, ti) / C(ti-1) 
• Probabilidad de estado para palabras 

conocidas: 
P(wi | ti) = C(wi, ti) / C(ti) 

• Probabilidad de estado para palabras 
desconocidas: 
P(wi | ti) = 1 

 
Este algoritmo de Viterbi del que 

hemos hablado, determina el camino 
subóptimo que debe seguir para cada nodo 
en el autómata, descartando el resto de 
nodos, mientras lo atraviesa. Esta autómata 
es el que se construye teniendo en cuenta 
las posibles etiquetas que pueden presentar 
las palabras ambiguas del texto. 

En el proyecto desarrollado, la 
probabilidad de transición que hemos usado 
se ha calculado mediante bigramas, por lo 
que nuestro porcentaje de acierto cuando 
aparecen palabras desconocidas ronda el 
80%. En el caso de que hubiésemos usado 
trigramas para su cálculo, este resultado 
hubiese mejorado hasta el 90% 
aproximadamente. 

Además de los cálculos de los 
que he hablado, para elevar el porcentaje de 
acierto al etiquetar las palabras, hemos 
usado también un conjunto de simples 
reglas que en castellano se pueden aplicar 
de un modo sencillo, pero que serían muy 
difíciles de identificar en el tipo de análisis 
que habíamos desarrollado. Unos de los 
casos más complejos de este tipo que 
hemos encontrado es el de la palabra “que”. 
Es un caso muy común su uso en cualquier 
texto en castellano y no resulta nada fácil 
distinguir con simples estadísticas cuando 
debemos identificarlo como un pronombre 
o como un determinante. Por ello, al hacer 
un análisis de cuáles eran las palabras en las 
que más errores se producían, pudimos ver 
que ésta era con bastante diferencia la que 
más problemas daba. Aún así, y a pesar de 
la introducción de estas reglas todavía sería 
necesario hacer un análisis gramatical mas 
profundo para su correcto etiquetado. 
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3. Análisis del código 

Básicamente lo que hace nuestro 
código es analizar el corpus adquiriendo 
estadísticas, uno de los programas analiza 
todo el corpus mientras que el otro omite 
analizar la parte que luego usaremos como 
comprobante. 

Una vez obtenidas estas 
estadísticas, que luego servirán para 
calcular probabilidades, utilizaremos el 
algoritmo de Viterbi para ir etiquetando las 
palabras con su correspondiente etiqueta. 

Finalmente comprobamos con la 
parte del texto que hemos elegido, el 
porcentaje de acierto y, en el caso de que 
existan palabras desconocidas, calculamos 
el porcentaje para los dos tipos de palabras. 

Todo este código del que estamos 
hablando ha sido estructurado de un modo 
claro y ordenado, de modo que cualquier 
posible ampliación que se desee realizar 
sobre el mismo no precise mas que un 
simple vistazo a los comentarios que en 
cada fragmento del mismo hemos situado. 
Este hecho también nos ha sido de gran 
ayuda durante la realización del proyecto, 
para tener claro en todo momento el lugar 
en el que realizábamos cada operación 
sobre el Corpus.  

Sirva como ejemplo de la 
adecuada estructura del código alguna de 
sus partes: 

 

 
 

($ini, $end) = @ARGV; 
@mytags = ('A', 'R', 'D', 'N', 'V', 'I', 'Y', 'S', 'P', 'Z', 'C', 'F', 'X', 'W'); 
open(FILE, "corp.txt") || die "Could not open file corp.txt"; 
$cnt = 0; 
$auxiliar = ""; #fragmento con las palabras sin etiquetar 
$comprobante = ""; #fragmento para comprobar tags 
 
 
#COMPROBAMOS QUE LOS ARGUMENTOS SEAN CORRECTOS 
if($ini < 0 || $end >= 106124 || $ini >= $end){ 
 print "There is a wrong with the arguments\n"; 
} 
 
else{ 
 #RECORREMOS EL FICHERO, OBTENEMOS EL TROZO A ANALIZAR Y 
LLENAMOS LA BD 
 while ($line = <FILE>){ 
  @linea = split(/ /, $line); 
   
  #CAMBIAMOS LAS MAYUSCULAS POR MINUSCULAS EN LA PALABRA 
  $linea[0] =~ tr/A-ZÅÀÂÄÆÇÉÈÊËÎÏÔÖÙÛÜ/a-
zåàâäæçéèêëîïôößùûüÿ/; 
   
  #OBTENEMOS EL TAG DE LA PALABRA 
  @palabra = split(/ */, $linea[2]); 
   
  #OBTENEMOS LA FRECUENCIA DE CADA PALABRA 
  if(!exists($words{$linea[0]})){ 
   $words{$linea[0]} = 1; 
  } 
  else{ 
   $words{$linea[0]}++; 
  } 
  
  #OBTENEMOS LA FRECUENCIA DE CADA TAG 
  if(!exists($tags{$palabra[0]})){ 
   $tags{$palabra[0]} = 1; 

85



  } 
  else{ 
   $tags{$palabra[0]}++; 
  } 
   
  #OBTENEMOS LA FRECUENCIA DE LA DUPLA PALABRA TAG 
  if(!exists($wordandtag{"$linea[0] $palabra[0]"})){ 
   $wordandtag{"$linea[0] $palabra[0]"} = 1; 
  } 
  else{ 
   $wordandtag{"$linea[0] $palabra[0]"}++; 
  } 
   
  #OBTENEMOS LAS FRECUENCIAS DE BIGRAMAS DE TAGS 
  if($cnt != 0){ 
   if(!exists($bigramtag{"$tagant $palabra[0]"})){ 
    $bigramtag{"$tagant $palabra[0]"} = 1; 
   } 
   else{ 
    $bigramtag{"$tagant $palabra[0]"}++; 
   } 
  } 
   
  #OBTENEMOS LAS FRECUENCIAS DE TRIGRAMAS DE TAGS 
  if($cnt > 1){ 
   if(!exists($trigramtag{"$tag2ant $tagant $palabra[0]"})){ 
    $trigramtag{"$tag2ant $tagant $palabra[0]"} = 1; 
   } 
   else{ 
    $trigramtag{"$tag2ant $tagant $palabra[0]"}++; 
   } 
  } 
   
  #OBTENEMOS LAS FRECUENCIAS DE (W1,T1,T2) 
  if($cnt != 0){ 
   if(!exists($mixgramtag{"$wordant $tagant $palabra[0]"})){ 
    $mixgramtag{"$wordant $tagant $palabra[0]"} = 1; 
   } 
   else{ 
    $mixgramtag{"$wordant $tagant $palabra[0]"}++; 
   } 
  } 
   
  #LLENAMOS EL FRAGMENTO SI ES NECESARIO 
  if($cnt >= $ini && $cnt <= $end){ 
   $comprobante .= "$palabra[0]\n"; 
   $auxiliar .= "$linea[0] ";  
  } 
   
  #GUARDAMOS LA ULTIMA PALABRA DEL FRAGMENTO PARA SABER SI 
ES UN PUNTO 
  if($cnt == $end){ 
   $ultima_palabra = $linea[0]; 
  }  
   
  $tag2ant = $tagant; 
  $tagant = $palabra[0]; 
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  $wordant = $linea[0]; 
  $cnt = $cnt + 1; 
 } 
  
  
 #METEMOS EN WORDANDTAG PARA CADA PALABRA LA LISTA DE TAGS 
POSIBLES 
 #CUIDADO LUEGO CON LAS PALABRAS SIN TAG; LAS UNKNOW!!!!!!! 
 foreach $word (sort keys %words){ 
  $lineatags = ""; 
  for ($j = 0; $j <= $#mytags; $j++){ 
   if(exists($wordandtag{"$word $mytags[$j]"})){ 
    $lineatags .= "$mytags[$j] "; 
   }    
  } 
  $tagsforword{$word} = $lineatags; 
 } 
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4. Resultados 

Una vez explicado como hemos 
calculado las diversas probabilidades para 
realizar un etiquetado correcto y el 
algoritmo usado, ya podemos explicar que 
han sido 2 los programas que hemos 
elaborado en nuestro proyecto. 

Por una parte, el primero lo que 
hace es introducir todo el Corpus en la base 
de datos para, posteriormente, proceder a 
analizar una parte del mismo en el que no 
se van a encontrar palabras desconocidas. 
Es el fichero llamado POSinc.pl y los 
resultados obtenidos por él se acercan al 
98% de etiquetados correctos. Para invocar 
a dicho programa es necesario hacerlo del 
siguiente modo: 

 
perl –w POSinc.pl lineIn lineOut > exit.txt 

 
 En el otro programa llevado a 

cabo, el texto es entrenado por una amplia 
parte del Corpus para después analizar la 
parte restante, apareciendo de este modo 
palabras desconocidas. El porcentaje de 
éxito roza el 80% y esta en el fichero 
llamado POSdestex.pl. La manera de 
invocar este programa es: 
 
perl –w POSdestex.pl lineIn lineOut 
>exit2.txt  

 
Este último además nos devuelve 

el porcentaje de aciertos de las palabras 
conocidas y el de las desconocidas por el 
trainer. Para las palabras conocidas el 
porcentaje ronda el 88% y para las 
desconocidas el 25%.  

 
5. Conclusiones y posibles mejoras 

De nuestro experimento y de los 
resultados obtenidos podemos deducir que 
un POS que funciona con bigramas y sin 
casi tratamiento para  las palabras 
desconocidas es una buena herramienta 
pero no óptima, ya que con un tratamiento 
sobre esas palabras desconocidas de las que 
solo acertamos una cuarta parte ahora y con 
una leve mejoría sobre las conocidas 
(posiblemente con trigramas, aunque se 
podria dar el caso que los porcentajes no 
mejorasen acordes con el esfuerzo y la 
complejidad requerida para utilizarlos) 
podríamos aumentar nuestra efectividad 
quizás hasta un 90%. 

Todo y así necesitaríamos de un 
corpus mayor para conocer el alcance de 
nuestros resultados y poder trabajar en una 
posible mejora, habría también que 
comparar los resultados de nuestro proyecto 
empleado sobre otras lenguas, ya que 
quizás el castellano es una lengua más 
sencilla de Taggear que el inglés. 

En cualquier caso, la conclusión 
que nosotros podemos sacar tanto de la 
realización del proyecto en sí, como del 
conjunto de la asignatura, es muy positiva, 
ya que ninguno de los dos habíamos tenido 
anteriormente experiencia alguna con el 
lenguaje de programación PERL y en 
España no se utiliza de un modo común.  

De hecho, las herramientas que 
habíamos podido llegar a usar para tratar 
textos eran algunas como Lex, Yacc o 
Visón, y siempre en asignaturas que tenían 
una estrecha relación con el mundo de los 
compiladores, nunca con el fin que le 
hemos aplicado en este proyecto.  
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Abstract

A Part-of-Speech (POS) tagger is a tool that
automatically  resolves  the  ambiguities  that
would occur if a text was tagged with the help
of a dictionary. Automatic tagging of texts is
used in many applications (grammar checkers,
etc.), and quite high accuracy can be achieved.
This  document  describes  a  stochastic  POS
tagger  that  uses  a  unigram  version  of  the
Viterbi algorithm. The overall idea behind the
stochastic  POS  tagger  and  the  Viterbi
algorithm is also described.
The unigram tagger is evaluated using a small
corpus of just below 100 000 words, and the
results  indicate  that  a  larger  corpus  would
have yielded greatly improved accuracy.

1 Introduction

There are many applications that needs a text to
be tagged with Parts-of-Speech (POS), the lexical
categories  of  words  and  symbols  in  a  text,  and
there are several ways to do this tagging. The most
primitive  approach is  to determine the  POS of a
word  by  looking  it  up  in  a  dictionary.  This
unfortunately leaves us with a lot of ambiguities,
since  many  words  have  more  than  one  possible
POS.

Early POS taggers resolved these ambiguities by
using hand coded rules, but writing these rules is
both  time  demanding  and  complex.  Newer  rule
based  taggers  derives  rules  automatically  from a
hand annotated corpus.

Other POS taggers uses stochastic models. The
ambiguities  is  resolved  using  statistics,  derived
from a hand annotated corpus. The probabilities of
the  possible  tag  sequences  of  a  given  word
sequence  is  calculated,  and  the  one  with  the
highest probability is chosen. This is approximated
using  N-grams  (bigrams  and  trigrams  mainly),
since statistics of long sequences is impossible to
obtain.

The Viterbi  algorithm can be used to optimize
the probability calculation of the tag sequences by
discarding sub-sequences  that  can  not  be  part  of
the tag sequence with the highest probability. This
makes  the  stochastic  POS  tagger  less  time  and

memory  consuming  than  if  it  would  have  to
calculate all possible paths.

This  document  describes  a  stochastic  POS
tagger,  using  the  Viterbi  algorithm.  The  current
implementation uses only unigrams, which makes
the result noticeably less correct than a bigram or
trigram implementation.

Chapter  two describes  the POS tagger with its
statistics and probabilities. In the third chapter the
Viterbi algorithm is described, and in chapter four
the results are discussed.

2 The POS tagger

2.1 Statistics

All  statistics  are  derived  automatically  from a
hand annotated corpus.  This  training of the  POS
tagger  only  needs  to  be  done  once,  since  the
statistics is saved to file to be used when tagging.
The statistics derived is:

Cn – The number word tokens.
C(w,t) – Occurences of word w tagged with t.
C(t) – Occurences of the tag t.
C(t1,t2) – Occurences of the tag bigram t1,t2.
C(t1,t2,t3) – Occurences of the tag trigram t1,t2,t3.

Since  the  current  implementation  only  uses
unigrams, no bigram or trigram statistics is saved,
as  would  be  the  case  in  a  more  advanced
implementation.

2.2 Probabilities

The probability of a tag sequence  T for a given
word sequence is:

P T P W∣T 

That is, the probability of the tag sequence in it
self  multiplied  with  the  probability  of  the  word
sequence  knowing  the  tag  sequence.  The  tag
sequence with the highest probability is chosen to
tag the word sequence with.

The  probabilities  P(T) and  P(W|T) are
approximated using N-grams, most often trigrams,
backing off to bigrams (and unigrams) in the case
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of missing data. The trigram approximations of the
probabilities are:

P T ≈P t1P t2∣t1∏
i=3

n

P t i∣t i−2 , t i−1

P W∣T ≈∏
i=1

n

P wi∣t i

These  probabilities  are  estimated  with  the
statistics from the hand annotated corpus:

P t i=
C t i

C n

P t i∣t i−1=
C t i−1 , t i
C t i−1

P t i∣t i−2 , t i−1=
C t i−2 , t i−1 , t i
C t i−2 , t i−1

P wi∣t i=
C wi , t i
C t i

Since  the  current  implementation  only  uses
unigrams,  the  probability  P(T) is  approximated
further, on the expense of less correct tagging. The
unigram approximation of P(T) is:

P T ≈∏
i=1

n

P t i

The  resulting  unigram  approximation  of  a  tag
sequence is:

P T P W∣T ≈∏
i=1

n

P t iP wi∣t i

The  unigram  approximation  only  selects  the
most common tag of a word, and does not take any
previous  tags  into  consideration  when  selecting
tags.

3 The Viterbi algorithm

The  Viterbi  algorithm  is  a  dynamic
programming algorithm that optimizes the tagging
of  a  sequence,  making  the  tagging  much  more
efficient in both time and memory consumption.

In a  naïve  implementation  we would calculate
the probability of every possible path through the
sequence  of  possible  word-tag  pairs,  and  then
select the one with the highest probability.  Since
the number of possible paths through a sequence
with a lot of  ambiguities can be quite  large, this
will  consume  a  lot  more  memory  and  time than
neccesary.

Since the path with highest probability will be a
path that only includes optimal subpaths, there is
no  need  to  keep  subpaths  that  are  not  optimal.
Thus the Viterbi algorithm only keeps the optimal
subpath  of  each  node  at  each  position  in  the
sequence, discarding the others.

4 Results

The  tagger  was  tested  with  a  corpus  of  just
below 100 000 Swedish words. The original idea
was  to  test  it  with  the  full  corpus  (with
approximately  1.2  million  words),  but  this
unfortunately  proved  to  be  too  time  demanding,
both  when  training  the  tagger  and  when  the
statistics was loaded before tagging.

A  test  set  of  just  below  25  000  words  was
tagged by the tagger, that had been trained on the
small (100 000 words) corpus, and the results were
compared with a copy of the test set that was hand
annotated. The tagger was able to tag 74.6% of the
words correctly, which is  way below what could
be  expected.  As  a  comparison,  Sjöbergh  (2003)
report an 87.3% accuracy when using an unigram
tagger trained on a corpus of 1.1 million words.

The  reason  for  this  difference  in  accuracy  is
probably  mainly  because  of  sparse  data,  many
words  in  the  test  set  are  not  found in  the  small
corpus,  and  this  is  not  handled  by  the  tagger.
71.6% of the erroneous taggings were, as a matter
of  fact,  tagged  with  the  tag  UKN, which  means
that  the tagger was not able  to find any possible
tags  for  that  word.  This  indicates  that  a  larger
corpus would have given a result closer to that of
Sjöbergh (2003).

5 Conclusion

The implemented POS tagger only uses unigram
probabilities, which means that it never takes any
sequence  of  tags  into  consideration,  only  selects
the most common tag of a word. It does not try to
tag unknown words in any way, it just tags them as
UKN,  unknown,  and  it  was  trained  on  a  small
corpus of just below 100 000 Swedish words. But
with  the  limitations  of  both  the  tagger  and  the
small  corpus  in  mind,  it  gave  relatively  good
results, 74.6% correct tagged words.

The large  percentage,  71.6%,  of  the  erroneous
taggings, that were tagged with the tag for unseen
word, indicates that a larger corpus would give a
higher  percentage  of  correctly  tagged  words.  A
faster version of the tagger would have been able
to be trained on the larger corpus, but the current
version would have taken days to process it.

Extending  the  tagger  to  use  bigrams  and
trigrams would also improve the correctness, and
would  be the  next  natural  step.  This  would  take
sequences  of  tags  into  consideration,  which  is
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important in natural languages.
The handling of unseen words is non-existent in

the  current  implementation,  and  even  a  naïve
algorithm to handle this would improve the results.
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Abstract
This paper describes a prototype system im-
plemented for verifying the correctness of
all verb-preposition-collocations found in a
given text. The verification is done using
statistics from the world’s largest corpus -
the Internet. The tool used for obtaining
these statistics is the Google Web APIs ser-
vice1. The probability of correctness is com-
puted according to the concepts of propor-
tional score, t-score and mutual information.

1 Introduction
1.1 Preface

Almost each and every one of us has tried to
learn a foreign language at some point in our
lifes, being more or less successful in doing
so. The obstacles that one has to conquer
in the process of learning a natural language
are more or less complex, depending on ones
mother tongue, learning ability, other lan-
guages of which one already has command
etc. What should a person do when ex-
posed to a new, unfamiliar expression? Try-
ing to express something in German, linguis-
tic rules valid for English could always be
applied. A word-for-word translation could
also be tried. The attained result might be
acceptable, but in most cases it would not.
Regarding fixed expressions, or collocations,
one can almost be sure of the non-feasibility
of a literal translation. Collocations have of-
ten a very long history and can be very spe-
cific for the given language. They are linguis-
tic entities that one has to learn by heart, or
continue to be ignorant. In this paper I con-
centrate on the collocations of a verb and a
preposition, e.g. “depend on”. The following
sections describe the prototype of an appli-

1Google Web APIs service.

cation helping the user in checking if such
a collocation was written correctly or not.
The lexicon used for verification is the Inter-
net and the tool employed is Googles Web
APIs service. As measures for the proba-
bility of correctness, the concepts of propor-
tional score, t-score and mutual information
are applied.

In the following, whenever the word collo-
cation is stated, it will have the meaning of
verb-preposition-collocation only.

1.2 Background

In order to verify the correctness of a col-
location, one could ask a native speaker of
that language, but after a while he would
get tired of being asked these things over and
over again. Instead, one might try consult-
ing a dictionary, or checking the frequency of
the collocation in a large text corpus. This
last alternative is what the application im-
plemented in this project makes use of. The
corpus used for verification is the largest co-
hesive and searchable existing for the time
being - the Internet. Using any search engine
on the Web, one can look up the collocation
in doubt, and check the amount of hits gen-
erated. Then the process could be repeated,
substituting another preposition for the orig-
inal one. Applying the concept of propor-
tional score, the conclusion would then be
that the proper preposition to be used in
that collocation is the one generating most
hits. In the next section this very method,
together with two others, will be described.

Google, known for its popular search en-
gine, provides a service for software devel-
opers, allowing the applications of each of
them to state 1000 automated queries per
day. This service offers many of the options
found in the original Web-based search en-
gine of Google’s. In this project, the Google93



Web APIs service is used constructing a java-
application for checking the collocations in a
text.

2 Approach

2.1 System

The sentences one would like to verify should
be saved in a text file and tagged using a
part-of-speech tagger (e.g. the MXPOS Tag-
ger2, as done in this project). The input
fed to the java-program implemented in this
project is a tagged text file. The application
recognizes as verbs all the words labeled with
either of the tags VBZ, VBN, VBG, VBP
and as prepositions all the words labeled
with the tag IN (these are the tags used by
the MXPOST). The probability for each col-
location found is then calculated using one
of the three scoring methods described be-
low and the figures obtained using Google’s
Web APIs service.

The result is then sent to the standard out-
put. The printout presents the probability
for the collocation with the original preposi-
tion. Additionally, if there is a preposition
giving higher probability, it is suggested as
the more proper one. Otherwise, the second
best preposition is presented along with the
original one.

2.2 Obtaining Probabilities

When calculating the probability of a col-
location (e.g. “depends on”) being correct,
the following figures have to be known:

c(v), the amount of hits for the verb
”v” (“depends”);

c(pi), the amount of hits for the preposition
“pi” (“on”);

c(v, pi), the amount of hits for the ex-
pression “v pi” (”depends on”).

The collocation (consisting of the verb
v and the preposition pi) considered to be
the most correct one is the one having the
largest probability πi, which is defined as

2Maximum Entropy Part-Of-Speech Tagger.

πi = score(v,pi)∑
j

score(v,pj)

where

∑
i πi = 1

The list of prepositions considered by the
application is

L = {as, at, by, for, from, in, of
off, on, than, to, upon, with}

Figures for each of those prepositions
are obtained just once, in one of the initial
steps of the algorithm.

The number N , representing the total
number of words in English texts on the In-
ternet is roughly estimated to equal around
11 billion. This figure is obtained by check-
ing the frequency of such words as “in”, “on”
and “of” in a large, fixed-size text corpus,
then checking the amount of those words on
the Internet, multiplying the both figures for
each word, and taking the average among all
of them.

2.3 Scoring Methods

The application uses one of the three most
common scoring methods for calculating the
probabilities.

2.3.1 Proportional Score

The proportional score is the same as the
amount of hits obtained for the collocation,
that

scorep(v, pi) = c(v, pi)

2.3.2 T-Score

The t-score is defined by

scoret(v, pi) =
c(v,pi)− 1

N
c(v)c(pi)√

c(v,pi)

The t-score shows in what extent the asso-
ciation between two words v and p is non-
random. In case of a high t-score, the result
can be assumed to be quite confident.94



2.3.3 Mutual Information

The mutual information is defined by

scoret(v, pi) = log2 N c(v,pi)
c(v)c(pi)

The mutual information puts the probability
of observing the collocation “v p” in com-
parison with the probabilities of observing v
and p independently. This implies that if the
collocation occurs often compared with the
occurrence of the words v and p, it should
be considered as probable.

3 Examples
The following sentences are examples of
those used for verification of the system.

1. The weather depends on the climate.

2. The rate depends of the initial values.

3. The health of children depends at least
partially on their access to health ser-
vices.

4. Lato was substituted for Maradona.

5. The luxurios champagne was substi-
tuted with less expensive, but even more
sofisticated bavarian wheat beer.

4 Results
The final results obtained for the sentences
from the previous section were the same
for each method, although the probabilities
differed widely.

1. The weather depends on the climate.

Method c t m
Probability (%) 77 48 27

Second best: depends upon

Method c t m
Probability (%) 16 22 23

2. The rate depends of the initial values.

Method c t m
Probability (%) 1 4 8

Suggestion: depends on

Method c t m
Probability (%) 76 49 27

3. The health of children depends at
least partially on their access to health
services.

Method c t m
Probability (%) 0 1 2

Suggestion: depends on

Method c t m
Probability (%) 76 48 27

4. Lato was substituted for Maradona.

Method c t m
Probability (%) 50 29 18

Second best: substituted by

Method c t m
Probability (%) 18 18 15

5. The luxurios champagne was substi-
tuted with less expensive, but even more
sofisticated bavarian wheat beer.

Method c t m
Probability (%) 12 14 14

Suggestion: substituted by

Method c t m
Probability (%) 49 29 18

The most time-consuming part of the pro-
gram is the communication with Google. If
this procedure could be made faster, it would
actually be feasible to include this feature
into some word-processing software in order
to make it easier to process a larger mass of
text.

5 Discussion

As seen in the previous section, all the three
methods delivered exactly the same results.
The single issue that differs between them95



is the confidence in the result being unques-
tionably correct.

Using the proportional score, the result
space contains in each case a single signif-
icant peak, making it easy to distinguish the
correct (according to this method) preposi-
tion.

The mutual information delivers several
peaks having similar values, the highest of
them still being the correct solution.

The level of confidence of the t-score
method lies somewhere in-between the two
others.

The third sentence is actually erroneous,
although the system finds it to be correct.
This is due to the fact that the sentence con-
sists of a principal clause (The health of chil-
dren depends on their access to health ser-
vices.) and a subordinate clause (at least
partially) and the commas are left out in
the source file. Even if the commas would
be there, Google does not make any differ-
ence between ”depends at” and ”depends,
at”, thus the results would be identical.

It is free for anyone to construct a webpage
of his own, in the language and with the con-
tents of his choice. Due to this nature, the
Internet contains a lot of noise. This con-
tributes to the fact that much of the virtual
substance, the collocations in general, con-
tains grammatical errors.

The errors observed in the contents of a
webpage are correlated with the native lan-
guage of its author. It his highly probable,
that the members of a language group make
the same mistakes, applying for instance the
concept of literal translation of expressions
and collocations. If the language group is
large, the texts produced by its members
could cause significant noise, as it is corre-
lated. The largest noise peaks will probably
origin from such large languages as Spanish,
French and Chinese, whereas the noise pro-
duced by members of minor language groups
would not be significant, although notice-
able. Since the mass of English text con-
structed by its native speakers is much larger
than the single native groups’, this noise
should not reach the amplitude of the real,
correct signal.

The situation would look somewhat dif-
ferent if our language of interest would be

other than English. A small language is al-
ways strongly exposed to such noise, because
one false entry makes a large contribution to
the total corpus in this tongue.

There are always errors made by the na-
tives as well, but this should not be corre-
lated enough to give peak noise, it would
rather be an amplification of the basic noise
level. If an error convicted by the native
speakers would become significant, it should
rather be considered as synonym with the
original one rather than incorrect.

The system is partly optimized in order to
delimit the processing time and the amount
of requests to Google. The check of the
amount of hits for the single prepositions is
done only once, at the startup of the sys-
tem. Still, one run is performed for the verb
and the collocation for each sentence, even
if they have been checked before. The sys-
tem could be modified to remember previous
searches in order to save time and enquiry-
credits. Such a procedure would though in-
crease both the memory space needed and
the internal running time of the system.
However, the large limitation of the costly
server connection-time would cause the net
save in running time to be positive.

The system is easily extended to cover
other scoring methods. Constructing a sub-
class to the already written one and adding
the desired methods is all that is needed.

Since Google’s search service is not limited
to searches in the English language only, the
system could easily be modified in order to
handle almost any other tongue. The issue
of tagging the text remains, though part-
of-speech taggers for several different lan-
guages are available on the Internet itself.
The tags indicating the verbs and the prepo-
sitions would have to be the same as used by
the MXPOS tagger, otherwise the method
extracting the collocations would have to be
overwritten.

6 Conclusions

As we could see, the system arrives at the
correct conclusions for each of the examples
used for verification. Although, the exam-
ple space is small and extended testing is
required in order to obtain the confidence-
statistics for the system.96



It is also necessary to develop a model,
which would combine the results yielded by
all the methods. For example, in case of the
three methods having the same outcome (as
in the examples presented in section 5), the
delivered answer could be considered to be
certain.

The essential conclusion is that, using the
Internet as language source and Google’s
APIs service as searching tool, it is possible
to construct an effective linguistic assistant,
not only for English, but also for almost any
language. Such an application must also not
be limited to handle mere verb-preposition-
collocations, but also other expressions, or
even spell checking. To make such a system
practical, one would have to incorporate the
system into word-processing software. This
would make it much easier and faster to ac-
cess. To increase the speed even further,
the server connection time would have to be
delimited in order to yield a feasible run-
ning time. This could be solved by keeping
a local record storing previous searches. It
would also be necessary to higher the limit
of searches allowed, as a standard-size text
would require many more than 1000 queries.
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