
HMS2005: Predictive text entry using bigrams

Myrtille Dedianne and Robert Nilsson

17th January 2005

Abstract

Nowadays, hundred millions of SMS are sent every-
day all around the word and become common in
our everyday-life. Then, the efficiency of text entry
method in mobile phones is more and more impor-
tant. As a previous team project already worked
on, in order to improve it by using bigram predic-
tion, we decided to continue their work and improve
it. In this paper, we describe the system, which is
called HMS[3], and how we improved it. This im-
proved version will be called HMS2005. Firstly, the
code was reviewed to make it work in English or
in whatever language. Secondly, the code was re-
viewed to make it work quicker and usable. Finally,
we added a key, which stops the prediction and falls
back to T9 when typing. For the tests, we involved
7 international persons and measured the time and
the number of key pressed needed to entry a text.
We showed that keys pressed needed were reduced
of 20%, but time-consuming was increased of 15%.
However, we noticed a difference between people
who were or not trained by the new system, which
can false the final results. This could be measure
in good conditions of a real experience.

1 Introduction

To enter SMS with our mobile phones, we use to use
methods we are offered, like T9. But these are not
perfect yet and can be optimized to be more usable,
more flexible, more efficient, easier to learn, quicker
type a SMS message, with less stress etc.

We chose to work on this subject in order to im-
prove the way to write SMS messages. A previ-
ous team of 3 Swedish students (Hasselgren, Mont-
nemery, Svensson) have had already worked on it
in this course and their system was named HMS
[3]. We studied how they built it and how to im-

prove it. Our improved version is called HMS2005
and can be found as an applet at this address:
http://www.orbstation.com/hms2005.

After, we analysed the different methods already
existing and began to code.

2 Evolution of different meth-
ods

With a keyboard of 12 keys, we can measure the
efficiency of different methods using the number of
keystrokes per character or KSPC[4] and the time-
consuming to entry the text.

Since the beginning of SMS messages, several
predictive text entry methods were developed, in
order to improve the efficiency of the multi-press
method. In this method, the user has to press once
a key to type the first letter of the key, twice for the
second, three times for the third et cetera. It is still
used but requires more than one of keystroke per
character and takes time. We will present 3 other
predictive text entry methods.

2.1 T9, by Tegic

This method is a single-press method using uni-
grams. The user presses once key per character
and the program matches the sequence to words
in a dictionary. In many cases, only one word is
possible given the sequence, otherwise, a list with
other possibilities is suggested and the user chooses.
The KSPC is then reduced roughly to 1 and is less
time-consuming, whereas the beginning of using it
is quite disturbing. Many mobile phones use this
method nowadays.

But other implementations are iTAP by
Motorola[2] and eZiText by Zi Corporation[1],
which suggest the next word you intend to type.

1



2.2 HMS (for Swedish), Lund Insti-
tute of Technology, Sweden

This method is a single-press method using uni-
grams and bigrams, i.e. two consecutive words[3].
It was developed by 3 students of LTH, Lund (Swe-
den), and uses context. Typing a sequence of
keys, the system considers the previous constant
word typed, matches it in the dictionary of bigrams
(which gives the most frequent words which can
follow this word), and gives in real-time the en-
tire word it could be. In this implementation, the
bigrams are always prioritized over the unigrams.
Available for Swedish, this method reduced KSPC
of 7% on SMS messages and 13% on News[3].

2.3 Other methods

There are other methods, like LetterWise[5] or
Less-tap[6].

LetterWise is a system that does not use a stored
dictionary of words, but a small database of pre-
fix information to disambiguate user keystrokes
(Eatoni Corporation, 2003). Its published KSPC
is 1.1500[5].

Less-tap method uses a remapped keyboard as
a complement for single-press or multi-press meth-
ods. Since the keyboard is built on the alphabetical
order, it does not take in account the frequency of
the most common characters used in different lan-
guages. For example in English, ”e” is the most
common character used, but is in the second place
on his key and shares it with ”d” and ”f”. The
keyboard could be remapped, mixing all characters
and their order, to reduce the KSPC required to
1.4412[6]. However, this proposal could be difficult
to be accepted by people who use to use the actual
keyboard.

3 Dictionary and corpus

3.1 Dictionary compilations

Our first aim was to make it work in English, and
independent of the language. To achieve this it
was important that the data files were stored in an
internationalizable and platform independent way.
Hence we, quite naturally, chose to use Unicode.
After that we collected a dictionary of English uni-
grams. We could have chosen between 2 dictionar-

ies available on the Oxford’s documents which are
publically available. The first was small (254 kb,
about 27000 words) and contained most common
abbreviations, places and names, but did not con-
tain all the inflected words. The second was big
(3 Mb, 10 millions words), and was a mixed file of
all Moby’s dictionaries available, with all inflected
words, abbreviations, places and names. The first
was too small to be used, not enough complete, and
the second was too big, requires too much memory
and given too many not common words. So we de-
cided to use one between both as a compromise. We
found a dictionary on the web (UK English wordlist
v1.01, from the website of Brian Kelk, Cambridge,
UK: http://www.bckelk.uklinux.net/) contain-
ing inflected forms, and we combined it with the
small one, containing most common abbreviations,
names and places. The final dictionary is now 686
kb for 67 485 words.

3.2 Corpus collection and statistics
calculation

A suitable corpus for text entry on mobile phones
should contain mostly everyday English. However,
must corpora are compiled from either news or lit-
erature and the language use from these two sources
can differ quite much from everyday use. There-
fore we decided to collect our own corpus. After
some contemplation we decided that Usenet con-
tains large volumes of text which quite close to ev-
eryday use. The problem with Usenet is that it
also contains a large amount of, for us, unwanted
content such as spam and binaries. However, cer-
tain news groups are more likely to contain usable
text than others and hence we decided to limit our
sampling to 118 subgroups of alt.politics, alt.society
and soc. From these groups we collected 57 181
messages over a period of nineteen days. This was
then compiled into a corpus of roughly ten million
words.

First the uni- and bi-gram statistics were cal-
culated from the corpus at runtime. Obviously
this slowed down the application considerably as it
could take over 2 minutes to compile all statistics
with all n-grams present, see section 3.3. In order
to avoid this lag when the application started it was
decided to precompute all statistics. This was done
through the use of a Python script which read in
the normalized corpus and created one data file for

2



each desired n-gram, such as uni-, bi- and so forth.
In our case we decided to only use uni- and bi-grams
as the frequency of trigrams and higher was too low
to yield any noticable effect. The application and
its support scripts are however designed in such a
way that adding support for higher n-grams is easy
to do, see section 5.1.

3.3 Memory considerations

We noticed early on that this application requires
a lot of memory. As a matter of fact in our ini-
tial revisions of the dictionary and statistics files
it required up to 300 MB of RAM. It is important
to note here, also, that the memory requirements
are largely due to the fact that the data struc-
tures are written more with the aim of being easy
to understand and maintain rather than to opti-
mize memory consumption. Furthermore Java in
itself creates a fairly large overhead when it comes
to memory usage. However, we decided that we
needed to reduce the amount of data used in the
application. This was done by both limiting the
size of the dictionary to only include more common
words, less pronouns and so fourth. Furthermore a
frequency cut-off was applied to both the unigrams
and bigrams. Entities with a frequency of xx and
yy respectively were removed. This measure en-
sured that the application consumed less than the
96 MB limit which is standard for Java applets.

Naturally the reduction of the dictionary and the
cut-off reduces the accurary of both the uni- and
bi-gram prediction but it is our distinct impression
that it does not degrade the performance of the
application by a great deal. One would of course
have to conduct more thourough investigations of
this matter to draw a more firm conclusion. Fur-
thermore we believe that the fact that the applica-
tion can run without problems both as an applet
and from the command line is more important than
the accuracy gained from lowering the cut-offs and
increasing the dictionary size.

4 Combining bigram statis-
tics, prediction and T9

First, we made a system using bi-gram statistics,
prediction and unigram statistics at the same time,

for each key pressed. The bigrams were obvi-
ously prioritized over the unigrams. But a problem
was high-lighted: many times when typing a short
word, longer words were given instead of having
words with only the length of the number of key
pressed, because of the prediction. For example,
typing ”of” after ”no”, the words given before ”of”
were ”next”, ”need”, ”means”, ”news”, ”mention”,
”new”, ”mercy” and ”official”. Itincreased a lot the
number of KSPC, to go down in the list in order to
select it, whereas using T9, ”no” appears first in the
list. Then we decided to add a key, the ”yes” key,
which allows stopping the prediction and restricts
the length of words given to the number of key al-
ready pressed. In the previous example, pressing
this key would have reduced the list of words given
to ”me”, ”ne” and ”of”, because we pressed only 2
keys.

This kind of key is not natural at the beginning to
using it, but permits to combine advantages of both
HMS and T9 methods, i.e. prediction with bigrams
and statistics of unigrams without prediction.

Moreover, we added two checkboxes, which are
”prediction” and ”context” and work in real-time.
With them, the system is flexible and the user can
choose to use the different advantages of HMS. In
that sense, we can differentiate the 2 advantages
of HMS compare to T9. With both check-off, the
system works like T9. It is useful, then, to be able
to choose the right method for the right word. The
user can switch from one to the other when typing,
to take the best advantage of the different meth-
ods (for example, we will choose ”context-on” and
”prediction-off” to use T9 with context, or choose
”context-on” and ”prediction-on” to write a long
sentence in a good language, or choose ”context-
off” and ”prediction-off” for short words, et cetera).

Finally, we added a functionality usually well ap-
preciated by the users: the ability to learn. That
means that each time a word is selected, its fre-
quency is increased by 1. Then, more and more,
the most common words used by the user become
the first in the list and it is easier and quicker for
him, decreases the KSPC.

However, as the system is settled and reloaded
each time, it is not possible to save the scores of
each user.

3



5 Implementation

As mentioned earlier one of our goals was to enable
the application to be as flexible as possible when it
comes both the depth of n-grams used and to have
structures that are language independent. Of these
the latter is the largest importance if this is do be
deployed in real use. This is achieved by making the
data structure in the application abstract enough
to allow for different key pad encodings without
having to rewrite any code. How this is done is dis-
cussed in section 5.1. One prerequisite for the data
structure to work in this manner is to be able to
translate a press on a button into a set of charac-
ters, e.g. the button labeled ”2” on the keypad, see
figure 1, represents the characters ”a”, ”b”, ”c” and
”2”. By reversing this, e.g. saying that ”a” maps
onto the button ”2”, we can encode a word as a se-
ries of key presses given a certain encoding scheme,
or key map. By stating that the buttons each have
an index and that the first button is ”1” with index
0. By using this the word ”hello” would in English
be encoded as the following sequence 3-2-4-4-5.

Another important aspect of any application is
its user interface. In our case There was not really
much choice as to how the application should look
as its task was to mimic the front, or user interface,
of a mobile phone and there is already a de facto
standard for this. Hence the GUI is laid out with a
text area above a keypad which the user can press
with the mouse. One addition is the list of proposed
words to the right of the text area and keypad.
Furthermore we added two checkboxes to turn word
prediction and context awareness on and off. The
user interface of HMS2005 can be seen in figure 1.

5.1 Data structure

The application stores its data about words and
their probabilities (unigrams) as well as bigrams in
a common structure, a word tree. In the tree the
nodes are connected by arcs which represents one of
the buttons labeled 1 through 9, see figure 1. Each
node also can contain a list of words which this
node is said to represent. Furthermore the tree can
optionally contain a link to a different word tree for
each word, more on this later. And last, and quite
naturally a node can have up to nine references
to subtrees. Hence if we take the example with
”hello” from above we would, starting from the

Figure 1: The user interface of HMS2005

root node, take the fourth arc followed third and
so forth. After the sequence has been followed we
would have reached the node containing the word
”hello”. With this solution word prediction just
becomes the task of compiling a list of words from
the subtree of the current node as well as the list
of words contained in the node.

We can use this basic structure to include bigram
information as well by, as hinted earlier, for each
word in a node also link to another word tree, the
bigram tree. When a word has been accepted by
the user the bigram tree corresponding to that tree
is stored. As the user types the next word the ap-
plication traverses both trees with the same input
and when the prediction lists are generated the list
from the bigram tree is prepended to the unigram
list. Of course this method could be repeated an
arbitrary number of times to provide which ever n-
gram depth desired. A schematic view of the data
structure can be seen in figure 2.

4



0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

4

4

5

...

hello

...

Figure 2: The data structure used in HMS2005
with the path leading to ”hello” highlighted

The data for the application is stored as plain
text lists with one entity per line and where each
line consists of either just a word, for the dictionary,
or the frequency followed by one or more words
for uni- and bi-grams. When the application starts
these are added to the tree in a such a way that only
words in the dictionary are allowed, this to avoid
unwanted words from the corpus to enter the tree.
Of course this approach slow the loading process if
there are many unwanted words but as the loading
time was acceptable after cut-offs were applied, see
section 3.3, we decided to keep this approach as it
simplified our work.

The time consumption of this data structure de-
pends largely of the length of the words stored. Of
course going from one node to another can be done
in constant time hence going from the root node
to a certain node and finding a word within that
node can be done in O(n + m) time where n is the
length of the word and m is the number of words
within the destination node. When building a word
prediction list the application has to first visit each

node in the subtree and for each node a word list
has to be compiled consisting of the words in that
node concatenated with the words of that node’s
subtree. If we assume that adding a word to a list
is O(1) this phase will run in O(nm) time where n
is the number of nodes and m the number of words.
The next phase will be sorting the list according to
some criterion, usually frequency but it could also
be alphabetically, and depending on the sorting al-
gorithm used this can vary greatly. If we employ an
fairly efficient sorting algorithm this phase can be
done in O(n log n) time which would yield a total
running time of O(nm + n log n). This can be op-
timized further of course, for example storing the
words pre-sorted within the structure, but as the
aim of this implementation is clarity and demon-
stration rather than efficiency and speed this must
be considered adequate.

6 Evaluation

To evaluate our new method, we chose 2 factors of
measurement: number of KSPC and time to entry
the text.

We did first a ”different participants for the same
sentence” evaluation, i.e. each participant entries
the same sentence in order to compare between par-
ticipants, and secondly a ”same participant for dif-
ferent sentences” evaluation, i.e. each participant
entries 2 different sentences in order to compare
between sentences.

A total of 7 participants were involved, typing
firstly a sentence both in HMS and T9 (in this or-
der), and secondly another sentence in the same
way. The sentences were ”I study at the University
of Lund” and ”Hello I hope you’re fine and don’t
forget our meeting in Lund tomorrow morning”.

Typing 2 different sentences was important be-
cause for the first one, people were disturbing by
the new system, using it for the first time and try-
ing to learn how it worked. There were friendlier
with it for the second sentence.

The results were quite positive. Firstly, in terms
of keystrokes per character, we highlighted an im-
provement of 20% (that means that you need 20%
less key pressed to write the message). We can con-
sider it as an average because we kept all the mis-
takes done by the users, which sometimes increase
the KSPC instead of reducing it.

5



Secondly, in terms of time, we highlighted a
weakness of 15% (that means that you need 15%
more time to write the message). The problem
is that the system disturbs the user at the begin-
ning, mostly because of short words and because
you have to remember the letters you have already
typed.

Comparing trained and not trained people (both
of us and other users), we noticed that for the more
experienced users the time consumption of HMS
and T9 were roughly the same although the KSPC
for HMS was lower. Furthermore, we noticed a
big difference in time consumption when it came
to trained and untrained people. We measered a
200% speed increase for trained people and this can
probably be explained by the fact that as you get
used to using the bigram prediction you get more
confident that the system will predict the correct
word. Naturally this is probably also true for new
users of T9.

But the most important thing which reduces the
efficiency of the system is the length of words. HMS
reduces a lot the KSPC for long words but not for
short words. This can be seen in table 1.

word T9 HMS
tomorrow 8 kp 4 kp

in 2 kp 3 kp

Table 1: Key press Comparision

The problem is that when typing short words,
long words are proposed first and you have to press
one key more (the ”Yes” key or the ”T9” key) to
restrict the length or stop the prediction. This
increases KSPC and time consumption and could
be optimized. It can be seen from the following
two figures, figure 3 and figure 4, how the KSPC
changes as the word length increases.

7 Conclusions

As we have seen, we tried to improve the HMS sys-
tem, which is a predictive text entry method using
context. We first made it works in English, collect-
ing an English dictionary and a corpus of the closest
language from SMS language we could. After, we
improved it by adding a key which can stop the
prediction and come back to the T9 method. This

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5

4

 

K
S

P
C

Figure 3: Word length versus KSPC for HMS

key permits to take both advantages of HMS and
T9 methods when typing. Then we made the sys-
tem intelligent by learning the words the most used
by the user (without reload the system). After an
evaluation, we showed an improvement of 20% us-
ing the KSPC as the measurement, and a decrease
of 15% using the time as the measurement.

7.1 Improvements

But of course, this system can be optimized and im-
proved again. Firstly, to be closer to the existing
mobile phones, numbers, punctuation and special
characters could be added in the keyboard. This
could be used to do longer and more complex exper-
iments and could be closer to the reality. Secondly,
our results are not as closed to the reality as they
could be because of the corpus we used to calculate
the bigrams. We wanted to use free corpora of SMS
but none exists yet today, so we used corpora from
Usenet. This kind of corpora of SMS are collecting
by researchers just now, because the technology is
new and these corpora are needed to extend the re-
searchs. We found one corpus of english SMS from
Singapore, but not really useful because of strange
words or names sometimes. Thus, we think that
in a few years, more SMS copora will be available
for researchs and evaluation will be closer to the
reality.

6



0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5

4

 

K
S

P
C

Figure 4: Word length versus KSPC for T9

References

[1] Zi Corporation. eZiText, 2002.

[2] Lexicus Devision. iTap. Motorola, 2001.

[3] Jon Hasselgren, Erik Montnemery, Pierre
Nugues, and Markus Svensson. HMS: Predic-
tive text entry. In DAT171, 2003.

[4] I. Scott MacKenzie. KSPC (keystrokes
per character) as a characteris-
tic of text entry techniques. In
http://www.yorku.ca/mack/hcimobile02.PDF,
2002.

[5] Scott MacKenzie, Hedy Kober, Derek Smith,
Terry Jones, and Eugene Skepner. Letterwise:
Prefix-based disambiguation for mobile text in-
put. In http://www.eatoni.com/research/lw-
mt.pdf, 2001.

[6] Andriy Pavlovych and Wolfgang Stuer-
zlinger. Less-tap: A fast and easy-
to-learn text input technique for
phones. In http://www.cs.yorku.ca/ an-
driyp/papers/GI2003 Less-Tap.pdf, 2003.

7


