
Part-of-Speech Tagging Using the Brill Method

Maria Larsson and Måns Norelius
Lund Institute of Technology

Lund, Sweden
d00ml@efd.lth.se, d00mno@efd.lth.se

Abstract

Part-of-speech tagging is the process of associat-
ing each word in a text with it’s part-of-speech
category and possibly a set of morphosyntac-
tic features. This information is represented by
part-of-speech tags. This paper describes an
implementation of a part-of-speech tagger for
Swedish based on the Brill method. The ba-
sic idea is to apply a set of rules to an initial
annotation achieved using a simple algorithm.
The rules are found using transformation-based
learning applied to a manually tagged training
corpus. The paper also addresses the problem
of tagging unknown words, i.e. words that don’t
appear in the training corpus.

1 Introduction

1.1 Part-of-Speech Tagging

The first step in implementing a part-of-speech
tagger is to build a lexicon, where the part-of-
speech of a word can be found. Unfortunately
many words are ambiguous, and each word can
therefore have several classifications. As an ex-
ample, the word “note” can be either a noun
or a verb. It is the object of the part-of-speech
tagger to resolve these ambiguities, using the
context of the word. Another problem is the
handling of words that have no entries in the
lexicon.

There are basically two approaches to part-of-
speech tagging: rule-based tagging and stochas-
tic tagging. This paper describes an implemen-
tation using the rule-based approach, where the
rules are generated using transformation-based
learning.

1.2 Transformation-Based Learning

Transformation-based error-driven learning is a
machine learning method typically used for clas-
sification problems, where the goal is to assign
classifications to a set of samples. An initial
classification is produced using a simple algo-
rithm. In each iteration the current classifica-

tion is compared to the correct classification and
transformations are generated to correct the er-
rors. The output of the algorithm is a list of
transformations that can be used for automatic
classification, together with the initial classifier.

Figure 1: Transformation-based learning

There are two components of a transforma-
tion: a rewrite rule and a triggering environ-
ment. The rewrite rule says what should be
done (e.g. change the class from A to B) and
the triggering environment says when it should
be done (e.g. if the preceding sample is of class
C).

Transformation-based learning is used in
many different areas, and has proven to be a
very successful method in the field of natural
language processing. The algorithm was intro-
duced for POS tagging by Eric Brill in 1995.

2 Brill’s Learning Algorithm

The algorithm first assigns every word it’s most
likely part-of-speech, i.e. the most common tag
for that word. This initial annotation is com-
pared to a hand-annotated corpus, and a list of
errors is produced. For each error, rules to cor-



rect the error are instantiated from a set of rule
templates. Each instantiated rule is evaluated
by computing it’s impact on the whole corpus.
The rules are compared by assigning each rule a
score, which is the difference between the num-
ber of good transformations and the number of
bad transformations the rule produces. The rule
with the highest score is applied to the text and
added to the result list. The transformed corpus
is then used to generate a new rule in the next
iteration. The algorithm stops when a certain
criteria has been fulfilled, e.g. the error rate is
below a specified threshold. The algorithm is
outlined in figure 2.

while (nbr of errrors > threshold)
for (each error)
for (each rule r correcting the error)

good(r) = nbr of good transformations
bad(r) = nbr of bad transformations
score(r) = good(r) - bad(r)

Apply the rule with highest score and
append it to the rule list

Figure 2: Pseudo code for Brill’s learning algo-
rithm

2.1 Rule Templates

The learning algorithm instantiates rules given
a set of templates. The rules change the
tagging of a word based on the tagging of the
neighbouring words, and are therefore called
contextual rules. The rule templates proposed
by Brill are presented below.

Change tag a to tag b when:

1. The preceding (following) word is tagged z

2. The word two before (after) is tagged z

3. One of the two preceding (following) words
is tagged z

4. One of the three preceding (following)
words is tagged z

5. The preceding word is tagged z and the
following word is tagged w

6. The preceding (following) word is tagged z

and the word two before (after) is tagged
w

where a , b, z and w are tag variables.

Instantiating a rule using one of these tem-
plates means that the variables are assigned tags

corresponding to the specific error to be cor-
rected.

3 Tagging of Unknown Words

A simple way of dealing with unknown words
is to assign them the most common part-of-
speech and then rely on the contextual rules to
correct the errors. There are however more so-
phisticated methods that can be used to achieve
higher accuracy. Brill suggests a special set of
rules to apply only to the unknown words, gen-
erated in basically the same way as the contex-
tual rules. These rules are applied after the ini-
tial tagging and before applying the contexual
rules.

3.1 Rule Templates

The rule templates used only for unknown
words changes the tag based on properties of
the actual word, and not based on the tagging
of neighbouring words. The following list
describes the templates designed by Brill.

Change the tag of an unknown word from a

to b when:

1. Deleting the prefix (suffix) x results in a
word

2. The prefix (suffix) of the word is x

3. Adding the prefix (suffix) x results in a
word

4. The preceding (following) word is w

5. The character c appears in the word

where x is a string of length 1 to 4.

4 Implementation

4.1 Corpus

The corpus used is the SUC 1.0 corpus, which
was developed as part of a joint research
project between the Departments of Linguistics
at Stockholm University and Ume̊a University
respectively. The POS tags used in the imple-
mentation are identical to the tags used in the
SUC project.

4.2 Previous Work

As a project for last year’s course a Java im-
plementation of the Brill tagger was written by
François Marier and Bengt Sjödin. It contained
the basic Brill algorithm and the contextual rule
templates, but was too slow for practical use.
This program has worked as a foundation for



our implementation. Shorter running time and
handling of unknown words are the main im-
provements in this year’s implementation.

4.3 Optimization

Because of unexpected low accuracy of the im-
plemented tagger, it was suggested that the pro-
gram of last year might contain a bug. A set of
tests was performed, which resulted in the con-
clusion that the program worked correctly. The
reason for the bad results was instead that the
training algorithm was too slow. It was only
able to work on small texts, which could not
be expected to generate very good results. Our
first goal was therefore to optimize the program
to be able to run it on a large training corpus.

4.3.1 Problems Identified and Solved

After analyzing the code and extracting pro-
file information, we were able to identify the
main reasons for the slow running time of the
learner. First we found that a large percentage
of the running time was spent on string compar-
isons. This was because the POS tags were rep-
resented by strings, and the algorithm contains
many comparisons between tags. The problem
was solved by representing the tags by integers,
which are faster to compare, and introducing a
new class to handle the translation.

Secondly, we discovered that the rule evalua-
tion was done in an inefficient way. Rules were
evaluated by actually applying them to the text
and then counting the number of errors in the
resulting tagging. This meant that the whole
corpus had to be copied for every rule evalua-
tion. In our implementation we count the num-
ber of good and bad transformations without
applying it. Only the best rule is applied and
hence there is no need for copying.

Finally, a number of rules were instantiated in
linear time with respect to the number of words
in the training corpus. This had a great effect
on the total time complexity, and increased the
running time when using larger texts. In the
final implementation all rules are instantiated
in constant time.

To further improve the time complexity, all
rules are generated in the beginning of the pro-
gram, and not in each iteration. This means we
only consider rules that corrected errors in the
original tagging. Consequently, there is a risk
that selected rules introduce new errors that no
rule is able to correct. However, the output of
the algorithm was not affected by this change,
which indicates that these missed rules should

have been disgarded anyway.

4.3.2 Test Results

In order to demonstrate the process of the opti-
mization, a comparison has been made between
the running times of the learning algorithm of
the original program and three optimized ver-
sions. The versions have an increasing level of
optimization and the main changes added to
each version are presented below.

1. The tags are represented by integers in-
stead of strings.

2. All rules are instantiated in constant time.
All rules to consider are generated once.

3. The rules are evaluated by counting the
number of good and bad transformations.
Only the best rule is applied, which re-
moves the need for copying.

The programs were tested on a training cor-
pus of 23 000 words extracted from 10 files of
the SUC corpus. There are no unknown words,
since the dictionary was generated using the
whole SUC corpus. The algorithm was stopped
after 100 learned rules and the result was the
same for all programs.

All tests were performed on a Pentium M 1.4
GHz with 512 MB of RAM and Windows XP
Professional operating system.

Program version Running time
Original 585 min
Optimized 1 121 min
Optimized 2 14 min
Optimized 3 3 min

As seen in the table above, the final opti-
mized version is almost 200 times faster than
the original program. Since the time complex-
ity has improved as well, this ratio increases as
the training corpus grows. Figure 3 and 4 illus-
trate the difference in time complexity between
the two programs. Running time is plotted as
a function of training corpus size.

4.4 Handling of Unknown Words

The second part of the project was to devel-
ope a system for handling unknown words. In
the original program all words not present in
the dictionary were marked as unknown and
ignored. A first approach was to found out
which tag was the most common and tag ev-
ery unknown word with this tag. Disgarding



1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

Number of files

T
im

e 
(m

in
)

Figure 3: Running time of the original program

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

Number of files

T
im

e 
(m

in
)

Figure 4: Running time of the optimized pro-
gram

closed word classes, the most frequent tag was
concluded to be “NN UTR SIN IND NOM”,
which represents a type of noun (see appendix
for details). This simple step correctly classified
about 15 % of the unknown words.

4.4.1 Initial Tagging

Although a few steps have been added to the
first approach, the initial tagging is still very
simple. The unknown words are divided into
three groups: numbers, proper nouns and com-
mon nouns. If the word contains digits it is
tagged as a number. If the it is capitalized and
not in the beginning of a sentence it is tagged
as a proper noun. All other words are tagged
with the most common tag, i.e. common noun.

Also more sophisticated methods were tested

to improve the initial tagging. For instance, we
tried to conclude some features based on word
endings. Although this improved accuracy, we
later decided to keep the initial tagger simple.
During the developement work of the learner of
unknown word rules, it became clear that these
types of problems could be better solved by gen-
erated rules than by our manually written rules.

However, one extra feature is part of the final
implementation. It was found that many of the
unknown words are compound words. As a re-
sult, we try to divide the unknown word in such
a way that the last part forms a known word. If
it succeeds, the unknown word is tagged with
the default tag for that word. As an exam-
ple, the unknown word “solstol” is tagged in
the same way as the known word “stol”.

4.4.2 Learning Rules for Unknown
Words

The handling of unknown words was done in the
way suggested by Brill. A program was written
for generating rules instantiated from the rule
templates described in section 3.1. The learn-
ing algorithm is very similar to the algorithm
described in figure 2, with the difference that
only errors concerning unknown words are con-
sidered. Another small difference is the way
of counting good and bad transformations of
a rule. The good and bad counts should only
increase once for each unique unknown word.
This prevents a rule that only corrects the tag-
ging of one unknown word from getting a good
count just because there are many occurrences
of that word. Also, the training corpus must
of course contain unknown words and should
therefore not be part of the corpus used to cre-
ate the dictionary.

The rules for unknown words process words
instead of tags, and therefore the algorithm for
unknown word rules is slower than the algo-
rithm for contextual rules. In addition, tests
showed that it is necessary to generate the rules
in each iteration in this case.

4.4.3 Tagging

The tagging is done in three steps.

1. Initial tagging

2. Application of unknown word rules

3. Application of contextual rules

4.5 System Overview

The class diagram below presents an overview
of the system.



Figure 5: Class diagram

The system can be divided into two programs.
First the learning algorithm must be run (one
time for each type of rules). After that the rules
are generated and can be used in the program
performing part-of-speech tagging. Learner is
the main class of the learning program and Tag-
ger is the main class of the tagging program. As
can be seen in the class diagram, many classes
are used by both programs.

For clarity reasons some classes are omitted
in the diagram. These include the classes for
specific rule templates along with the WordDic-
tionary and TagDictionary classes used by most
other classes. The rule templates for contex-
tual rules are represented by 13 subclasses to
the class ContextualRule. In the same way the
unknown word rule templates are represented
by 9 subclasses to the class UnknownWordRule.

4.6 Class Descriptions

Learner is the main class of the learning pro-
gram and contains the general learning al-
gorithm. It is an abstract class that re-
quires the subclasses to implement some
parts of the algorithm.

ContextualRuleLearner is a subclass of
Learner and is responsible for the contex-
tual rule learning.

UnknownWordRuleLearner is also a sub-
class of Learner and is responsible for learn-
ing the unknown word rules.

Rule is the superclass of all rules. It contains
the abstract methods instantiate, predi-
cate, evaluate and apply.

ContextualRule is the superclass of all con-
textual rules.

UnknownWordRule is the superclass of all
unknown word rules.

RuleList is a class for maintaining a list of
rules.

CorpusReader is responsible for extracting
words and tags from the manually anno-
tated corpus.

InitialTagger is responsible for the initial tag-
ging of each word with it’s most common
tag. Unknown words are tagged according
to a few simple rules.

Tagger is the main class of the tagging pro-
gram. It takes an untagged text as input
and produces a tagged text as output.

Tokenizer is used by the Tagger to divide the
input text into tokens.

WordDictionary contains all words of the
training corpus. It is used for finding the
most likely tag for a word, investigating if
a word exists and searching for prefixes or
suffixes of words.

TagDictionary is responsible for the transla-
tion between the string and integer repre-
sentation of the part-of-speech tags.

4.7 User Instructions

Before running the learner och tagger programs,
the dictionaries must be created. This is done
by running the two Dictionary classes with
the directory containing the training corpus
passed as an argument. This creates the files
word dict.dat and tag dict.dat which are used
by the other programs. If the corpus is large, it
might be necessary to increase the heap size. An
example is shown below. Note that the package
name

se/lth/cs/BrillTagger

has been omitted in the examples to save space.

java -Xmx256M WordDictionary dir
java -Xmx256M TagDictionary dir

Now the two learning programs can be run.
The directory of the training corpus must be
passed as an argument. It is important that the
training corpus for UnknownWordRuleLearner
has not been used when creating the dictionary.
Files containing the generated rules are created.

java -Xmx256M ContextualRuleLearner dir

java -Xmx256M UnknownWordRuleLearner dir



Finally the part-of-speech tagger is ready for
use. The argument is a file containing the un-
tagged text. The output is printed to standard
out.

java Tagger file.txt

In order to test the accuracy of the tagger, a
small testing program has been developed. It
works like the Tagger but takes a manually an-
notated corpus as input. That way it can com-
pute the accuracy of the tagging. The test pro-
gram is started with the following command,
where the argument can be either a file or a
directory.

java Test dir

5 Test Results

The implemented tagger has been evaluated by
computing the accuracy of the tagging on a test
corpus of 120 000 words, both with an open and
closed vocabulary. The time to learn the rules
have also been recorded. The tests were per-
formed on a Pentium M 1.4 GHz with 512 MB
of RAM and Windows XP Professional operat-
ing system.

5.1 Rule Learning

The contextual rules were learned in 9 hours
using a training corpus of 470 000 words. The
learner was stopped when 200 rules had been
generated. The dictionary was built using the
whole SUC corpus.

The learner of unknown word rules used a
training corpus of 230 000 words and was fin-
ished after 11 hours and 30 minutes. The whole
SUC corpus except the texts in the training cor-
pus was used to generate the dictionary. The al-
gorithm was stopped after 100 generated rules.

Figure 6 and 7 show the first ten rules learned
by each learner.

5.2 Closed Vocabulary Test

A closed vocabulary means that there are no
unknown words in the text to tag. Therefore
the whole SUC corpus could be used to build
the dictionary.

The results are presented as the percentage
of correctly tagged words after initial tagging,
which is called the baseline, and after applying
the rules. Only the contextual rules are applica-
ble here, since there are no unknown words. As
a comparsion it can be mentioned that an ac-
curacy of 97.0 % was reported by Brill, making
the closed vocabulary assumption.

From tag To tag Condition
IE SN Tag 1, 2 or 3 after is

VB PRS AKT
PN NEU SIN
DEF SUB/OBJ

DT NEU SIN
DEF

Tag 1, 2 or 3 after
is NN NEU SIN DEF
NOM

IE SN Tag 1, 2 or 3 after is
VB PRT AKT

JJ POS
UTR/NEU PLU
IND/DEF NOM

JJ POS
UTR/NEU SIN
DEF NOM

Tag 1, 2 or 3 before is
DT UTR SIN DEF

JJ POS
UTR/NEU SIN
DEF NOM

JJ POS
UTR/NEU PLU
IND/DEF NOM

Next tag is NN UTR
PLU IND NOM

NN NEU PLU
IND NOM

NN NEU SIN
IND NOM

Tag 1 or 2 before is
DT NEU SIN IND

HP - - - KN Tag 1 or 2 after is NN
UTR SIN IND NOM

DT UTR SIN
DEF

PN UTR SIN
DEF SUB/OBJ

Next tag is VB PRS
AKT

DT UTR/NEU
PLU DEF

PN UTR/NEU
PLU DEF SUB

Next tag is VB PRS
AKT

PN NEU SIN
DEF SUB/OBJ

DT NEU SIN
DEF

Tag 1 or 2 after is NN
NEU SIN IND NOM

Figure 6: The first ten contextual rules

From tag To tag Condition
NN UTR SIN
IND NOM

NN UTR PLU
DEF NOM

Suffix is “rna”

DT UTR SIN
IND

NN UTR SIN
DEF NOM

Suffix is “en”

PM NOM PM GEN Suffix is “s”
UO NN NEU SIN

DEF NOM
Suffix is “et”

NN UTR SIN
IND NOM

PC PRS
UTR/NEU
SIN/PLU
IND/DEF NOM

Suffix is “ande”

UO NN UTR PLU
DEF GEN

Suffix is “rnas”

AB NN UTR SIN
DEF GEN

Suffix is “ens”

DT UTR/NEU
PLU DEF

VB PRT AKT Suffix is “de”

JJ POS UTR
SIN IND NOM

NN UTR SIN
DEF NOM

Suffix is “n”

PM NOM NN UTR PLU
DEF NOM

Suffix is “rna”

Figure 7: The first ten rules for unknown words

Baseline: 91.92 %
Final accuracy: 95.18 %

5.3 Open Vocabulary Test

To test the performance of the tagger with an
open vocabulary, the test corpus could not be
part of the corpus used to build the dictionary.
The ratio of unknown words in the test corpus
were 7.44 %. The figures below show the per-
centage of correctly tagged known and unknown
words after the three main steps of tagging.

Accuracy after initial tagging (baseline)
Known words: 90.78 %
Unknown words: 59.67 %
All words: 88.46 %



Accuracy after applying unknown word
rules
Known words: 90.78 %
Unknown words: 73.37 %
All words: 89.48 %

Accuracy after applying contextual rules
Known words: 94.41 %
Unknown words: 74.70 %
All words: 92.94 %

This can be compared to the accuracy claimed
by Brill. With a baseline of 92.4 %, he reported
accuracies of 96.3 % for all words and 82.0 %
for unknown words.

6 Conclusions

6.1 Optimization

The optimization of the original tagger was very
successful, resulting in a running time almost
200 times faster when using a training corpus
of 23 000 words.

6.2 Handling of Unknown Words

Unfortunately, most of the rules for unknown
words turned out to give very poor results. A
possible reason is that the rule templates were
developed with the English language in mind.
The rule template that gave by far the best re-
sults was the one that changes the tag depend-
ing on the suffix of the word. It resulted in very
reasonable rules like “Change from nominative
to genitive if the word ends with s”.

6.3 The Results

The final result of our work can be summarized
in the figures showing the accuracy of the tag-
ger. The resulting accuracy was computed to
95.18 % and 92.94 %, with a closed and open
vocabulary respectively. These figures are sig-
nificantly lower than the ones reported by Brill.
The main difference between our result and that
of Brill is the baseline, which is much lower in
our implementation (88 % compared to 92 %).
The difference between the baseline and the re-
sulting accuracy is about 4 percentage points for
both implementations. However, it may be dif-
ficult to make comparisons between the two im-
plementations since our is for the Swedish lan-
guage and Brill’s is for English.

7 Further Work

For future extenders of this work, the baseline
will presumably be the focal point of attention.

It may be interesting to examine why the base-
line in this and Brill’s implementation differs
and see if improvements can be made.

A way to further increase the accuracy of the
tagger, would be to introduce the lexicalized
rules also suggested by Brill. It is a set of con-
textual rule templates that make reference to
words instead of tags. However, according to
Brill, these rules only improve accuracy slightly
(0.2 percentage points).

Another interesting task would be to inves-
tigate in what ways the rule templates for un-
known words could be adjusted to make them
more suitable for the Swedish language.

8 Acknowledgements

We would like to thank Pierre Nugues for valu-
able help and suggestions during our work. We
also wish to acknowledge the work of François
Marier and Bengt Sjödin, which resulted in a
clear and useful Brill tagger implementation.

References

Eva Ejerhed and Gunnel Källgren and Ola
Wennstedt and Magnus Åström. 1992.
The Linguistic Annotation System of the

Stockholm-Ume̊a Project.
Pierre Nugues. 2004. An Intruduction to Lan-

guage Processing with Perl and Prolog.
Eric Brill. 1995. Transformation-Based Error-

Driven Learning and Natural Language Pro-
cessing: A Case Study in Part-of-Speech Tag-

ging.
Grace Ngai and Radu Florian. 2001.

Transformation-Based Learning in the
Fast Lane.

Johan Carlberger and Viggo Kann. 1999. Im-

plementing an efficient part-of-speech tagger

François Marier and Bengt Sjödin. 2003. A part-
of-speech tagger for Swedish using the Brill

transformation-based learning



Appendix - The SUC 1.0 Corpus

Text Categories

The corpus consists of 500 text files, with approximately 2000 words each. Each
file has a unique name, containing information of which category the text falls
under. There are ten main text catagories and each of them has a number of sub-
categories. The distibution of files over the main categories are presented below.

Category Number of files
A. Press, Reportage 44
B. Press, Editorials 17
C. Press, Reviews 27
E. Skills, trades and hobbies 58
F. Popular lore 48
G. Biographies, essays 26
H. Miscellaneous 70
J. Learned and scientific writing 83
K. Imaginative prose 127

Format

The SUC 1.0 corpus is available in two different formats called SUC1A and
SUC1B. The format used in the project and described here is the SUC1A format.

The corpus is divided into text elements generally called tokens. Tokens
are normally words, but also include punctuations, numbers etc. Each token is
tagged with it’s part-of-speech category along with a number of morphosyntactic
features. The base form of the word is also part of the tag. Below is an example
of a tokenized and tagged sentence, with a reference number for each token.
Note that the swedish letters å, ä and ö are encoded }, { and |.

("<Det>" <1142>

(PN NEU SIN DEF SUB/OBJ "det"))

("<{r>" <1143>

(VB PRS AKT "vara"))

("<viktigt>" <1144>

(JJ POS NEU SIN IND NOM "viktig"))

("<att>" <1145>

(IE "att"))

("<inte>" <1146>

(AB "inte"))

("<st|ra>" <1147>

(VB INF AKT "st|ra"))

("<f}glarna>" <1148>

(NN UTR PLU DEF NOM "f}gel"))

("<under>" <1149>

(PP "under"))

("<h{ckningstiden>" <1150>

(NN UTR SIN DEF NOM "h{ckningstid"))

("<.>" <1151>

(DL MAD "."))



Part-of-Speech Categories

All tags begins with one of the two letter codes representing the part-of-speech.

Code Swedish category Example English translation

AB Adverb inte Adverb
DT Determinerare denna Determiner
HA Relativt adverb när Relative Adverb
HD Relativ determinerare vilken Relative Determiner
HP Relativt pronomen som Relative Pronoun
HS Relativt possessivt pronomen vars Relative Possessive
IE Infinitivmrke att Infinitive Marker
IN Interjektion ja Interjection
JJ Adjektiv glad Adjective
KN Konjunktion och Conjunction
NN Substantiv pudding Noun
PC Particip utsänd Participle
PL Partikel ut Particle
PM Egennamn Mats Proper Noun
PN Pronomen hon Pronoun
PP Preposition av Preposition
PS Possessivt pronomen hennes Possessive
RG Grundtal tre Cardinal number
RO Ordningstal tredje Ordinal number
SN Subjunktion att Subjunction
UO Utländskt ord the Foreign Word
VB Verb kasta Verb

Morphosyntactic Features

Parentheses show that a feature only applies to some members of the part-of-
speech or that not all the values of a feature are applicable.

Feature Value Legend POS where feature applies

Gender UTR Uter (common) DT, HD, HP, JJ, NN, PC, PN,
NEU Neuter PS, (RG, RO)
MAS Masculine

Number SIN Singular DT, HD, HP, JJ, NN, PC, PN,
PLU Plural PS, (RG, RO)

Definiteness IND Indefinite DT, (HD, HP, HS), JJ, NN, PC,
DEF Definite PN, (PS, RG, RO)

Case NOM Nominative JJ, NN, PC, PM, (RG, RO)
GEN Genitive

Tense PRS Present VB
PRT Preterite
SUP Supinum
INF Infinite

Voice AKT Active
SFO S-form1

Mood KON Subjunctive2

Participle form PRS Present PC
PRF Perfect

Degree POS Positive (AB), JJ
KOM Comparative
SUV Superlative

Pronoun form SUB Subject form PN
OBJ Object form
SMS Compound 3 All parts-of-speech


