
Investigating an implementation of Joakim Nivre's algorithm for projective 
dependency parsing of Swedish text. 

 

Jörgen Hartman 
Lund University Computer Science 
jorgen.hartman.398@student.lu.se 

 

Abstract 
This paper presents some statistics on an 

implementation of Joakim Nivre's algorithm. The 
implementation in Prolog have a coverage of 100% 
because of the backtracking mechanism in Prolog. 
The rank of the correct graph within all produced 
graphs are not very good with this implementation. 
This paper also shows that the rank can be 
improved at the cost of the coverage. 

 

1 Introduction 
How hard is it to find the correct dependency 

graph from Swedish sentences? I will investigate 
an implementation of the algorithm described by 
Nivre [1]. The implementation itself was made by 
Pierre Nugues at Lunds Tekniska Högskola. I will 
try the implementation on an annotated Swedish 
Treebank called Talbanken. Talbanken is tagged 
using a probabilistic part-of-speech-tagger trained 
on the Stockholm Umeå Corpus (SUC). Talbanken 
consists of about 5000 sentences. 

2 The algorithm. 
Nivre's algorithm uses a basic shift reduce 

algorithm extended with some more parse actions: 
• Left arc - Adds an arc from head to left 

dependent if there is a dependency rule that 
allows it. 

• Right arc - Adds an arc from head to right 
dependent if there is a dependency rule that 
allows it. 

• Reduce - Pops the node on top of the stack 
if it has a head. 

• Shift - Pushes next word of the input onto 
the stack. 

The algorithm makes sure that the graph will be 
acyclic, connected, and projective. The algorithm 
will always find a graph for any sentence provided 
there are lexical rules for all dependencies in the 
sentence. The algorithm and its different actions 
are further described in Nivre [1]. 

 

2.1 The implementation of the algorithm. 
The implementation is done in Prolog 

programming language. Prolog uses a backtracking 
mechanism that allows the algorithm to produce a 
new alternative graph until the correct one is found 
or all alternatives are found. For example; if the 
dependency between two words can be determined 
by two different rules, Prolog will try the first rule, 
and if it does not produce a correct graph it will go 
back and try the other rule. 

3 Investigation of the implementation. 
The idea was to see if the algorithm always 

could find the correct graph. Prolog uses a 
backtracking mechanism that makes it possible to 
find several different graphs that can be generated 
from a single sentence. It would be interesting to 
see the rank of the correct graph within all the 
generated graphs. 

I started with a Treebank called Talbanken. It's 
an annotated Treebank with Swedish sentences. It 
contains information like index and class of the 
words, index for the sentence, and dependencies 
between words. I used that information to extract 
the dependency graph from Talbanken and 
compare that graph with the graph produced by 
nivre's algorithm. I wrote a perl script that extracts 
the sentences from Talbanken into a file that can 
easily be read by prolog, and I made a script that 
extracted the graphs as well. The algorithm needs a 
set of dependency rules that covers the 
dependencies in the sentences. If a rule was 
missing you would not be able to find the correct 
graph. Since all information is available in 
Talbanken, I wrote a perl script that extracts all the 
dependency rules as well. 

 
The test was then done in prolog. The testing 

program reads the first sentence and then uses the 
implementation of Nivre's algorithm to produce all 
possible dependency graphs. It then compares this 



list of graphs with the dependency graph taken 
from Talbanken and writes the rank of the correct 
graph to a result file. If no correct graph was 
found, the rank would be set to zero. 

 
I immediately ran into problems with stack 

overflows. Making prolog do a list containing all 
possible graphs for a sentence required a lot of 
memory, especially if the sentence was long. I 
made changes in all three perl scripts so you could 
set a maximum sentence length. It would now be 
easy to only extract sentences up to a specific 
length along with the corresponding graphs and 
dependency rules. 

Tests with sentences of maximum length five 
showed that the coverage (number of correct 
graphs found) was 100%, and 74% of the correct 
graphs was ranked number one. 

 
I found that some of the sentences in Talbanken 

were only one word long. The reason is that there 
are for example titles inside the annotated text in 
Talbanken. One-word sentences will of course 
always produce the correct dependency graph since 
it is equal to an empty list. I decided to implement 
an option to skip over one-word sentences when 
extracting information. With the same sentences 
but excluding those consisting of only one word, I 
still got 100% coverage, but only 47% of the 
graphs were ranked number one. So I will from 
now on exclude one-word sentences. 

 
I tried with maximum sentence length ten, but it 

was not able to complete the algorithm due to 
memory shortage. The number of graphs generated 
from a sentence with ten words would be huge. I 
now understood that I would not be able to get 
ALL the graphs. I needed a way to limit the 
calculations. I started looking in the dependency 
rules direction, since every new rule would 
generate a large amount of graph combinations. 

 
I experimented with the 1098 first sentences 

from Talbanken and got these results: 
Maximum sentence length eight generated 252 

sentences and graphs, and 110 rules. 
100% coverage and 18% of the graphs ranked 

number one (average rank 387). 
 
The same 252 sentences and rules extracted for 

sentences of maximum 7 words, I got 93 rules, 
93% coverage and 20% of the graphs ranked 
number one (average rank 233). 

 
The same 252 sentences and rules extracted for 

sentences of maximum 6 words, I got 84 rules, 

88% coverage and 22% of the graphs ranked 
number one (average rank 202). 

 
The result shows that if you have fewer rules the 

rank will get better, but the coverage will decrease. 
 
Since talbanken is tagged by a probabilistic 

POS-tagger, some of the dependencies might be 
incorrect. Statistically, faulty dependency rules 
would be more common for longer sentences than 
for shorter. 

 
The dependency rules can be either left or right 

oriented and when checking for a matching rule 
inside the algorithm you will try both rules. This 
generates a lot of backtracking in prolog, and 
requires a lot of memory. Extracting the 
dependency rules from shorter sentences will 
provide the algorithm with fewer rules to match. 
This will of course lower the coverage of the 
algorithm since some rules might be missing 
completely, but it will increase the speed, lower the 
memory usage of the implementation, and increase 
the rank of the graphs that are correct. 

 
When you build a sentence you first make the 

core of the sentence, for example 'bilen röd'. Then 
you apply different rules to make the sentence 
more readable, for example linking the noun and 
adjective like 'bilen är röd'. You also add 
determiners like 'Den bilen är röd'. One of the last 
things you do before the sentence is complete is 
topicalization to restructure the phrases like 'bilen 
den är röd'. That would generate a dependency 
rule; 'From noun to determiner where determiner is 
to the right of the noun'. This looks like a strange 
rule, and it's not common at all. It would cause the 
implementation in prolog to make a lot of extra 
graphs for all sentences containing determiners. 
Topicalizations are more common in longer 
sentences than in shorter ones. This shows why the 
rank can be improved at the cost of the coverage 
by extracting the dependency rules from shorter 
sentences only. 

 
Another way of limiting the number of 

dependency rules would be to split up the data. 
Using smaller chunks of text from Talbanken, I 
suspected I could increase the rank. I also 
suspected that the coverage would go down since 
each rule would percentage wise be a larger part of 
the rules needed for 100% coverage. 

 
With 500 sentences from Talbanken and 

maximum sentence length eight, the perl script 
generated 102 sentences and 83 dependency rules. 
The test result I got now was: 



100% coverage, 22% was rank one, average rank 
was 344. The same sentences but with rules 
extracted for sentences of maximum 7 words, I got 
61 rules, 84% coverage, 31% was rank one, 
average rank was 91. The same sentences but with 
rules extracted for sentences of maximum 6 words, 
I got 54 rules, 79% coverage, 35% was rank one, 
average rank was 81. 

 
With 200 sentences from Talbanken and 

maximum sentence length eight, the perl script 
generated 38 sentences and 42 dependency rules. 
The test result I got now was: 100% coverage, 39% 
was rank one, average rank was 88. The same 
sentences but with rules extracted for sentences of 
maximum 7 words, I got 32 rules, 79% coverage, 
53% was rank one, average rank was 38. The same 
sentences but with rules extracted for sentences of 
maximum 6 words, I got 25 rules, 66% coverage, 
60% was rank one, average rank was 23. 

 
Ultimately, you could extract the rules 

dynamically from Talbanken, giving a set of rules 
for each sentence. The algorithm would then use 
only the rules attached to a specific sentence. That 
would give 100% coverage and a very good rank. 
Of course this would not apply to real life cases, 
because you then need to have all rules available at 
all times, but it would give a good idea on how 
robust the algorithm is. 

 
There are more ideas on how to improve the 

rank of the dependency graphs. One of them would 
be to implement a probability check for the 
dependency rules within the algorithm. If the 
algorithm had two rules to choose from, it would 
choose the one which are most often used. 

 
Talbanken is tagged with features in addition to 

the part-of-speech tag. The feature is more granular 
than the part-of-speech tag and describe for 
example tense (present, preterite, supinum, and 
infinite) and degree (positive, comparative, and 
superlative). Keeping these features will make 
each dependency rule apply to less words. It would 
therefore be interesting to investigate the rank 
when keeping the features within the dependency 
rules. 

4 Conclusion 
The implementation of Nivre's algorithm is very 

robust and will always produce a graph provided 
that there are dependency rules covering the word 
classes in the sentences. The correct graph will 
always be produced because of the backtracking 
mechanism in prolog. Too many rules or faulty 

rules will make the implementation produce lower 
(worse) ranked graphs. 

 

5 Acknowledgements 
Pierre Nugues, Lunds Tekniska Högskola: 

Project leader, algorithm implementation. 
Klas Sigbo, Lunds Tekniska Högskola: 

Answering Prolog questions. 
Richard Andersson, Student at Lund University 

Cognitive Science: Linguistic discussions. 

References  
[1] Joakim Nivre: An efficient algorithm for 

projective dependency parsing. School of 
Mathematics and Systems Engineering, Växjö 
University. 

[2] Pierre Nugues: An Introduction to Language 
Processing with Perl and Prolog, August 2004. 
Unfinished book used as course material, Lunds 
Tekniska Högskola. 

[3] Joakim Nivre and Mario Scholz: 
Deterministic dependency parsing of English text. 
School of Mathematics and Systems Engineering, 
Växjö University. 



Appendix: 
Users manual. 
 
Files needed: 
conv_xml2sent.perl 
conv_xml2graph.perl 
conv_xml2drules.perl 
calcResult.perl 
nivre_2.pl 
readfiles.pl 
TalbankenMalt.xml 
 
TalbankenMalt.xml can be downloaded from 

http://w3.msi.vxu.se/~nivre/research/talbanken.htm
l 

 
Make sure you have an untouched version of the 

file TalbankenMalt.xml or at least a part of the 
original file that contains the sentences you wish to 
work with. 

 
If you want to limit the tests to only work with 

sentences up to a specific length, you need to edit 
the value of the variable sentence_length_limit. 
This is done in all three perl scripts (conv_xml2...). 
Please note that the script that extracts the 
sentences and the graphs need to have the same 
value. 

 
if you want to exclude sentences that are only 

one word long (they will always give correct 
graph) from the tests, you need to change the 
variable named $removeSingleWordSentences. 
The value true will make the perl script skip all 
one-word sentences. This variable needs to be 
changed in both conv_xml2sent.perl and 
conv_xml2graph.perl. This variable is not found in 
the dependency rules extraction script because 
there are no dependencies in a one-word sentence. 

 
NOTE: Make sure you work with the SAME 

input file when running the three different perl 
scripts. 

 
Convert the xml to sentences that nivres 

algorithm can read in prolog: 
perl conv_xml2sent.perl TalbankenMalt.xml 
This will produce a <Sentences> file. 
 
The dependency rules needed by Nivre's 

algorithm are extracted by a perl script: 
perl conv_xml2drules.perl TalbankenMalt.xml 
This will produce a <Dependency rules> file. 
 
The correct graphs as given by 

TalbankenMalt.xml is extracted by a perl script: 
perl conv_xml2graph.perl TalbankenMalt.xml 

This will produce a <Graphs> file. 
 
start prolog with: 
pl -G20m 
This increases the global stack size to 20 Mb (4 

Mb default). You might have to increase even 
more for longer sentences. 

 
consult needed files (algorithm, dependency 

rules, help predicates): 
consult([nivre_2,drules,readfile]). 
 
The command: 
readfiles(<Sentences>,<Graphs>,<Result>). 
should perform the tests and write the result to 

the <Result> file. 
 
Run the perl script called calcResult.perl to 

calculate the coverage, rank, and other statistics for 
the result: 

perl calcResult.perl result 
This will give the statistics in the terminal 

window. 
 


