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Abstract 
This paper presents work done in project 
form in the course Language Processing and 
Computational Linguistics given at Lund 
School of Technology during the fall of 
2004. The work develops and assesses a new 
dependency parser for Swedish, based on 
decision trees learned from corpora. To 
assess the parser, it is trained and tested on a 
subset of the MALT corpus and found to 
perform fairly well considering its stage of 
development.  

1  Introduction 

1.1  Project purpose 
 The given purpose of the project presented 
in this paper was to construct a software 
system for the automatic learning of 
grammar rules used by a certain text parser: 
the Nivre parser. The Nivre parser is a 
dependency parser developed by Joakim 
Nivre [1]. The Nivre parser uses a special 
kind of D-rules, namely directed D-rules, for 
parsing. 
   As it happened, we, the authors of this 
paper, decided to instead develop our own 
parser, a parser also using rules derived from 
corpora, but rules of a different kind, used in 
a different way. The automatic learning 
algorithm of our parser is decision tree 
induction algorithm, simple yet not 
powerless. 

2  Short introductions of theory 

2.1 Dependency Grammars  
 According to the book An Introduction to 
Language Processing with Perl and Prolog 
[3] dependency grammar is used for 
describing the structure of a language. It is 
especially good for describing languages 

where the word order is flexible. This is the 
case for Latin and Russian but not for 
English and Swedish. The rules can be 
helpful in translations or just for 
understanding the language. 
 Every word in a sentence is the dependent 
of one head with one exception. This 
exception is the head of the sentence, also 
called the root, which only have dependants. 
The head of the sentence is generally the 
main verb but can also in rare cases be a 
noun. These dependency rules are marked as 
arrows from the dependant to the head. The 
root is marked with an arrow pointed at the 
top of the screen. 
 The basic dependency rules are that a 
dependant links to its noun and a subject 
noun links to its main verb. Other rules are 
that determiners and adjectives are 
dependents to their noun and adverbs to their 
adjectives. One example is Figure 1. 
 

 
Figure 1. An example of how dependency 
grammar can look like 
 
 Here “ate” is the main verb and also 
called the root. The two nouns “I” and 
“cat” are the dependants of “ate” and the 
determiner “the” is the dependant of its 
noun “cat”.  

2.2 Decision tree induction 

2.2.1 The decision tree structure 
 Consider some object or situation to which 
some set of attributes is related. A decision 



tree is a structure associating with each 
possible set of values of the attributes some 
value, thus constituting a function from the 
set of possible sets of attribute values to an 
arbitrary set. If the set of values associated 
with possible sets of attribute values is 
discrete, the values associated with possible 
sets of attribute values are called 
classifications.  
 A decision tree is a tree data structure. 
Each non-leaf node of a decision tree 
represents a test of one of the attributes of 
the attributes set and each outbound branch 
from a non-leaf node represents one of the 
possible values of the attribute tested in that 
node. Each leaf node of a decision tree 
represents a value assigned to some subset 
of the set of possible sets of attribute values. 
The value associated by a decision tree with 
a given set of attribute values is the value 
represented by the leaf reached when 
traversing the tree from root to leaf, in each 
node choosing branch according to the value 
of the attribute tested in that node. 
 Decision trees are simple yet somewhat 
expressive. Any Boolean function can be 
written in the form of a decision tree, though 
by necessity some, for example the majority 
function, are quite large in the form.  

2.2.2 The induction algorithm 

 Let an example of a function be a member 
of the domain of the function and the 
associated member of the codomain of the 
function. A set of sets of attribute values and 
values associated with these sets of attribute 
values can be regarded as a set of examples 
of some function whose domain comprise 
the attribute values and whose codomain 
comprise the associated values. The forming 
of a function consistent with the examples 
approximating the function exemplified is 
referred to as inductive inference. The 
formed function is called a hypothesis. 
 The algorithm in Figure 1 [2] forms a 
consistent hypothesis in the form of a 
decision tree for any set of examples which 
are examples of a classifying decision tree or 
some function that can be written in the 
form of a classifying decision tree. In Figure 
2, the goal predicate is an attribute whose 
value for any set of attribute values is the 
value associated with that set of attribute 
values. The algorithm applies Ockham’s 
razor and prefers the simplest hypothesis of 
a set of hypotheses all consistent with the 
examples. Forming the smallest consistent 
hypothesis is an intractable problem, though. 
The algorithm forms a smallish one. 
CHOOSE-ATTRIBUTE chooses the 
attribute which provides the most 
information, in the mathematical sense. 

 
 

Figure 2. An algorithm forming a smallish decision tree consistent with a set of examples. 

function DECISION-TREE LEARNING(examples, attributes, default) returns a 
decision tree 
 inputs: examples, set of examples 
  attributes, set of attributes 
  default, default value for the goal predicate 
 if examples is empty then return default 

else if all examples have the same classification then return the 
classification 

else if attributes is empty then return MAJORITY-VALUE(examples) 
else 
 best ← CHOOSE-ATTRIBUTE(attributes, examples) 
 tree ← a new decision tree with root test best 
 m ← MAJORITY-VALUE(examplesi) 

for each value vi of best do 
examplesi ← {elements of examples with best = vi} 
subtree ← DECISION-TREE-LEARNING(examplesi, 

attributes – best, m) 
add a branch to tree with label vi and subtree subtree 

return tree 



3 The parser 

3.1 The decision trees generated 
and the parser algorithm 
 This section presents the parsing algorithm 
we have made. It uses four different decision 
trees in order to classify the correct part-of-
speech tags in a sentence.  
 We will first describe how the decision 
trees have been generated.  

3.1.1 Is-root 
 This tree is used to find the most probable 
root in the sentence. It has learned by 
looking at the part-of-speech tag and a 
context of two words on each side. In the 
example shown in Figure 3, a correct 
classified sentence is shown. The word ”är” 
is root in the sentence. So for every word in 
the sentence, we will add its part-of-speech 
tag and its context to the database together 
with a true/false that tells if its the root. 
Later in the parsing algorithm, the decision 
tree tries to classify when something is root 
and not. 
 

 
Figure 3. Is-root 
 
 The tree classifies 80% of all sentences 
(on an unseen domain) correct. When it 
fails, there are more than one candidate to be 
root (the most likely will be chosen). 

3.1.2 Find-head-1 
 This decision tree is trained by taking the 
part-of-speech (pos) tag and a context of one 
word on each side, and trains it to find the 
correct head to the pos-tag. The example in 
Figure 4 shows how the selection has been 
made. This is added for every word except 
root (since it doesn’t have any parent). 
 

Figure 4. Find head 1 
 

3.1.3 Find-head-2 
 This is an extension of Find-head-1 that is 
trained by looking at the pos-tag, a context 
of two words on each side, plus a context of 
one word on each side of the head. How this 
is used in practice is explained later, but you 
can see what the database looks like by 
viewing the example in Figure 5. 
 

Figure 5. Find head 2 
 



3.1.4 Find-Direction 
 The database that is used to train this tree 
looks almost the same as the one used to 
train Find-head-2. In addition it also has the 
direction of the arrow (right/left) that is used 
as goal-attribute in the decision tree learning 
algorithm. This makes it able to classify the 
most probable direction. 

3.2 The parsing algorithm 
 This algorithm is used to demonstrate how 
we can use decision trees to classify all 
words/pos-tags in a sentence. It uses the four 
decision trees explained above. In practice it 
works in three different phases. It is at the 
moment quite simple, and could easily be 
expanded to use more decision trees and 
more advance functions. The following 
explains the three phases of the algorithm. 

3.2.1 Phase 1 
 The first phase uses only the find-root and 
find-head-1 trees described above. Its main 
goal is to find the most probable root, and all 
possible candidates for head for all words. 
The easiest way to show how this works is 
by using an example.  
 Lets say we want to find the head for the 
Swedish word “inkomsterna” (see Figure 6), 
this is a noun, and its closest neighbors is a 
determiner and a verb. We can ask find-
head-1 with this information, and it will 
answer by providing a list of the most 
probable neighbors, in this case verb 
(56.5%) and preposition (43.5%). The next 
thing we do is to go though all the words 
looking for prepositions and verbs, we add 
this to a list of potential parents. In this 
sentence the preposition at position zero, the 
verb at position three and seven would be 
added to the list of potential parents for our 
noun. We do this for all the words in the 
sentence. 
 
 

 

Figure 6. 

3.2.2 Phase 2 
 We now have a list of head-candidates for 
every word except the most probable root. 
The next step is to go through all the 
candidates in the list (and we do this for 
every word) and ask find-head-2 and find-
direction how probable that candidate is. 
Since find-head-2 is more accurate, its result 
gets higher ranked when choosing the 
candidate. In the example above, the 
preposition at position zero would get a 
score of 105, the verb at position three a 
score of 6.3 and the verb at position seven a 
score of 1.8. This means we will chose the 
preposition at position zero as our most 
probable head.  

3.2.3 Phase 3 
 After phase 2, the algorithm is almost 
complete, however there may still be easy 
found errors in the complete graph. For 
example, we know that two arrows may 
never cross each other (see Figure 7 “A 
crossing link”). If they do, at least one of 
them is pointing wrong. We use a simple 
method to find and remove all crossing 
arrows. 
 We also look for cycles in the graph (see 
Figure 8 “A cycle”), and use a method to 
break these. This step is not optimized, but 
works quite well. 

 
Figure 7. A crossing link 
 

 
Figure 8. A cycle 
 
 

 



Form: av 
Links to: ge (x-link: false) 
-tree----------------------------------------- 
<pp:9> 
    <nn:12> 
        dt:10 
        jj:11 
----------------------------------------------- 
Pot.Parents: pp:9  
    vb:3 (106.33559) (pr: false) 
    vb:1 (106.33559) (pr: false) 
    nn:8 (105.58499) (pr: false) 
    nn:12 (61.73145) (pr: false) 
    nn:5 (5.5849915) (pr: false) 
    nn:0 (0.60047567) (pr: true) 
-rules---------------------------------------- 
vb (56.89655) 
     left (100.0) 
nn (41.37931) 
     left (99.60318) 
     right (0.39682543) 
rg (1.7241379) 
     right (100.0) 

3.2.4 The complete graph 
 On this page the program and its GUI is explained, and an example of a complete graph is 
shown in Figure 9. 
 

Figure 9. The complete graph
 

3.3 The program and how to use it.  
 This is what the GUI for our program looks 
like. In the list a sentence from the loaded XML 
file can be chosen. When loading a sentence to 
classify, the correct answer is shown at the top 
(red and blue arrows), and the result of our 
algorithm is shown at the bottom (green arrows 
for correct classifications, and red arrows for 
errors). So in this sentence, 2 errors are present 
(“endast” -> “ge”, and “av” <- “ge”). There is 
also another window (not showing here) that is 
used as log-tool. If we press a word, for example 
“av” the following info will show in the log-tool.  
 The first row in Figure 10 shows the chosen 
form, in this case “av”. The next tells us what 
“av” links to (in this case “ge”) and the “x-link: 
false” says its not crossing any other arrow. The  
tree shows all children (and their children) and 
also tells us if there are any cycles present. The 
next list shows all potential parents for “av”. As 
you can se, the verb at position 3 has gotten the 
highest score together with the verb at position 

1). The noun at position 8 (the correct one) has 
gotten just slightly less score. The “pr: false” 
tells us if the arrow goes past the root, in that 

case, it will 
get a penalty 
since its quite 
unlikely. The 
last list (rules) 
shows a more 
a abstract 
view of likely 
parents, telling 
us its is most 
likely to link 
to a verb. 

 
 
 
 
 

Figure 10. 



4 Performance analysis and 
conclusions 

4.1 The performance of the program 
 The program use approximately 800 
sentences as a practice set and about 300 
sentences as a test set. Best results are given 
when the program is training and testing on 
the same set of sentences i.e. the test set is 
300 sentences that are selected out of the 
800. In 300 sentences there are 
approximately 4000 arrows (there are 
approximately 8700 arrows in 800 
sentences) and the program gets about 86.7 
% of them correct and 73.5 % correct if the 
test set is new to the program. Sentences 
where all the arrows are correct is about 37.6 
% when the program is training and testing 
on the same set and 19.3 % else. The 
training set was later expanded to 5000 
sentences and the test set to 1300 sentences. 
But the result turned out to decrease. When 
testing on new sentences it gets about 70 % 
of the arrows correct which is a decrease by 
3.5%. This probably has to do with the 
decision trees that get overfitted. A solution 
to this problem could be to improve the 
pruning of the trees. 

4.2 Difficulties on the way  
 We started to use the neighbors of the 
dependant word to improve the program. 
Two neighbors to the right and two to the 
left were showing to be the most efficient so 
far. After this improvement we also added 
neighbors to the head word. The statistic 
improved by roughly 15 %.  
 To find the correct root in the sentence 
was harder then first expected. And when 
the program choused the wrong word as the 
root it generated more errors to the other 
arrows in the sentence. Improvements can 
still be done here.  
 Another problem that maybe is not that 
important, but contributes to lower the 
statistics, is that the arrow from the dot in 
the sentence more often is wrong than right.  
 In the beginning the program sometimes 
made loops which are not acceptable in 
dependency grammar. To solve the problem 

temporary an algorithm was made. The 
algorithm solves the problem with the loops 
(Figure 2) but not in the most efficient or 
most correct way. Here big improvements 
can be done. 
 

 
Figure 2.  An example of a loop  
 
 Crossing arrows was also a problem in the 
beginning but was easily fixed with a small 
algorithm.   

4.3 Future aspects, if more time was 
given 
 To find a better way to classify the root is 
a good start. The root is in most cases the 
main verb and to locate that easier it maybe 
would help to add some more attributes to 
the words. Such as how the verb is 
intransitive, transitive or ditransitive.  
 An improvement of the loop algorithm 
could be done by making the algorithm go 
trough all possible arrow changes before 
choosing. At the moment the algorithm 
picks out the first possible fit. 
 To examine how much improvement a 
larger training set will give has not given as 
good results as hoped for. This is because of 
the decision trees that get overfitted. A 
solution to this problem is maybe to get 
better pruning of the trees.  
 At the moment only the lexical categories 
are used as attribute to the words. To 
improve the program it could also examine 
how the most common words in a sentence 
relate to the other words. For example 
instead of using the attribute determiner to a 
very common word like “the” you could use 
the fact that the word “the” in most cases 
has the first noun to its right as the head. 
 To try the program on other languages 
would be an interesting project and not so 
hard to accomplish. The program is capable 
to read xml documents in a certain 



predefined type and if given, it could train 
and test on a different xml database in a new 
language.    
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