
Automatic learning of dependency rules from corpora

A project in the course
EDA171/DAT171 Language Processing and Computational Linguistics

Tomas Rutegård e99, Bibi Sandberg e00 and Johan Larsson dat00

Abstract
This paper presents work done in project
form in the course Language Processing and
Computational Linguistics given at Lund
School of Technology during the fall of
2004. The work develops and assesses a new
dependency parser for Swedish, based on
decision trees learned from corpora. To
assess the parser, it is trained and tested on a
subset of the MALT corpus and found to
perform fairly well considering its stage of
development.

1 Introduction

1.1 Project purpose
 The given purpose of the project presented
in this paper was to construct a software
system for the automatic learning of
grammar rules used by a certain text parser:
the Nivre parser. The Nivre parser is a
dependency parser developed by Joakim
Nivre [1]. The Nivre parser uses a special
kind of D-rules, namely directed D-rules, for
parsing.
 As it happened, we, the authors of this
paper, decided to instead develop our own
parser, a parser also using rules derived from
corpora, but rules of a different kind, used in
a different way. The automatic learning
algorithm of our parser is decision tree
induction algorithm, simple yet not
powerless.

2 Short introductions of theory

2.1 Dependency Grammars
 According to the book An Introduction to
Language Processing with Perl and Prolog
[3] dependency grammar is used for
describing the structure of a language. It is
especially good for describing languages

where the word order is flexible. This is the
case for Latin and Russian but not for
English and Swedish. The rules can be
helpful in translations or just for
understanding the language.
 Every word in a sentence is the dependent
of one head with one exception. This
exception is the head of the sentence, also
called the root, which only have dependants.
The head of the sentence is generally the
main verb but can also in rare cases be a
noun. These dependency rules are marked as
arrows from the dependant to the head. The
root is marked with an arrow pointed at the
top of the screen.
 The basic dependency rules are that a
dependant links to its noun and a subject
noun links to its main verb. Other rules are
that determiners and adjectives are
dependents to their noun and adverbs to their
adjectives. One example is Figure 1.

Figure 1. An example of how dependency
grammar can look like

 Here “ate” is the main verb and also
called the root. The two nouns “I” and
“cat” are the dependants of “ate” and the
determiner “the” is the dependant of its
noun “cat”.

2.2 Decision tree induction

2.2.1 The decision tree structure
 Consider some object or situation to which
some set of attributes is related. A decision

tree is a structure associating with each
possible set of values of the attributes some
value, thus constituting a function from the
set of possible sets of attribute values to an
arbitrary set. If the set of values associated
with possible sets of attribute values is
discrete, the values associated with possible
sets of attribute values are called
classifications.
 A decision tree is a tree data structure.
Each non-leaf node of a decision tree
represents a test of one of the attributes of
the attributes set and each outbound branch
from a non-leaf node represents one of the
possible values of the attribute tested in that
node. Each leaf node of a decision tree
represents a value assigned to some subset
of the set of possible sets of attribute values.
The value associated by a decision tree with
a given set of attribute values is the value
represented by the leaf reached when
traversing the tree from root to leaf, in each
node choosing branch according to the value
of the attribute tested in that node.
 Decision trees are simple yet somewhat
expressive. Any Boolean function can be
written in the form of a decision tree, though
by necessity some, for example the majority
function, are quite large in the form.

2.2.2 The induction algorithm

 Let an example of a function be a member
of the domain of the function and the
associated member of the codomain of the
function. A set of sets of attribute values and
values associated with these sets of attribute
values can be regarded as a set of examples
of some function whose domain comprise
the attribute values and whose codomain
comprise the associated values. The forming
of a function consistent with the examples
approximating the function exemplified is
referred to as inductive inference. The
formed function is called a hypothesis.
 The algorithm in Figure 1 [2] forms a
consistent hypothesis in the form of a
decision tree for any set of examples which
are examples of a classifying decision tree or
some function that can be written in the
form of a classifying decision tree. In Figure
2, the goal predicate is an attribute whose
value for any set of attribute values is the
value associated with that set of attribute
values. The algorithm applies Ockham’s
razor and prefers the simplest hypothesis of
a set of hypotheses all consistent with the
examples. Forming the smallest consistent
hypothesis is an intractable problem, though.
The algorithm forms a smallish one.
CHOOSE-ATTRIBUTE chooses the
attribute which provides the most
information, in the mathematical sense.

Figure 2. An algorithm forming a smallish decision tree consistent with a set of examples.

function DECISION-TREE LEARNING(examples, attributes, default) returns a
decision tree
 inputs: examples, set of examples
 attributes, set of attributes
 default, default value for the goal predicate
 if examples is empty then return default

else if all examples have the same classification then return the
classification

else if attributes is empty then return MAJORITY-VALUE(examples)
else
 best ← CHOOSE-ATTRIBUTE(attributes, examples)
 tree ← a new decision tree with root test best
 m ← MAJORITY-VALUE(examplesi)

for each value vi of best do
examplesi ← {elements of examples with best = vi}
subtree ← DECISION-TREE-LEARNING(examplesi,

attributes – best, m)
add a branch to tree with label vi and subtree subtree

return tree

3 The parser

3.1 The decision trees generated
and the parser algorithm
 This section presents the parsing algorithm
we have made. It uses four different decision
trees in order to classify the correct part-of-
speech tags in a sentence.
 We will first describe how the decision
trees have been generated.

3.1.1 Is-root
 This tree is used to find the most probable
root in the sentence. It has learned by
looking at the part-of-speech tag and a
context of two words on each side. In the
example shown in Figure 3, a correct
classified sentence is shown. The word ”är”
is root in the sentence. So for every word in
the sentence, we will add its part-of-speech
tag and its context to the database together
with a true/false that tells if its the root.
Later in the parsing algorithm, the decision
tree tries to classify when something is root
and not.

Figure 3. Is-root

 The tree classifies 80% of all sentences
(on an unseen domain) correct. When it
fails, there are more than one candidate to be
root (the most likely will be chosen).

3.1.2 Find-head-1
 This decision tree is trained by taking the
part-of-speech (pos) tag and a context of one
word on each side, and trains it to find the
correct head to the pos-tag. The example in
Figure 4 shows how the selection has been
made. This is added for every word except
root (since it doesn’t have any parent).

Figure 4. Find head 1

3.1.3 Find-head-2
 This is an extension of Find-head-1 that is
trained by looking at the pos-tag, a context
of two words on each side, plus a context of
one word on each side of the head. How this
is used in practice is explained later, but you
can see what the database looks like by
viewing the example in Figure 5.

Figure 5. Find head 2

3.1.4 Find-Direction
 The database that is used to train this tree
looks almost the same as the one used to
train Find-head-2. In addition it also has the
direction of the arrow (right/left) that is used
as goal-attribute in the decision tree learning
algorithm. This makes it able to classify the
most probable direction.

3.2 The parsing algorithm
 This algorithm is used to demonstrate how
we can use decision trees to classify all
words/pos-tags in a sentence. It uses the four
decision trees explained above. In practice it
works in three different phases. It is at the
moment quite simple, and could easily be
expanded to use more decision trees and
more advance functions. The following
explains the three phases of the algorithm.

3.2.1 Phase 1
 The first phase uses only the find-root and
find-head-1 trees described above. Its main
goal is to find the most probable root, and all
possible candidates for head for all words.
The easiest way to show how this works is
by using an example.
 Lets say we want to find the head for the
Swedish word “inkomsterna” (see Figure 6),
this is a noun, and its closest neighbors is a
determiner and a verb. We can ask find-
head-1 with this information, and it will
answer by providing a list of the most
probable neighbors, in this case verb
(56.5%) and preposition (43.5%). The next
thing we do is to go though all the words
looking for prepositions and verbs, we add
this to a list of potential parents. In this
sentence the preposition at position zero, the
verb at position three and seven would be
added to the list of potential parents for our
noun. We do this for all the words in the
sentence.

Figure 6.

3.2.2 Phase 2
 We now have a list of head-candidates for
every word except the most probable root.
The next step is to go through all the
candidates in the list (and we do this for
every word) and ask find-head-2 and find-
direction how probable that candidate is.
Since find-head-2 is more accurate, its result
gets higher ranked when choosing the
candidate. In the example above, the
preposition at position zero would get a
score of 105, the verb at position three a
score of 6.3 and the verb at position seven a
score of 1.8. This means we will chose the
preposition at position zero as our most
probable head.

3.2.3 Phase 3
 After phase 2, the algorithm is almost
complete, however there may still be easy
found errors in the complete graph. For
example, we know that two arrows may
never cross each other (see Figure 7 “A
crossing link”). If they do, at least one of
them is pointing wrong. We use a simple
method to find and remove all crossing
arrows.
 We also look for cycles in the graph (see
Figure 8 “A cycle”), and use a method to
break these. This step is not optimized, but
works quite well.

Figure 7. A crossing link

Figure 8. A cycle

Form: av
Links to: ge (x-link: false)
-tree---
<pp:9>
 <nn:12>
 dt:10
 jj:11

Pot.Parents: pp:9
 vb:3 (106.33559) (pr: false)
 vb:1 (106.33559) (pr: false)
 nn:8 (105.58499) (pr: false)
 nn:12 (61.73145) (pr: false)
 nn:5 (5.5849915) (pr: false)
 nn:0 (0.60047567) (pr: true)
-rules--
vb (56.89655)
 left (100.0)
nn (41.37931)
 left (99.60318)
 right (0.39682543)
rg (1.7241379)
 right (100.0)

3.2.4 The complete graph
 On this page the program and its GUI is explained, and an example of a complete graph is
shown in Figure 9.

Figure 9. The complete graph

3.3 The program and how to use it.
 This is what the GUI for our program looks
like. In the list a sentence from the loaded XML
file can be chosen. When loading a sentence to
classify, the correct answer is shown at the top
(red and blue arrows), and the result of our
algorithm is shown at the bottom (green arrows
for correct classifications, and red arrows for
errors). So in this sentence, 2 errors are present
(“endast” -> “ge”, and “av” <- “ge”). There is
also another window (not showing here) that is
used as log-tool. If we press a word, for example
“av” the following info will show in the log-tool.
 The first row in Figure 10 shows the chosen
form, in this case “av”. The next tells us what
“av” links to (in this case “ge”) and the “x-link:
false” says its not crossing any other arrow. The
tree shows all children (and their children) and
also tells us if there are any cycles present. The
next list shows all potential parents for “av”. As
you can se, the verb at position 3 has gotten the
highest score together with the verb at position

1). The noun at position 8 (the correct one) has
gotten just slightly less score. The “pr: false”
tells us if the arrow goes past the root, in that

case, it will
get a penalty
since its quite
unlikely. The
last list (rules)
shows a more
a abstract
view of likely
parents, telling
us its is most
likely to link
to a verb.

Figure 10.

4 Performance analysis and
conclusions

4.1 The performance of the program
 The program use approximately 800
sentences as a practice set and about 300
sentences as a test set. Best results are given
when the program is training and testing on
the same set of sentences i.e. the test set is
300 sentences that are selected out of the
800. In 300 sentences there are
approximately 4000 arrows (there are
approximately 8700 arrows in 800
sentences) and the program gets about 86.7
% of them correct and 73.5 % correct if the
test set is new to the program. Sentences
where all the arrows are correct is about 37.6
% when the program is training and testing
on the same set and 19.3 % else. The
training set was later expanded to 5000
sentences and the test set to 1300 sentences.
But the result turned out to decrease. When
testing on new sentences it gets about 70 %
of the arrows correct which is a decrease by
3.5%. This probably has to do with the
decision trees that get overfitted. A solution
to this problem could be to improve the
pruning of the trees.

4.2 Difficulties on the way
 We started to use the neighbors of the
dependant word to improve the program.
Two neighbors to the right and two to the
left were showing to be the most efficient so
far. After this improvement we also added
neighbors to the head word. The statistic
improved by roughly 15 %.
 To find the correct root in the sentence
was harder then first expected. And when
the program choused the wrong word as the
root it generated more errors to the other
arrows in the sentence. Improvements can
still be done here.
 Another problem that maybe is not that
important, but contributes to lower the
statistics, is that the arrow from the dot in
the sentence more often is wrong than right.
 In the beginning the program sometimes
made loops which are not acceptable in
dependency grammar. To solve the problem

temporary an algorithm was made. The
algorithm solves the problem with the loops
(Figure 2) but not in the most efficient or
most correct way. Here big improvements
can be done.

Figure 2. An example of a loop

 Crossing arrows was also a problem in the
beginning but was easily fixed with a small
algorithm.

4.3 Future aspects, if more time was
given
 To find a better way to classify the root is
a good start. The root is in most cases the
main verb and to locate that easier it maybe
would help to add some more attributes to
the words. Such as how the verb is
intransitive, transitive or ditransitive.
 An improvement of the loop algorithm
could be done by making the algorithm go
trough all possible arrow changes before
choosing. At the moment the algorithm
picks out the first possible fit.
 To examine how much improvement a
larger training set will give has not given as
good results as hoped for. This is because of
the decision trees that get overfitted. A
solution to this problem is maybe to get
better pruning of the trees.
 At the moment only the lexical categories
are used as attribute to the words. To
improve the program it could also examine
how the most common words in a sentence
relate to the other words. For example
instead of using the attribute determiner to a
very common word like “the” you could use
the fact that the word “the” in most cases
has the first noun to its right as the head.
 To try the program on other languages
would be an interesting project and not so
hard to accomplish. The program is capable
to read xml documents in a certain

predefined type and if given, it could train
and test on a different xml database in a new
language.

5 References

[1] Nivre, J. (2003) An Efficient
Algorithm for Projective
Dependency Parsing. In
Proceedings of the 8th International
Workshop on Parsing Technologies
(IWPT 03), Nancy, France, 23-25
April 2003, pp. 149-160.

[2] Russel, S, Norvig, P. (2003)
Artificial Intelligence: A Modern
Approach. Second edition. Prentice
Hall series in artificial intelligence.

[3] Nugues, P. (2004) An Introduction
to Language Processing with Perl
and Prolog. Lecture notes for the
course Language Processing and
Computational Linguistics given at
Lund School of Technology.

