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Abstract

This paper explores the use of the naive Bayes
classifier as the basis for personalized spam fil-
ters. Various machine learning algorithms, in-
cluding variants of naive Bayes, have previously
been used for this purpose, but the author’s
implementation using word position based at-
tribute vectors gives very good results when
tested on several publicly available corpora.

The effect of various forms of attribute
selection—removal of frequent and infrequent
words, respectively, and by using Mutual
Information—is investigated. It is also shown
how n-grams, with n > 1, may be used to boost
classification performance. Finally, a weighting
scheme for cost-sensitive classification of vari-
able length attribute vectors is introduced.

1 Introduction

The problem of unsolicited bulk e-mail, or spam,
gets worse for every year. The vast amount of
spam being sent wastes resources on the Inter-
net, wastes time for users and may expose chil-
dren to unsuitable contents (e.g. pornography).
This development has stressed the need for au-
tomatic spam filters.

Early spam filters were instances of knowl-

edge engineering, using hand-crafted rules (e.g.
the presence of the string “buy now” indicates
spam). The process of creating the rule base re-
quires both knowledge and time, and the rules
were thus often supplied by the developers of
the filter. Having common and, more or less,
publicly available rules made it easy for spam-
mers to construct their e-mails to get through
the filters.

Recently, a shift has occurred, as more focus
has been put on machine learning for the auto-
matic creation of personalized spam filters. A
supervised learning algorithm is presented with
e-mails from the users mailbox and outputs a fil-
ter. The e-mails have previously been classified

manually as spam or non-spam. The resulting
spam filter has the advantage of being optimized
for the e-mail distribution of the individual user.
Thus it is able to use also the characteristics of
non-spam, or legitimate, e-mails (e.g. presence
of the string “machine learning”) during classi-
fication.

Perhaps the first attempt of using machine
learning algorithms for the generation of spam
filters was reported by Sahami et al. (1998).
They trained a naive Bayes classifier and re-
ported promising results. Other algorithms
have been tested but there seems to be no clear
winner (Androutsopoulos et al., 2004). The
naive Bayes approach have been picked up by
end-user applications such as the Mozilla e-mail
client1 and the free software project SpamAssas-
sin2, where the latter is using a combination of
both rules and machine learning.

Spam filtering differs from other text cate-
gorization tasks in at least to ways. First, one
might expect a greater class heterogeneity—it is
not the contents per se that defines spam, but
rather the fact that it is unsolicited. Similarly,
the class of legitimate messages may also span a
number of diverse subjects. Secondly, misclas-
sifying a legitimate message is generally much
worse than misclassifying a spam.

In this paper the results of using a variant
of the naive Bayes classifier for spam filtering,
will be presented. The effect of various forms
of attribute selection, will be explored, as will
the effect of considering not only single tokens,
but rather sequences of tokens, as attributes.
A scheme for cost-sensitive classification will
also be introduced. All experiments have been
conducted on several publicly available corpora,
thereby making a comparison with previously
published results possible.

The rest of this paper is organized as follows:

1http://www.mozilla.org/
2http://www.spamassassin.org/



section 2 presents the naive Bayes classifier; sec-
tion 3 discusses the benchmark corpora used;
the experimental results are presented in sec-
tion 4; section 5 gives a comparison with pre-
viously reported results and in the last section
some conclusions are drawn.

2 The Naive Bayes Classifier

In the general context, the instances to be clas-
sified are described by attribute vectors A =
〈a1, a2 . . . , an〉. Bayes’ theorem says that the
posterior probability of an instance A being of
a certain class c is

P (c|A) =
P (A|c)P (c)

P (A)
. (1)

The naive Bayes classifier then assigns to an in-
stance the most probable, or maximum a poste-
riori, classification from a finite set C of classes

cMAP ≡ argmax
c∈C

P (c|A).

By noting that the prior probability P (A) in
Equation (1) is independent of c, we may rewrite
the last equation as

cMAP = argmax
c∈C

P (A|c)P (c). (2)

The posterior probabilities P (A|c) =
P (a1, a2 . . . , an|c) could be estimated di-
rectly from the training data, but are generally
infeasible to estimate unless the available
data is vast. Thus the naive Bayes as-

sumption—that the individual attributes are
conditionally independent of each other, given
the classification—is introduced:

P (a1, a2, . . . , an|c) =
∏

i

P (ai|c).

With this strong assumption, Equation (2) be-
comes the naive Bayes classifier:

cNB = argmax
c∈C

P (c)
∏

i

P (ai|c) (3)

(Mitchell, 1997).
In text classification applications, one may

choose to define one attribute for each word po-
sition in a document. This means that we need
to estimate the probability of a certain word wk

occurring at position i, given the target classifi-
cation cj : P (ai = wk|cj). Due to training data
sparseness, we introduce the additional assump-
tion that the probability of a specific word wk

occurring at position i is identical to the prob-
ability of that same word occurring at position
m: P (ai = wk|cj) = P (am = wk|cj) for all
i, j, k, m. Thus we estimate P (ai = wk|cj) with
P (wk|cj). The probabilities P (wk|cj) may be
estimated with maximum likelihood estimates,
using Laplace smoothing to avoid zero proba-
bilities:

P (wk|cj) =
Cj(wk) + 1

nj + |V ocabulary|
,

where Cj(wk) is the number of occurrences of
the word wk in all documents of class cj , nj

is the total number of word positions in docu-
ments of class cj and |V ocabulary| is the num-
ber of distinct words in all documents (Mitchell,
1997).

Note that during classification the index i in
Equation (3) ranges over all word positions con-
taining words also in the vocabulary, thus ig-
noring so called out-of-vocabulary words. For
a more elaborate discussion of the text model
used see Joachims (1997).

3 Benchmark Corpora

The experiments were be conducted on the
PU corpora3 and the SpamAssassin corpus4.
The four PU corpora, dubbed PU1, PU2, PU3
and PUA respectively, have been made publicly
available by Androutsopoulos et al. (2004) in
order to promote standard benchmarks. The
four corpora contain private mailboxes of four
different users in encrypted form. The messages
have been preprocessed and stripped from at-
tachments, HTML-tags and mail headers (ex-
cept Subject). This may lead to overly pes-
simistic results since attachments, HTML-tags
and mail headers may add useful information to
the classification process. For more information
on the compositions and characteristics of the
PU corpora see Androutsopoulos et al. (2004).

The SpamAssassin corpus (SA) consists of
private mail, donated by different users, in un-
encrypted form with headers and attachments
retained5. The fact that the e-mails are col-
lected from different distributions may lead to
overly optimistic results, e.g. if (some of) the

3The PU corpora may be downloaded from
http://www.iit.demokritos.gr/skel/i-config/

4The SpamAssassin corpus is available at
http://spamassassin.org/publiccorpus/

5Due to a primitive mbox parser, e-mails containing
non-textual or encoded parts, i.e. most e-mails with at-
tachments, are ignored completely in the experiments.



spam messages have been sent to a particular
address, but none of the legitimate messages
have. On the other hand, the fact that the le-
gitimate messages have been donated by differ-
ent users may lead to underestimates since this
should imply greater diversity of the topics of
legitimate e-mails.

The sizes and compositions of the five corpora
are shown in Table 1.

corpus messages spam freq
PU1 1099 44%
PU2 721 20%
PU3 4139 44%
PUA 1142 50%
SA 6047 31%

Table 1: Sizes and spam frequencies of the five cor-
pora.

4 Experimental Results

As mentioned above, misclassifying a legitimate
mail as spam (L→S) is in general worse than
misclassifying a spam message as legitimate
(S→L). In order to capture such asymmetries
when measuring classification performance, two
measures from the field of information retrieval,
called precision and recall, are often used. De-
note with |S→L| and |S→S| the number of spam
messages classified as legitimate and spam, re-
spectively, and similarly for |L→L| and |L→S|.
Let NS and NL be the total number of spam and
legitimate messages, respectively. Then spam

recall(R) and spam precision(P ) are defined as

R =
|S→S|

NS

and P =
|S→S|

|S→S| + |L→S|
.

In the rest of this paper spam recall and spam
precision will be referred to simply as recall
and precision. Intuitively, recall measures ef-
fectiveness and precision gives a measure of
safety. One is often willing to accept lower recall
(more spam messages slipping through) in order
to gain precision (fewer misclassified legitimate
messages).

Sometimes accuracy (Acc) is used as a com-
bined measure

Acc =
|L→L| + |S→S|

NL + NS

.

All experiments have been conducted using
10-fold cross validation, i.e. the messages have

been divided into ten partitions6 and at each it-
eration nine partitions have been used for train-
ing and the remaining tenth for testing. The re-
ported figures are the means of the values from
the ten iterations.

4.1 Attribute Selection

It is common to apply some form of attribute
selection process, retaining only a subset of
the words—or rather tokens, since punctuation
signs and other symbols are often included—
found in the training messages. This way the
learning and classification process may be sped
up and memory requirements are lowered. At-
tribute selection may also lead to increased clas-
sification performance, e.g. since the risk of
overfitting the training data is reduced.

Removing infrequent and frequent words, re-
spectively, are two possible approaches. The
rationale behind removing infrequent words is
that this is likely to have a significant effect on
the size of the attribute set and that predictions
should not be based on such rare observations
anyway. Removing the most frequent words is
motivated by the fact that common words, such
as the English words “the” and “to”, are as
likely to occur in spam as in legitimate mes-
sages. Furthermore, this has the effect of mak-
ing sure that very frequent tokens do not dom-
inate Equation (3) completely.

Another possibility—used by Sahami et al.
(1998), Androutsopoulos et al. (2000) and An-
droutsopoulos et al. (2004)—is to rank the at-
tributes using Mutual Information(MI), and to
keep only the highest scoring ones. MI(X; C)
gives a measure of how well an attribute X dis-
criminates between the various classes in C, and
is defined as

∑

x∈{0,1}

∑

c∈C

P (x, c) log
P (x, c)

P (x)P (c)

(Cover and Thomas, 1991). The probability dis-
tributions are estimated using maximum likeli-
hood estimates with Laplace smoothing.

In the experiment tokens occurring less than
n = 1, . . . , 15 times were removed. The results
indicated unaffected or slightly increased preci-
sion at the expense of slightly reduced recall,
as n grew. The exception was the PU2 corpus,
where precision dropped significantly. The rea-

6The PU corpora come prepartitioned and the SA
corpus has been partitioned according to the last digit
of the messages decimal id.



son for this may be that PU2 is the smallest cor-
pus and contains many infrequent tokens. On
the other hand, removing infrequent words had
a dramatic impact on the vocabulary size (see
Figure 1). Removing tokens occurring less than
three times seems to be a good trade-off between
memory usage and classification performance,
reducing the vocabulary size with 56–69%. This
selection scheme was used throughout the re-
maining experiments.
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Figure 1: Impact on vocabulary size when removing
infrequent words.

Removing the most frequent words turned
out to have a major effect on both precision
and recall (see Figure 2). This was most sig-
nificant on the largest and non-preprocessed SA
corpus where recall increased from 77% to over
95% by just removing the hundred most com-
mon tokens, but classification gained from re-
moving the 100–200 most frequent tokens on all
corpora. Removing too many tokens reduced
classification performance—again most notably
on the smaller PU2 corpus.

In the last attribute selection experiment MI-
ranking was used instead of removing the most
frequent tokens. Although the gain in terms
of reduced memory usage was high—the vo-
cabulary size dropped from 7000–35000 to the
number of attributes chosen to be kept, e.g.
500–3000—classification performance was sig-
nificantly reduced (see Figure 3). Since learning
and classification time is mostly unaffected—
MI still has be calculated for all attributes—I
see no reason for using MI-ranking, if memory
usage is not crucial7.

7Androutsopoulos et al. (2004) reaches the opposite
conclusion.

4.2 n-grams

Up to now each attribute has corresponded to
a single word position, or unigram. Is it possi-
ble to obtain better results by considering also
token sequences of length two and three, i.e. n-
grams for n = 2, 3? The questioned was raised
and answered partially in Androutsopoulos et
al. (2004). Although many bi- and trigrams
were shown to have very high information con-
tents, as measured by MI, no improvement was
found.

There are many possible ways of extending
the attribute set with general n-grams, e.g.
by using all available n-grams, by just us-
ing some of them or by using some kind of
back-off approach. The attribute probabilities,
P (wi, wi+1, . . . wi+n|cj), are still estimated us-
ing maximum likelihood estimates with Laplace
smoothing

Cj(wi, wi+1, . . . , wi+n) + 1

nj + |V ocabulary|

(see Section 2). Note that extending the at-
tribute set in this way will result in a total prob-
ability mass greater than one. Fortunately, this
need not be a problem since we are not estimat-
ing the classification probabilities explicitly (see
Equation (3)).

It turned out that adding bi- and trigrams to
the attribute set increased classification perfor-
mance on all the PU corpora, but not on the SA
corpus. The various methods for extending the
attribute set all gave similar results and I set-
tled on the simple version which just considers
each n-gram as an independent attribute8. The
results are shown in Table 2.

The precision gain was highest for the cor-
pus with lowest initial precision, namely PU2.
For the other PU corpora the precision gain was
relatively small or even non-existing. At first
the significantly decreased classification perfor-
mance on the SA corpus came as a bit of a
surprise. The reason turned out to be that
when considering all bi- and trigrams in the
non-preprocessed SA corpus, a lot of very fre-
quent attributes, originating from mail headers
and HTML, are added to the attribute set. This
had the effect of giving badly discriminating at-
tributes (e.g. some mail headers) and HTML, a
too dominant role in Equation (3). By removing

8This is clearly not true. The three n-grams in the
phrase “buy now”—“buy”, “now” and “buy now”—are
obviously not independent.
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Figure 2: Impact on spam precision and recall when removing the most frequent words.

more of the most frequent words, classification
performance was increased also for the SA cor-
pus (see Table 3). The conclusion to be drawn is
that mail headers and HTML, although contain-
ing useful information, shouldn’t be included by
brute force. Perhaps some kind of weighting
scheme or selective inclusion process would be
appropriate.

Finally, considering that extending the at-
tribute set with bi- and trigrams has a dramatic
effect on the vocabulary size, the gained classi-
fication performance is unlikely to compensate

for the increased memory requirements.

4.3 Cost-Sensitive Classification

Generally it is much worse to misclassify legit-
imate mails than letting spam slip through the
filter. Hence, it would be desirable to be able
to bias the filter towards classifying messages
as legitimate, yielding higher precision at the
expense of recall.

One way of biasing the filter is to multiply the
prior probability of legitimate messages by some
factor λ > 1 (Androutsopoulos et al., 2000;
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Figure 3: Attribute selection using Mutual Information on the PU corpora—spam recall and precision versus
the number of retained attributes. Included is also the precision and recall figures when only the 200 most
frequent words have been removed.

Androutsopoulos et al., 2004). This turns out
to have a very limited effect, since the expres-
sion in Equation (3) is dominated by the poste-
rior probabilities. Another problem is that this
weighting scheme is inappropriate to use with
word position based attribute vectors, as the
impact of the cost factor λ will vary with the
length of the document being considered.

To overcome these problems the following
simple weighting scheme was used; each pos-
terior probability P (wi|clegit) in Equation (3)
was multiplied with a weight w > 1. The re-
sult of using this “tuning knob” can be seen in
Figure 4.

5 Evaluation

Many different machine Machine Learning al-
gorithms besides naive Bayes, such as C4.5,
k-Nearest Neighbor and Support Vector Ma-
chines, have previously been used in spam fil-
tering experiments. There seems to have been
no clear winner, but there is a difficulty in com-
paring the results of different experiments, since

the used corpora have rarely been made pub-
licly available (Androutsopoulos et al., 2004).
This section gives a comparison with the imple-
mentation and results of the authors of the PU
corpora.

In Androutsopoulos et al. (2004), a variant
of naive Bayes was compared with three other
learning algorithms; Flexible Bayes, LogitBoost
and Support Vector Machines (SVM). All of the
algorithms used real valued word frequency at-
tributes. The attributes were selected by re-
moving words occurring less than five times and
then keeping the 600 words with highest Mutual
Information (see Section 4.1). As can be seen
in Table 4, the word position based naive Bayes
implementation of this paper achieved signifi-
cantly higher precision and better or compara-
ble recall on all four PU corpora. The results
were also better or comparable to the results of
the best-performing algorithm on each corpus.

In Androutsopoulos et al. (2000), the au-
thors used a naive Bayes implementation based
on boolean attributes, representing the pres-



n-grams R P Acc
PU1

n = 1 98.12 95.35 97.06
n = 1, 2, 3 99.17 96.19 97.89

PU2
n = 1 97.14 87.00 96.20
n = 1, 2, 3 95.00 93.12 96.90

PU3
n = 1 96.92 96.02 96.83
n = 1, 2, 3 96.59 97.83 97.53

PUA
n = 1 93.68 97.91 95.79
n = 1, 2, 3 94.56 97.90 96.23

SA
n = 1 97.12 99.25 98.95
n = 1, 2, 3 92.26 98.70 97.42

Table 2: Comparison of classification results when
using only unigram attributes and uni-, bi- and tri-
gram attributes, respectively. In the experiment
words occurring less than three times and the 200
most frequent words have been removed.

n-grams f R P Acc
n = 1 200 97.12 99.25 98.95
n = 1, 2, 3 200 92.26 98.70 97.42
n = 1, 2, 3 5000 98.46 99.66 99.46

Table 3: Comparison of classification results on the
SA corpus when using only unigram attributes and
uni-, bi- and trigram attributes, respectively. In the
experiment words occurring less than three times
and the f most frequent words have been removed.

ence or absence of a fixed number of words.
The attributes were selected using Mutual In-
formation. In their experiments three different
cost scenarios were explored. Table 5 compares
the best results achieved on the PU1 corpus9

for each scenario, with the results achieved by
the naive Bayes implementation of this paper.
Due to the difficulty of relating the two differ-
ent weights, λ and w, the weight w has been
selected in steps of 0.05 in order to get equal
or higher precision. The authors deemed out
the λ = 999 scenario because of the low recall
figures.

9The results are for the bare PU1 corpus, i.e. the
stop-list and lemmatizer have not been applied. The
number of attributes have been optimized for each cost
scenario.
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Figure 4: Cost-sensitive classification on the PU1
and PU2 corpora—spam recall and precision versus
classification weight.

6 Conclusions

In this paper it has been shown that it is pos-
sible to achieve very good classification perfor-
mance using a word position based variant of
naive Bayes. The simplicity and low time com-
plexity of the algorithm, thus makes naive Bayes
a good choice for end-user applications.

The importance of attribute selection has
been stressed—memory requirements may be
lowered and classification performance in-
creased.

By extending the attribute set with n-grams
(n = 1, 2, 3), better classification performance
may be achieved, although at the cost of signif-
icantly increased memory requirements.

With the use of a simple weighting scheme,
precision may be boosted further, while still
retaining a high enough recall level—a feature
very important in real life applications.

7 Acknowledgments

The author would like to thank Pierre Nugues
for inspiring comments during this work. Many



learner R P Acc
PU1

Androutsopoulos 99.38 89.58 94.59
Hovold 98.12 95.35 97.06
Flexible Bayes 97.08 96.92 97.34

PU2
Androutsopoulos 90.00 80.77 93.66
Hovold 97.14 87.00 96.20
Flexible Bayes 79.29 90.57 94.22

PU3
Androutsopoulos 94.84 93.59 94.79
Hovold 96.92 96.02 96.83
SVM 94.67 96.48 96.08

PUA
Androutsopoulos 94.04 95.11 94.47
Hovold 93.68 97.91 95.79
Flexible Bayes 91.58 96.75 94.04

Table 4: Comparison of the results achieved by
naive Bayes in Androutsopoulos et al. (2004) and
by the author’s implementation. In the latter, at-
tributes were selected by removing the 200 most fre-
quent words as well as words occurring less than
three times. Included is also the results of the best-
performing algorithm for each corpus, as found in
Androutsopoulos et al. (2004).
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