
Statistical Noun Group Detector

Antonio CALZADA
Department of Computer Science

Lund University
dat95jca@hotmail.com

Abstract

Statistical noun group detectors and chunkers
provide powerful means of detecting
syntactically correlated non-overlapping parts
of sentences.
This report describes discoveries made
exploring statistical noun group detection
based on Support Vector Machines (SVM)
applied on data from the CoNLL-2000 shared
task.

1 Introduction

Text chunking consists of dividing a text in
syntactically correlated parts of words. For
example, the sentence He reckons the current
account deficit will narrow to only # 1.8 billion in
September . can be divided as follows:

[NP He] [VP reckons] [NP the current account
deficit] [VP will narrow] [PP to] [NP only # 1.8
billion] [PP in] [NP September] .

The shared tasks of CoNLL provide excellent
reference material and results.

In the shared task of CoNLL-2000 full phrase
part chunking is explored.

In shared task of CoNLL-1999 NP bracketing is
explored. This consists in identification of all
noun-phrase structures allowing multiple levelled
groups where a for example a noun-phrase may
be identified as being decomposable into smaller
noun-phrases.

Noun group detection. Also known as noun
phrase (NP) chunking is a simple and robust
alternative to full parsing for segmenting a text
into syntactically correlated parts.

While this report specifically explores detection
of noun groups, many times the same methods can
be applied to other group detection problems like
full phrase part detection and identification of
names of companies and people in texts.

Because statistical methods and learning
algorithms are used instead of for example hand
made rules, the implementation can easily be

adapted to different languages and types of text.

2 Segmentation and labelling

Segmentation and labelling are two of the most
common operations in natural language
processing. These two operations are strongly
related. While segmentation divides a stream of
characters into linguistically meaningful pieces,
labelling classifies those pieces.

There are many different ways a text can be
segmented, most notably: bulletins, pages,
sections, sentences, phrase parts, words and word
stems.

Segmentation might be done at more than one
level. When classifying news bulletins it might
suffice to have two levels of segmentation. First
the text would be segmented into bulletins and
then into sub-segments of keywords and non-
keywords. This would contrast full parsing, where
text is segmented into hierarchical structures of
unlimited depth.

Labelling is characterized by the set of labels
used and their meaning. It may range from
sentence identification by enumeration to tagging
using an extensive set of part-of-speech (POS)
tags.

3 SVM

Support Vector Machines (SVMs) are used for
solving classification and regression problems,
very much like neural networks.

They are trained using data sets of attributes
(features) and corresponding target value (class
label). A trained SVM model can then be fed sets
of features that it will attempt to classify correctly.

The SVM model training works by mapping the
training vectors into a higher dimensional space.
During training the SVM engine attempts to
maximize the margin between critical values and a
separating hyperplane. See (Drawing 1) for an
illustration where the dark line represents a
projection of the hyperplane dividing the dataset.
The thinner dotted lines mark the distance between
the plane and the closest data point.

There are a number of configuration parameters
that can be tuned for the task at hand, the most
common are kernel function, γ and C.

The heart of the SVM engine is a pluggable
kernel function controlling the creation of the
hyperplane. Some examples are: linear,
polynomial, radial basis function (RBF), and
sigmoid.

Depending on the type of the function, a number
of configuration parameters may be available. The

γ parameter is common to most kernel
functions.

Since it may not be possible to place the plane
so it correctly classifies the training data it is
allowed to incorrectly classify training values but
at the cost of a penalty that is to be minimized. The
severity of this penalty is controlled by the C
parameter.

4 NP identification using SVM

The basic steps for applying SVM to NP
detection are:
– Selecting appropiate features.
– During training:
– Scale and encode features for train data.
– Select kernel function and trim parameter.
– Train SVM model.

– During testing:
– Scale and encode features for test data.
– Let SVM model classify test data.
– Decode classification labels.

Since SVM works with points in a mathematical
space the words and tags in the natural language
material needs to be encoded into numbers.

SVM like most learning algorithms thrive on
information. But it's important that both the
training data and the encoding is not biased
fooling SVM into identifying patterns that are not
applicable to the test data.

5 Test, training and evaluation

The material I used is the same as used at
CoNLL-2000 and in turn originally produced by
(Ramshaw and Mitchell, 1995).

The corpora contain one word per line and each
line contains six fields of which the first three
fields are relevant: the word, the part-of-speech tag
assigned by the Brill tagger and the correct IOB
tag showing phrase par limits.

Words can be inside a NP (I) or outside a NP

(O). In the case that one NP immediately follows
another NP, the first word in the second base NP
receives tag B.

The source corpora of the data is sections of the
Wall Street Journal (WSJ), part of the Penn
Treebank (Marcus et al., 1993). Sections 15-18,
211727 tokens are used as training material and
section 20, 47377 tokens as test material.

Three values are used to measure performance:
• precision, percentage of detected noun

phrases that are correct ,
• recall, percentage of noun phrases in the

data that were found by the classifier,
• and F-beta, provides a collected

measurement of the previous two values
evaluated as (2*precision*recall)/
(precision+recall)

Results are measured up against a baseline value
provided by a simple unigram tagger (tagging IOB
tags instead of POS tags).

6 The Demo Program

The purpose of the demo program is to
demonstrate how an arbitrary text provided the
user is tagged and NP chunked by the implemented
methods.

The demo is implemented as an interactive
console program. Once it is started an introductory
message and a prompt is shown. The prompt
accepts the commands described in (Table 1).

The tagger used is a simple back-off tagger
composed of in order of preference: a trigram
tagger, a bigram tagger, a unigram tagger, and as a
last result defaulting to the NN tag.
Table 1Demo program commands

command Description
chunk Chunks the provided text.

Tagger and SVM engine
has to be loaded.

create_svm
[word count]

Creates a SVM engine and
trains it using CoNLL-2000
train data. A word count
can be provided to limit the
size of the corpora used.

create_tagger
[word count]

Creates a tagger and
populates it with data from
the CoNLL-2000 train data.
A word count can be
provided to limit the size of
the corpora used.

evaluate_tagger Evaluates the currently
loaded tagger.

exit Exits the program.

Drawing 1 SVM Classification optimization

help
[command]

Shows either available
commands or information
about a command if
provided.

history Provides a list of executed
commands.

load_svm Loads a svm model from
provided filename or
svm.pkl if none given.

load_tagger Loads a tagger from
provided filename or
tagger.pkl if none given.

save_svm
[filename]

Saves a svm model to
provided filename or
svm.pkl if none given.

save_tagger
[filename]

Saves a tagger to provided
filename or tagger.pkl if
none given.

shell
[command]

Executes the provided
command in a spawned
shell.

tag text Tags the provided text
using the loaded tagger.
Also saves the output to the
file tagged.txt.

test Creates a tagger and a SVM
engine and then tags and
chunks a test text.

! [command] Same as the shell command.

7 Results

Building on the baseline (F-beta = 79.99)
implementation by using n-tagger showed showed
some improvements that quickly tapered off with
tagger complexity.

Using SVM on half the training set with C=64
and γ=64 produced F-beta=80.99 when not using
context based features. When adding the previous
context based POS tag to the features F-beta
improved to 86.60.

8 Conclusion

Although my results are not that great, they
show that just adding some context data shows a
good improvement. Providing more an better
features would give very good results.

9 References

Dimitrios Kokkinakis and Sofie Johansson
Kokkinakis. 1999. A Cascaded Finite-State
Parser for Syntactic Analysis of Swedish, In:
"Proceedings of EACL'99", Bergen, Norway.

Taku Kudo and Yuji Matsumoto.2001. Chunking
with Support Vector Machines, In: "Proceedings

of NAACL 2001", Pittsburgh, PA, USA.

Mitchell P. Marcus, Beatrice Santorini, Mary Ann
Marcinkiewicz. 19993. Building a large
annotated corpus of English: the Penn
Treebank, Computational Linguistics.

Lance A. Ramshaw and Mitchell P. Marcus. 1995.
Text Chunking Using Transformation-Based
Learning. In: "Proceedings of the Third ACL
Workshop on Very Large Corpora", Association
for Computational Linguistics.

