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Abstract

Statistical noun group detectors and chunkers
provide  powerful  means  of  detecting
syntactically correlated non-overlapping parts
of sentences.
This  report  describes  discoveries  made
exploring  statistical  noun  group  detection
based  on  Support  Vector  Machines  (SVM)
applied on data from the CoNLL-2000 shared
task.

1 Introduction

Text  chunking  consists  of  dividing  a  text  in
syntactically  correlated  parts  of  words.  For
example,  the  sentence  He  reckons  the  current
account deficit will narrow to only # 1.8 billion in
September . can be divided as follows: 

[NP He ] [VP reckons ] [NP the current account
deficit ] [VP will narrow ] [PP to ] [NP only # 1.8
billion ] [PP in ] [NP September ] .

The  shared  tasks  of  CoNLL provide  excellent
reference material and results.

In the  shared  task of  CoNLL-2000 full  phrase
part chunking is explored.

In shared task of CoNLL-1999 NP bracketing is
explored.  This  consists  in  identification  of  all
noun-phrase structures  allowing multiple  levelled
groups  where  a  for  example  a  noun-phrase  may
be identified as being decomposable into smaller
noun-phrases.

Noun  group  detection.  Also  known  as  noun
phrase  (NP)  chunking  is  a  simple  and  robust
alternative  to  full  parsing  for  segmenting  a  text
into syntactically correlated parts.

While this report specifically explores detection
of noun groups, many times the same methods can
be applied to other group detection problems like
full  phrase  part  detection  and  identification  of
names of companies and people in texts.

Because  statistical  methods  and  learning
algorithms are  used  instead  of for  example hand
made  rules,  the  implementation  can  easily  be

adapted to different languages and types of text.

2 Segmentation and labelling

Segmentation and labelling are two of the most
common  operations  in  natural  language
processing.  These  two  operations  are  strongly
related.  While  segmentation  divides  a  stream of
characters  into  linguistically  meaningful  pieces,
labelling classifies those pieces. 

There  are  many  different  ways  a  text  can  be
segmented,  most  notably:  bulletins,  pages,
sections, sentences, phrase parts, words and word
stems.

Segmentation  might  be done at  more than one
level.  When  classifying  news  bulletins  it  might
suffice to  have two levels of segmentation. First
the  text  would  be  segmented  into  bulletins  and
then  into  sub-segments  of  keywords  and  non-
keywords. This would contrast full parsing, where
text  is  segmented  into  hierarchical  structures  of
unlimited depth.

Labelling  is  characterized  by  the  set  of  labels
used  and  their  meaning.  It  may  range  from
sentence identification by enumeration to tagging
using  an  extensive  set  of  part-of-speech  (POS)
tags.

3 SVM

Support Vector Machines (SVMs) are used for
solving  classification  and  regression  problems,
very much like neural networks.

They  are  trained  using  data  sets  of  attributes
(features)  and  corresponding  target  value  (class
label). A trained SVM model can then be fed sets
of features that it will attempt to classify correctly.

The SVM model training works by mapping the
training vectors  into a  higher  dimensional  space.
During  training  the  SVM  engine  attempts  to
maximize the margin between critical values and a
separating  hyperplane.  See  (Drawing  1)  for  an
illustration  where  the  dark  line  represents  a
projection of the hyperplane dividing the dataset.
The thinner dotted lines mark the distance between
the plane and the closest data point.



There are a number of configuration parameters
that  can be tuned  for  the  task at  hand,  the  most
common are kernel function, γ and C. 

The  heart  of  the  SVM  engine  is  a  pluggable
kernel  function  controlling  the  creation  of  the
hyperplane.  Some  examples  are:  linear,
polynomial,  radial  basis  function  (RBF),  and
sigmoid.

Depending on the type of the function, a number
of configuration parameters may be available. The

γ  parameter  is  common  to  most  kernel
functions.

Since it may not be possible to place the plane
so  it  correctly  classifies  the  training  data  it  is
allowed to incorrectly classify training values but
at the cost of a penalty that is to be minimized. The
severity  of  this  penalty  is  controlled  by  the  C
parameter.

4 NP identification using SVM

The  basic  steps  for  applying  SVM  to  NP
detection are:
– Selecting appropiate features.
– During training:
– Scale and encode features for train data.
– Select kernel function and trim parameter.
– Train SVM model.

– During testing:
– Scale and encode features for test data.
– Let SVM model classify test data.
– Decode classification labels.

Since SVM works with points in a mathematical
space the words and tags in the natural language
material needs to be encoded into numbers.

SVM  like  most  learning  algorithms  thrive  on
information.  But  it's  important  that  both  the
training  data  and  the  encoding  is  not  biased
fooling SVM into identifying patterns that are not
applicable to the test data.

5 Test, training and evaluation 

The  material  I  used  is  the  same  as  used  at
CoNLL-2000 and in  turn  originally  produced  by
(Ramshaw and Mitchell, 1995). 

The corpora contain one word per line and each
line  contains  six  fields  of  which  the  first  three
fields are relevant: the word, the part-of-speech tag
assigned by the  Brill  tagger  and the correct  IOB
tag showing phrase par limits. 

Words can be inside a NP (I) or outside a NP

(O). In the case that one NP immediately follows
another NP, the first word in the second base NP
receives tag B.

The source corpora of the data is sections of the
Wall  Street  Journal  (WSJ),  part  of  the  Penn
Treebank  (Marcus  et  al.,  1993).  Sections  15-18,
211727 tokens  are  used  as  training material  and
section 20, 47377 tokens as test material.

Three values are used to measure performance:
• precision,  percentage  of  detected  noun

phrases that are correct ,
• recall,   percentage  of  noun phrases  in  the

data that were found by the classifier,
• and  F-beta,  provides  a  collected

measurement  of  the  previous  two  values
evaluated  as  (2*precision*recall)/
(precision+recall)

Results are measured up against a baseline value
provided by a simple unigram tagger (tagging IOB
tags instead of  POS tags).

6 The Demo Program

The  purpose  of  the  demo  program  is  to
demonstrate  how  an  arbitrary  text  provided  the
user is tagged and NP chunked by the implemented
methods.

The  demo  is  implemented  as  an  interactive
console program. Once it is started an introductory
message  and  a  prompt  is  shown.  The  prompt
accepts the commands described in (Table 1).

The  tagger  used  is  a  simple  back-off  tagger
composed  of  in  order  of  preference:  a  trigram
tagger, a bigram tagger, a unigram tagger, and as a
last result defaulting to the NN tag.
Table 1Demo program commands

command Description
chunk Chunks the provided text.

Tagger and SVM engine
has to be loaded.

create_svm
[word count]

Creates a SVM engine and
trains it using CoNLL-2000
train data. A word count
can be provided to limit the
size of the corpora used.

create_tagger
[word count]

Creates a tagger and
populates it with data from
the CoNLL-2000 train data.
A word count can be
provided to limit the size of
the corpora used.

evaluate_tagger Evaluates the currently
loaded tagger.

exit Exits the program.
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help
[command]

Shows either available
commands or information
about a command if
provided.

history Provides a list of executed
commands.

load_svm Loads a svm model from
provided filename or
svm.pkl if none given.

load_tagger Loads a tagger from
provided filename or
tagger.pkl if none given.

save_svm
[filename]

Saves a svm model to
provided filename or
svm.pkl if none given.

save_tagger
[filename]

Saves a tagger to provided
filename or tagger.pkl if
none given.

shell
[command]

Executes the provided
command in a spawned
shell.

tag text Tags the provided text
using the loaded tagger.
Also saves the output to the
file tagged.txt.

test Creates a tagger and a SVM
engine and then tags and
chunks a test text.

! [command] Same as the shell command.

7 Results

Building  on  the  baseline  (F-beta  =  79.99)
implementation by using n-tagger showed showed
some improvements that quickly tapered off with
tagger complexity. 

Using SVM on half the training set with C=64
and  γ=64 produced F-beta=80.99 when not using
context based features. When adding the previous
context  based  POS  tag  to  the  features  F-beta
improved to 86.60.

8 Conclusion

Although  my  results  are  not  that  great,  they
show that just adding some context data shows a
good  improvement.  Providing  more  an  better
features would give very good results.
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