
Morphological parser for Latin

Alexander Malmberg
LTH

d00am@efd.lth.se

Abstract

Morphology describes how words are formed
in a language, for example by adding suffixes
or prefixes to existing words. In some lan-
guages, this process is very productive, and
it is thus important for computational lin-
guistics to be able to handle this. The pur-
pose of a morphological parser is to extract
information from the morphological struc-
ture of a word. In this paper, we examine
this problem and briefly look at the stan-
dard two-level morphology approach of han-
dling it. We also present a basic but working
morphological parser for Latin.

1 Introduction

Morphology is the study of how words are
formed. In many languages, the processes by
which new words are formed are very com-
mon. For example, in English, one can form
compound words, and it is common that plu-
ral forms of words are formed by adding ”s”
to the singular form. Other languages use
other sets of prefixes and suffixes to form
new words from other words, sometimes with
phonological changes (such as ”morpholo-
gies”, where ”ys” turns into ”ies”). Some
languages use infixes or other exotic meth-
ods for forming words.

Systems that want to process text in a lan-
guage need to understand all these words.
A simple and straightforward approach is to
make a dictionary that lists all words. How-
ever, this is ugly from a theoretic point of
view. Many of the methods that form new
words are regular, and it should be possible
to build a model of these methods and use
it.

It is also impractical to list all words, es-
pecially in languages with rich morphological
processes. For example, nearly every Latin

verb has approximately 150 forms, but these
can usually be formed from just three stems.
Even in English, which has relatively poor
morphological processes, listing all words is
unlikely to work in practice. An interesting
example(Sproat, 1992) involved Associated
Press newswire text from a 10 month pe-
riod. Even when the words from all the texts
expect those of the last day of the period
were collected in a dictionary, there were still
many words on the final day that weren’t in
the dictionary. Many of these involved new
forms of words that were in the dictionaries.

Thus, morphology aims at modelling how
words are formed, and the job of a morpho-
logical parser is to extract information from
words using this model. There are many ap-
plications of this, and different applications
need different types of information. One
type would be information about gender,
number, tense, etc., which could be used to
find the meaning of a word, or to aid part-of-
speech tagging. Other applications include
spell checking, or text-to-speech, where mor-
phology can provide information about mor-
pheme boundaries and pronunciation.

2 Two-level morphology

One standard way of writing a morphological
parser is to use so called two-level morphol-
ogy. This was originally done by Kosken-
niemi in the KIMMO system for Finnish.

The first level in two-level morphology is,
roughly, a ”dictionary” with idealized mor-
phological rules. The second level is a set
of phonological rules for rewriting idealized
forms of words into their real forms.

The ”dictionary” can be represented as a
web of tries. A trie is a tree where each
node has a child for each letter. This makes
it possible to find the node for a word effi-



ciently: just start at the root and recursively
go to the child corresponding to the next
letter. Morphological rules are handled by
connecting many tries; the node for a stem
won’t have children for all the possible end-
ings. Instead, it will have a link to a separate
trie that contains these endings. This way,
only one trie is needed for each (idealized)
paradigm, and it is still possible to find the
node for a complete word efficiently.

The phonological rules are represented as
finite state automatons that accept or reject
a pair of strings. One of the strings would be
a real form of a word, and the other would be
an idealized form as found in the dictionary.
The automaton would accept the pair if the
dictionary form matches the real form.

When parsing words, these two levels run
in parallel. The dictionary trie is searched
recursively starting at the root. At each
node, the idealized form (so far) is compared
to the real form using the automaton to see
if the idealized form might correspond to the
real form. If it doesn’t, the search need not
continue below that node. (Since the phono-
logical rules might include large changes, the
system might have to search a few levels
down dead-ends before the automaton can
reject the pair.)

There are many practical details in imple-
menting such a system, but this is only a
brief description. A more extensive descrip-
tion can be found in my source for this sec-
tion (Sproat, 1992).

3 Morphology in Latin

Morphology in Latin is extensive: nearly ev-
ery word indicates number and gender, there
are many cases, many paradigms, and many
obscure forms of verbs.

However, the structure is fairly simple:
words are formed by adding suffixes to a
stem. There are no phonological rules (ex-
cept some vowel length changes, but since
I’m working with written texts, that doesn’t
affect my parser). Completely new words are
can be formed using prefixes, but these were
included in my dictionary and thus didn’t
cause any problems. Stems are formed in
more complex ways, but again, listing all
stems isn’t hard (e.g. a verb may need 3–
4 stems, but no more).

(It is perhaps worth noting that classic
Latin is a language where it would be possi-
ble to simply build a list of all words. Being
a dead language, no new texts will be writ-
ten in it, so if you collected all words in all
texts, you’d trivially get perfect coverage on
all texts.)

During the work on my parser, I used
primarily two Latin grammar references:
Grammatica Nova (Larsson and Plith,
1992), and Latin Grammar (Conrad, 2004).

4 Morphological parser for
Latin

I wrote a morphological for Latin. It is based
on the dictionary level of the two-level mor-
phology and doesn’t include any phonolog-
ical rules. The trie structure is defined in
trie.h and the main source is in latin1.c.

When the program is, it reads the data
files specified on the command line. Each
data file defines a trie: the words contained
in it, which other tries it links to, and some
other interesting information (e.g. the mean-
ing of a stem, and tense/case/etc. informa-
tion for endings).

The parser function is parse(). The parse
is done in three steps. First, the tries are
searched for the unmodified word.

If no parses are found and the word ends in
”que”, the ”que” is removed and the search
is attempted again. ”que” is a word that
is sometimes attached to other words as a
suffix. Since it can be attached to all kinds
of words, it was convenient to special case
this word here.

If no parses are found in the second search,
the parser tries to parse the word as a roman
numeral.

Writing and debugging the parser was
fairly easy. Most of the time in the project
was spent gathering and working on the data
that the parser uses.

4.1 Data

When the parser is run, it is given a list of
files with data that is used to build and link
together the tries. There are two basic kinds
of tries: stems and endings.

4.1.1 Endings

The ending tries were built by hand by me
using Latin grammar resources (Larsson and



Plith, 1992) (Conrad, 2004). While it would
have been possible (and straightforward) to
simply make long lists of all endings from a
grammar book, there are many regularities
in the endings, and I tried to exploit this.

As an example, almost all verb forms use
one of three sets of endings to indicate per-
son. Thus, instead of having to list 6 endings
for each combination of verb conjugation,
tense, active/passive, etc., only the first part
of the ending is listed along with a link to
the trie with person endings corresponding
to this combination. (In fact, in some cases
I cheat and do this even when some forms
don’t follow one of the three patterns. In
those cases, I also list the exceptional forms,
so the parser still recognizes all valid forms;
the drawback is that it will also recognize
some ill-formed words.)

With some support for handling phonolog-
ical rules, it would have been possible to ex-
ploit even more near-regularities. Unfortu-
nately, the near-regular endings don’t seem
to follow regular phonological rules. For ex-
ample, the ending for both nominative plu-
ral and genitive singular second declension
nouns is ”-i”. For second declension nouns
whose stems end in ”i”, such as ”gladius”,
the ”ii” in genitive singular is contracted to
a single ”i”, ”gladi”, while the ”ii” in nomi-
native plural isn’t, ”gladii”.

To handle this in a two-level morphology,
it would have been necessary to introduce
new ”magic” letters, e.g. several variants of
”i”, identical except that some would com-
bine with other ”i”:s and some wouldn’t.
Thus, you still wouldn’t really be able to ex-
ploit the regularities since you’d have to ex-
plicitly list which ”i” would be used in differ-
ent endings. To me, this doesn’t appear to
be any nicer than simply listing all endings
from a theoretical point of view.

4.1.2 Stems

The stems were collected from a dictionary
built from the word list of another morpho-
logical parser for Latin (Whitaker, 2004).
This dictionary included over 30000 entries,
and while it was written in traditional dic-
tionary form, it included enough information
about the words to extract the stems and
connect them to my ending tries.

The program gen roots dict 1 parses the

Author Number of words Coverage
Caesar 51624 91%
Vergilius 63748 77%

Table 1: Parser results

dictionary and builds the data files used by
my parser. The program can handle about
25000 of the entries in the dictionary. Ex-
tending the coverage is straightforward but,
at this stage, time consuming since the re-
maining words are spread across many small
paradigms.

5 Results

I tested my parser on ”Commentariorum
Libri VII de Bello Gallico” by Caesar, and
the Aeneid by Vergilius (both texts from
”Corpus Scriptorum Latinorum” (Camden,
2003)). The results are in table 1.

While developing the parser, I tested and
analyzed the results of the parser on parts of
the first chapter of the text by Caesar. These
results were used to guide the development;
they told me which words and paradigms
that would increase coverage the most. Since
the results from the Caesar text was used for
this, this is likely part of the reason why the
coverage is much better on the Caesar text.
Another reason could be that the dictionary
I extracted stems from was, according to its
documentation, originally built using Cae-
sar’s texts.

On average, there were about 2.5 parses
of each successfully parsed word. Many of
these seem to be cases where several differ-
ent genders/cases of a word have the same
ending.

I have examined correctness by man-
ually examining some randomly selected
words, and by systematically testing some
paradigms, and to the limits of my knowl-
edge of Latin, all parses are valid (and usu-
ally, if a word is parsed at all, the correct
parse is among the parses found).

References

David Camden. 2003. Cor-
pus scriptorum latinorum,
http://www.forumromanum.org/literature/index.html.



Eric Conrad. 2004. Latin grammar,
http://www.math.ohio-state.edu/ econ-
rad/lang/latin.html.

Lars A. Larsson and H̊akan Plith. 1992.
Grammatica Nova. Bonniers.

Richard Sproat. 1992. Morphology and
Computation. ACL-MIT Press.

William Whitaker. 2004. Words 1.97,
http://users.erols.com/whitaker/.


